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Foreword to the First Edition 

Slowly, but surely, formal methods are spreading from academic research to 
industrial applications. The need for certified software for security applications 
is driven by the increasingly large proportion of software in embedded systems, 
and by the exponential development of networks, whose reliability and secu
rity are essential for the modern economy. In these domains, where zero-defect 
software is a must, the high cost of these techniques is actually justified by the 
absolute necessity of certification. In the more traditional domains of software 
engineering, where zero-defect software is far from being the norm, development 
methods relying on a rigorous discipline of formal specification are profitable 
in the long run, thanks to the better structuring of the results, their greater 
robustness, their better documentation, which entails savings on maintenance 
and transfer operations, and their greater independence of languages and hard
ware. The algorithmic solutions are extricated from implementation choices 
and elaborated with a generality which favors their reuse in other applications. 
One may then talk about CASE tools, where logical specifications form the 
conceptual basis of the evolution of a system throughout its lifecycle, from the 
analysis of customer requirements through to the continuous adaptation to new 
environments and to new features. 

This revolution in the design of software systems has already been success
fully undertaken in the domain of hardware design, where formal methods are 
routinely used on a large scale. The corresponding revolution in software engi
neering is still to come, because mastering these abstract techniques and the 
difficulty in using associated tools hampers their penetration of an environment 
where traditional, or even obsolete programming techniques, die hard. Indeed, 
it is often tempting to "hack the bug with a patch" in order to urgently satisfy 
the complaint of a client, even if it means paying dearly, in the long term, for 
the disorder generated by such practices. 

In fact, that part of software which is formally developed is currently tiny, 
in spite of the considerable amount of research and development which has 
been devoted to this technology since the 1970s. There is no well-established 
standard, and tools are still very much at the level of a cottage industry. In fact, 
the difficulty in learning very abstract methods and a bad estimation of scaling 
problems gave rise to a number of bitter failures, and even, to some extent, a 
phenomenon of rejection. The competent programmer feels his or her creativity 
hindered by the use of bureaucratic shackles that sometimes obscure, using a 
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cryptic set-theoretic jargon, ideas which could be very clear if presented from a 
more operational perspective. When the notation hampers understanding, one 
runs the risk of losing the guiding thread of the control flow, and of carrying 
out symbol pushing to derive meaningless conclusions. Finally, tools are too 
often used erroneously, because their limitations are insufficiently understood. 

There is then a sizeable gap between the specialists in these techniques and 
real-world engineers, who are pressured by deadlines and cost requirements. 
It is not easy to keep up with the evolution of tools coming from research 
laboratories, and in this area, professional offers are sparse and there is a lack 
of standardization. Comparative studies are rare, as are impartial experts, and 
the potential user of formal methods often has the impression of making his or 
her choices as if involved in a game of blind man's buff. 

Jean-Franl,iois Monin's book is therefore of great value, since it sets out a 
sizeable amount of the knowledge which has to be mastered in order to guide 
those choices. Far from being an exhaustive hotch-potch, this book proposes 
an overview of the general techniques for specifying and developing software by 
stepwise refinement in a modular manner, and elaborating formal proofs, illus
trated by concrete examples explained using a number of representative tools. 
The example of table searching is very well chosen, because it is understand
able to everyone, it is small enough to merit a complete treatment, but it is, 
at the same time, sufficiently complex for illustrating typical issues. The cover
age of techniques is satisfactory, and methods are explained without ideological 
commitment or parochialism. This book relies upon a concrete knowledge of a 
significant number of tools, and it soberly presents a moderate point of view, 
without suffering from either the excessive enthusiasm of tool designers nor the 
exaggerated suspicion of overly pragmatic programmers. 

This book is aimed at all those who are rightly puzzled by the complex and 
controversial panorama of formal methods. It is unique as to its completeness 
and its compromise between rigorous exposition of underlying mathematical 
theories and concrete explanations of the implementation of techniques using 
actual tools. One of its essential merits is to be an up-to-date presentation 
of the best currently available techniques, in a field where one could easily 
mistakenly choose an antiquated and rigid technology, or take the risk of a 
research prototype with an unknown lifespan. 

This book is meant to become a reference book for the coming years, and 
I recommend it to all those who have understood that one should not delay 
adopting a technology which is unavoidable. 

Gerard Huet 
May 1996 



Preface 

This book is intended to help the student or the engineer who wants an intro
duction to formal techniques, as well as the practitioner who wishes to broaden 
her or his knowledge of this subject. It mainly aims at providing a synthetic 
view of the logical foundations of such techniques, with an emphasis on in
tuitive ideas, so that it can also be considered as a practical complement to 
classical introductory manuals to logic, which generally focus more detail on 
specific subjects (e.g. first-order logic), and to books dedicated to particular 
formal methods. 

This book is a translation of the French edition Introduction aux methodes 
formelles, published by Hermes in 2000. The contents have been updated and 
somewhat clarified, in particular the discussion of typing which is now at the 
beginning of Chapter 10. 

Many colleagues, researchers, and friends, have had an influence on the form 
and the content of this text, either through direct comments or enthralling 
discussions. I would like to cite: Jean-Raymond Abrial, Andre Arnold, Yves 
Bertot, Michel Cartier, Paul Caspi, Christine Choppy, Thierry Coquand, Vin
cent Danos, Pierre Desforges, Gilles Dowek, Jean-Christophe Filliatre, Lau
rent Fribourg, Roland Groz, Nicolas Halbwachs, Claude Jard, Gilles Kahn, 
Claude and Helene Kirchner, Emmanuel Ledinot, Pierre Lescanne, Fernando 
Meijia, Max Michel, Kathleen Milsted, Chetan Murthy, Christine Paulin, Si
mon Pickin, Laurent Regnier, John Rushby, Natarajan Shankar, Joseph Sifakis, 
Jean-Bernard Stefani and Daniel Vincent. 

I am particularly indebted to Gerard Huet, who wrote the foreword and 
gave me precious hints. Special thanks to Didier Begay, Pierre Caster an, Pierre 
Cregut, Thierry Heuillard, Francis Klay and Jean-Marc Pitie for their careful 
rereading of the French version, to Mike Hinchey for his considerable work on 
the translation, and to Catherine Drury, Mekanie Jackson and Rosie Kemp for 
their kind help. 

Finally, I will not forget Caroline, Maxime and Wei, who brought me a 
band, a book, a small-scale model of a car and, above everything else, constant 
support. 
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1. Motivation 

After a long gestation period, formal methods for software development have 
reached a maturity level sufficient for use in a range of real applications such 
as railway or aircraft transportation systems, telecommunications or energy. 
The fundamental ideas of formal methods have been known for a long time: 
they emerged with the first computers and have been studied since the 1960s. 
Independently of any cultural considerations, it transpired that putting them 
into practice required theoretical improvements as well as complex software 
support tools, whose principles and architectures became understood over the 
following decades, resulting in more and more effective prototypes, and, last 
but not least, machines endowed with powerful computational capabilities. 

Various institutions are aware of the progress that has been made in the re
lated technologies. In the domain of security, the European ITSEC (Information 
Technology Security Evaluation Criteria) has required the use of formal meth
ods in its fourth security level, and above, since the mid 1990s. More recently, 
the Common Criteria for Information Technology Security, which have been in 
force as an ISO standard since 1999, recommend the use of formal models from 
its fifth security level, and above, and require the use of formal verification 
techniques at the seventh level.1 By the end of the 1990s, industrial interest in 
these techniques had been confirmed and significantly widened. This could be 
observed, for example, on the occasion of the First World Congress on Formal 

. Methods, in September 1999 [WWD99]. As new, and significantly more com
plex, application areas are emerging (smart cards, highly-secured information 
systems, robotics, e-commerce, aircraft control, etc.), one can see the increas
ing importance and relevance of formal methods. New techniques, theories and 
tools are being used in various applications, and these in turn provide feedback 
to the theory and evolution of formal methods and their associated proof tools. 
Nowadays, formal methods are applied in a whole plethora of systems ranging 
from complicated algorithms, of just a few pages in length, to software systems 
involving tens of thousands of lines of code. Let us illustrate the evolution of 
the technology with some industrial applications. 

IThe Common Criteria are the result of a joint effort of several countries, in 
North America, Europe, and Australia/New Zealand. Formal methods have also been 
mentioned in US security standards as far back as the 1980s. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003



2 Understanding Formal Methods 

1.1 Some Industrial Applications 

1.1.1 Specification for Re-engineering 

One of the oldest large-scale experiments is the CICS project undertaken at 
IBM (Huxley Park, United Kingdom), in collaboration with Oxford University. 
Its purpose was to perform a major restructuring of a large existing software 
system used for transaction management. The overall system was composed of 
about 800,000 lines of assembly language and of Plas, a high-level proprietary 
language. 268,000 lines were modified or rewritten, of which 37,000 made use 
of formal specification with the Z specification notation. Measurem ~nt proce
dures were introduced in order to evaluate the impact of a formal method on 
productivity and on quality. The quantitative results are detailed in [HK91]. 
They can be summarized as follows: 

- development costs decreased by 9 percent; 
- in the first eight months following the installation of the new version of CICS, 

in 1990, the clients reported 2.5 times fewer errors in the parts developed with 
Z than in the parts developed with non-formal techniques; moreover, these 
errors were perceived as being less serious. 

This experiment is interesting because of the large amount of code involved. In 
contrast, its technical goals were rather limited: the issue was to specify software 
with the Z formal notation, and then to develop the code from the documents 
resulting from this phase; proof techniques were not taken into account. 

1.1.2 Proving Critical Railway Software 

When one tackles critical domains, involving human lives or having a poten
tially great economic or social impact, it becomes important to ensure the 
correctness of the executable code, or at least to give ourselves the strongest 
guarantees we can of this correctness. The code should possess no errors or devi
ations from intended behavior. One means of attaining this goal is to prove that 
it complies with a carefully written specification, on which competent persons 
involved in the development agree. Such a requirement entails a large amount 
of work. It is then important to give the whole system under consideration an 
appropriate structure, so that the areas where proofs will be performed are suit
ably delimited. The use of the B method by GEC-Alsthom, and more recently 
by Matra Transport International-Siemens, in projects such as the Calcutta 
subway [SDM92] or the Meteor line of the Paris subway [BBFM99] is a good il
lustration of this approach. The objective is to command and control the speed 
of a train by means of a device, which can be conceptualized, roughly, in the 
form of an uninterruptible sequence of instructions which run periodically. This 
is composed of a phase where pieces of input information are collected, followed 
by a phase where decisions are made, and finally a phase where commands are 
sent to physical control devices. It transpires that all of the complexity is con
centrated in the second phase. This involves data transformation, which can be 
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reasonably well modeled using the set-theoretic constructs available in Z or in 
B. However, B, developed more recently than Z, involves a process allowing ex
ecutable code to be derived in a step-by-step manner; moreover, this code can 
be proven to conform to the initial specification, thanks to applicable support 
tools. The result of this procedure was several thousands lines of code written 
in the C language. 

Note that, in the above example, reaction times are relatively long compared 
to computation times. In other applications, the constraints may be more strict; 
sometimes several devices have to be handled simultaneously and, generally, 
this greatly complicates matters. Other formal approaches, based on transition 
systems or on synchronous languages, for example, are well suited for dealing 

. with such problems. 
Finally, more complex applications, such as security components of net

work services, compilers, or support tools for formal methods themselves, in
volve both complex data structures and subtle behaviors. Using powerful logics 
becomes necessary, and we already know of a number of encouraging success 
stories using tools such as PVS, HOl and Coq. 

1.2 What Is a Formal Method? 

By ''method'', one generally means a process aiming at progressively reaching 
a given objective. For example, the method followed by a high-school student 
to solve a simple problem of mechanics consists of establishing the balance of 
forces, modeling them by vectors, then computing the unknowns using linear 
algebra or vector calculus. We must be aware that today, such a method, in 
the former sense, is still very underdeveloped in the case of formal methods for 
software construction. Such methods provide, essentially, a rational framework 
composed of tools to aid in modeling and reasoning, but they don't bring 
much from a methodological perspective. We will use the term formal method, 
because it is well established, but formal technique would certainly be more 
appropriate. 

The domain of compilation techniques may be an exception. In order to 
construct a compiler, first the grammar of the source language is defined using 
suitable formal rules. After a possible transformation of the latter, an efficient 
parser is automatically derived thanks to general mechanisms determined in 
the 1960s. We have here all of the ingredients of a formal method. First, we 
obviously have a formal language for describing the grammar rules in a precise 
manner - a BNF, normal form of Backus-Naur. Furthermore, we have a well
understood mathematical substratum, which is the theory of formal languages 
and automata, and which provides the precise meaning of the grammar rules 
and justifies the general algorithms to be used. The formal methods we will 
consider in this book are all based on a formal language, including, for example, 
set-theoretic or logical notations, or more ad hoc concepts as in the case of 
the BNF formalism, together with a means of giving a precise mathematical 
meaning to every statement - its so-called semantics. 
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What can this be useful for? First, to communicate well: a rigorous se
mantics eliminates ambiguities, and it is an impartial arbiter. This is also an 
excellent guide for defining support tools. Finally, when a formal model of a 
system is available, the properties we expect from this system can be stated 
with precision, then formally verified. This leads us to say a few words on the 
role of formal methods within software engineering. 

1.3 From Software Engineering to Formal Methods 

Mastering the complexity and the cost of software proved to be a real techno
logical and economical challenge; this gave birth to a well-established discipline, 
namely, software engineering. The practical aspects of this discipline are those 
most well known to developers: languages, compilers, CASE tools and sup
port environments, development methods, programming techniques, methods 
related to quality management, etc. Design methods appeared: SADT, Jack
son, object-oriented techniques, and others. These methods and techniques have 
non-negligible results to their credit, such as the following: 

- a number of key notions have been recognized, for instance the concept of a 
lifecycle for software (commonly: requirements, specification, general design, 
detailed design, encoding, unit testing, integration testing, installation and 
maintenance) ; 

- the introduction of rigorous methods in the production of software; 
- the costs of the different stages have been evaluated and compared; for ex-

ample, one estimates that maintenance takes up at least two-thirds of the 
overall cost of a software project, and that fixing a specification error re
quires twenty times more effort if it is detected after the installation stage, 
and sometimes even much more than that. 

1.3.1 Towards More Rigorous Processes 

The consequences of a software failure are not limited to recovery issues. In a 
number of cases (transportation, power plant command and control, medical 
systems), human lives are concerned. In the domain of telecommunications, 
major operators have experienced serious failures that entailed heavy losses -
for example, the AT&T network in January 1990, following the installation of 
a new software upgrade to its switching systems. The sad fate of flight number 
501 of the satellite launcher Ariane is yet another blasting demonstration that 
methods in current use are insufficient with regard to the high stakes of today. 

We already mentioned that the later a mistake is detected, the more difficult 
it is to repair. This highlights the concern to devote a large amount of invest
ment to the early stages of the software lifecycle, and the great importance of 
deriving reliable specifications: 

1. which actually correspond to what is intuitively expected from the 
system; and 
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2. which are consistent. 

The techniques considered in this book deal mainly with the second issue. These 
techniques start with a formal specification, and they allow one to develop 
software in a rigorous way based on this specification. 

Regarding the first issue above, note that establishing good specifications 
necessitates a good knowledge of the users' needs, a knowledge that users them
selves do not always possess from the outset. One may remedy this problem by 
confronting a formal specification with a number of simple properties which we 
expect. Such properties can be regarded as formal specifications themselves, 
though partial ones, because their scope is generally limited only to certain 
aspects. 

One may also consider complementary techniques, such as rapid prototyp
ing, in order to quickly develop an easy-to-modify version of the intended sys
tem. The most important feature of the technology to be used is then its ability 
to favor reactivity in the development process; considerations relative to clean
ness or efficiency of the software may turn out to be awkward at this level. 
Beyond the stage of prototyping, the order of priorities changes, objectives of 
quality and rigor come to the forefront. However, it should be noted that, as a 
side result of formal approaches to computer science, programming languages 
which are simultaneously powerful, mathematically well defined, efficiently im
plemented and protected by a strong typing system are now available: func
tionallanguages, in particular languages from the ML family [CMP02, Pau91]. 

1.3.2 Software Development Using Formal Methods 

Formal approaches allow one to write rigorous, precise, and complete speci
fications, and to develop software from them. The main component, as was 
already mentioned, is a formal specification language. The main benefits of 
these approaches are the following: 

- a formal language comes together with a well-founded and safe semantics, 
particularly if it is based on well-tried mathematical theories; 

- proving that the system under consideration satisfies intended properties 
becomes possible, at the specification level on the one hand, and at the code 
level on the other - the idea is to prove that a program conforms to a given 
specification; the latter issue may be tackled using several approaches: Hoare 
logic, enumeration of reachable states, refinement of specifications, program 
transformation, program calculation and program extraction; 

- a formal language is a good basis for the development of support tools; 
- efforts related to testing, maintenance, and sometimes coding may decrease 

significantly, since one gets a better control over these stages and since doc
umentation becomes more reliable. 
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1.3.3 ForInal Methods for the CustoIner 

Formal methods are also of concern to organizations that contract their software 
development to others. Indeed, such organizations are mainly involved in the 
specification stages, and thus have to check that: 

1. they are working with correct specifications; 
2. the delivered product complies with the specifications. 

Regarding the second issue, the customer must at least validate the product. 
To this end, the product is extensively tested. Designing and debugging test
cases becomes more complicated when the complexity of the desired product 
increases. Moreover, this is an error-prone and tedious task. There again, formal 
techniques can serve as a support tool. Automated generation of test cases 
from formal specifications is an active research topic, and industrial tools are 
available. 

However, validating the product turns out to be insufficient. Tests can only 
verify that the behavior of the considered system is normal in a finite number 
of (hopefully) typical situations, but it can only tackle a partial view of the set 
of all possible behaviors. This can be sufficient for analog systems, which are 
continuous and regular, but software systems, which are essentially discrete, 
do not benefit from these properties.2 In particular, it is illusory to think that 
software may be specified by the set of test cases to be used in order to validate 
it. Let us add that it could even be dangerous, because a malicious provider, 
or simply a provider in a hurry, may well deliver a system which behaves as 
expected, in the cases corresponding to the specified tests, but badly in other 
ones. 

Clearly, a better perspective is obtained if a product is developed using a 
formal method: it can be delivered together with the proof that it satisfies the 
intended properties, for example, in a textual form that the customer may have 
audited by a contractor, or may check using automated verification software -
recall that it is much easier to check a proof than to construct it. 

1.4 On Weaknesses of Formal Methods 

The previous arguments give some indications of the support which can be pro
vided by formal methods for improving various stages of software development. 
However, we don't want to pretend that they constitute a miraculous remedy. 
When we are faced with complex problems, there is no simple way out. 

First, we have to keep in mind that there always remains a distance between 
a formal specification, and the object it is supposed to represent. A similar well
known situation is true of the laws of physics: we cannot prove that they govern 

20f course, it is not enough to test all "branches" in the code, all possible combi
nations of values for data and parameters have to be taken into account. In general, 
there are an infinite number of them, or at least a number which is greater than cur
rent estimations of the number of atoms in the universe, which is quite a reasonable 
approximation to the infinite. 
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the real world, but it is quite reasonable to be confident that this is the case. 
The certainty of the correctness or appropriateness of a specification can be 
accepted as relevant only if it has been validated by a process composed of 
careful reading, reformulation, and confrontation. 

When a new formal method is considered, the first obstacle to be overcome 
is to become fully acquainted with the notation. Beyond this stage, formal 
methods require an appropriate application, which includes pragmatic aspects 
- manipulation of tools - and theoretical aspects. Note, in passing, that the 
mathematical culture developed in traditional scholarly programs often favorl'l 
analysis to the detriment of discrete mathematics. The situation is improving 
nowadays, but it is symptomatic that we still feel the need to inform about 
formal methods for software, whereas in other engineering disciplines, such as 
electronics or aircraft engineering, mathematical models are natumlly applied. 
This acknowledges the rather experimental light in which programming is still 
commonly perceived. 

Finally, let us note that with formal approaches, much more time is devoted 
to the initial phases of a development (specification, design) than in common 
processes. However, experiments show that this investment is (partly) compen
sated in later phases (tests, integration). Indeed, formalization reveals delicate 
issues very early, whereas, in a conventional lifecycle, these would have to be 
solved during debugging, or later. Many difficulties that are met when using a 
formal method are actually a reflection of difficulties that are inherent in the 
problem at hand. For example, modeling problems will occur just because the 
situation is intrinsically more complicated than it may appear at first sight. The 
introduction of complex or abstract concepts - often denoted by mathematical 
symbols - is then not that surprising. We will see that actual formal techniques 
offer various degrees of abstraction level and mathematical complexity. But to 
reassure the reader: basic concepts in logic and set theory, understandable to 
high-school students, are sufficient for a working knowledge of techniques such 
as B. 

On3 the issue of formulation, recall that the task of designing a judi
cious notation requires much care, though it is all too often neglected 

or overlooked. Both specification and programming languages may suffer from 
that. As this topic is rarely dealt with explicitly, let us mention here the books 
[vG90a], [Mey92] and [Set89]. 

1.5 A Survey of Formal Methods 

There are various kinds of formal methods, which we can collect into several 
families. Most of them can be characterized by: 

- an underlying prominent theory (examples: transition systems, set theory, 
universal algebra, A-calculus); 

3The meaning of the Mobius band is explained in § 1.7. 
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- a preferred application field (examples: data processing, real-time systems, 
protocols) ; 

- a research and user community, themselves sometimes divided into several 
variants or schools. 

We will not go into a detailed taxonomy of the domain, but we can suggest 
a number of design choices which determine important characteristics of most 
formal methods. 

1.5.1 Specialized and General Approaches 

The specification of a system includes various issues, including: architecture, 
interfaces, visible behaviors and algorithms to be implemented. Some formal 
methods consider systems which are presented from the outset in a given form, 
for example, in the form of data transformers, or of data flow, or even of finite 
state machines; information exchanges are supposed to be performed by data 
sharing, by synchronous or asynchronous message transmission, by function 
or procedure calls. Other formal methods stand back from such a view of the 
world, and limit themselves to a flexible general mathematical framework. 

In the first category, one finds specialized formalisms, which may have been 
designed for protocols, for reactive devices, or for data handlers. This specializa
tion favors the methodological aspects and the development of effective support 
tools, but it may have an undesirable effect: making irrevocable choices, which 
are relevant at a given stage of a technology, but may turn out to be a burden in 
later stages. For example, there are techniques for animating a formal specifi
cation: one then uses a so-called executable specification. But limiting oneself to 
the executable fragment of a general language tends to make some descriptions 
obscure, by forcing the use of ad hoc contortions. Thus, a convincing logical 
statement may lose much of its original clarity once it is translated to Prolog. 

Conversely, methods closer to logic and mathematics offer much more free
dom of expression. They have a big theoretical advantage, particularly when one 
has to model real systems and to reason about them, because reality often re
veals an unexpected complexity. But such methods say nothing at the method
ological level. The way of using them consists of reconstructing paradigms of 
specialized methods - with, sometimes, a suitable adaptation or generaliza
tion. It is also possible to combine several techniques, in order to work simul
taneously on several facets of a given system using a unified framework. But 
this is still a topic for research. 

Example: role of states. We can illustrate the distinction between general 
methods and specialized methods by means of the importance given to the 
concept of a state. It seems impossible to bypass this notion, since the systems 
that we want to model, which are a support for software (computers or virtual 
machines), or for their environment, are essentially memories whose contents 
change from time to time. On the other hand, this concept is not fundamental 
in mathematics, which lies in the realm of quantities, shapes, functions, all 
kinds of spaces - in summary, immutable values in a wide sense. It does not 
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mean that, in mathematics, we are unable to talk about states. In general, state 
changes are represented by a trajectory, that is, a value from a suitable space. 

The decision to attach more, or less, importance to states, is sig
nificant in practice, because transformations with side effects are 

rather more complicated to compose than pure (side-effect-free) transforma
tions. When one writes "let x = 3" and "let y = x + I", it is absolutely certain 
that, in the considered scope, the value of x is 3, and that x and y are related by 
the equation y = x + 1. In contrast, if one states "let x be a memory cell which 
contains 3" and "let y be a memory cell which contains the value of x + I", one 
can no longer understand the produced effect, without meticulously examining 
how x and y may be transformed in every state change. This increase in the dif
ficulty is one of the main motivations for introducing simultaneous assignments 
in imperative languages: it diminishes the number of intermediate states that 
need to be considered. This idea was proposed by Dijkstra and reused in B (see 
§ 4.3.2 and § 6.3.3). It also explains the interest of functional programming: 
in its pure and strict version, it consists of describing computations on values; 
actually, most functional languages include imperative features, because it is 
sometimes convenient to keep some values in memory and to have side effects. 
Hence such programs include states, but a good programming discipline limits 
their impact to a very limited number of areas. 

The first formal methods we will consider, Hoare logic or B for example, 
handle an implicit state. In others, states play an essential role out of necessity: 
they aim at studying behaviors, and a behavior is nothing but a sequence of 
states. Some of them will be considered in Chapter 8. Finally, the more abstract 
formal approaches, such as algebraic specifications, or higher-order logic-based 
languages, have no predefined concept of a state. 

1.5.2 Emphasizing the Specification or the Verification 

A formal method is composed of two main ingredients: a specification language 
and a verification system. The development of these two components is of vary
ing importance depending on the approaches and the associated tools. Thus, 
the proof assistant of Boyer and Moore puts the emphasis on automating proofs 
to the detriment of ease of expression. In contrast, the first goal in the design 
of Z, was to get a very expressive language, but it turned out to be difficult to 
develop support tools for this language. The first versions of Boyer-Moore and 
of Z go back to the 1970s. 

More recent approaches, such as HOl or Coq or PVS, attempt to provide 
both advantages: they are based on very powerful logics, together with support 
tools which aid the user in developing proofs, and some of them are able to 
check the correctness of the proofs in a very reliable manner. 

In this book, we will pay more attention to specification than to auto
mated verification mechanisms. In particular, we will ignore the Boyer-Moore 
approach, though it can be credited with remarkable successes, such as the par
tial verification of a complex system, where a hardware processor, an assembly 
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language, a toy Pascal-like language and a basic operating system kernel are 
stacked. 

1.6 Aim of this Book 

How does one get one's bearing in the maze of available techniques? Each of 
them deserves a whole book to describe its foundations and practice. Such 
books already exist for many of them. On the other hand, it would probably 
be fruitless to try to tackle all approaches, even if we limit ourselves to a 
brief presentation. Our aim here is to propose a synthetic view of the subject, 
by following logic as our main thread. Logic has an influence on all formal 
methods, and often a direct one. At the same time, logic allows us to understand 
important and subtle phenomena which occur in practice. 

Beyond logic, other mathematical theories play an important role in some 
formal techniques: notably, algebra and automata. They will be mentioned in 
order to provide some perspective. At the same time, it should be emphasized 
that logic has various other application fields in computer science, such as 
databases, operating systems, and programming languages.4 

The importance of the different aspects of logic varies a lot, depending on 
the particular techniques one considers. For example, set theory is essential to 
formalisms such as Z or B, while intuitionistic logic is a more appropriate basis 
for the study of typed functional languages and corresponding specification 
languages. These two approaches share a number of concepts, but they actually 
belong to different logical traditions, which go back to the beginning of the 20th 
century. 

The reader should find here an overview of logical disciplines which are rel
evant to computer science, and, more specifically, to formal methods. The aim 
of covering such a wide domain is moderated by the modesty of the technical 
contents: most theoretical results are given without demonstration. We hope 
that the reader will be inspired to gain a deeper knowledge of those topics. We 
have tried to give appropriate references to the literature, in particular at the 
end of every chapter. 

We tried, whenever possible, to rely on a common simple example: the search 
for an element in a table. In order to shed light on concepts, without swamping 
them by irrelevant details, it appeared preferable that the example be as simple 
as possible. Obviously, the benefits of formalization would be better illustrated 
on a larger size problem. Indeed, very little will be told about how to tackle a 
large-sized application in a formal manner. Thus, although we will sometimes 
give an appreciation of a formalism, it should be clear that we don't have a 

4For example, modern implementations of the functional language ML, which was 
initially designed from purely logical considerations, can be elegantly and efficiently 
used in software applications composed of system calls, network modules, and human
machine interfaces. Such examples are the file synchronizer Unison [PJVOl] and the 
Web browser MMM [LR98]. 
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goal of providing a comparative study, which is definitely beyond the scope of 
this book. The table example is only a support, not a benchmark! 

1. 7 How to Read this Book 

We tried to make this book as self-contained as possible. The three first chapters 
contain introductory material, including elementary mathematical reminders 
(in § 3.4). Then, the general idea is to alternate the presentation of (the basics 
of) concrete formal methods with chapters devoted to their logical foundations. 
Occasionally, we need to introduce a concept that is not discussed in detail until 
a later chapter. In such cases, we will provide an intuitive explanation, which 
should suffice. 

Chapter 2 introduces basic concepts related to specification and verification, 
in an intuitive and semi-formal manner. 

The different branches of logic are presented in Chapter 3. 
Chapter 4 is devoted to proving the correctness of imperative programs 

using formal assertions. The ideas contained in this approach, mainly due to 
Floyd, Hoare and Dijkstra, have an influence on all other techniques. 

Chapter 5 presents so-called classical logic, which is a reference for all other 
logics. 

Chapter 6 deals with formal methods based on set manipulations, namely 
Z, Band VDM. 

Chapter 7 is devoted to set theory. 
We then propose, in Chapter 8, a synthetic view on formal techniques for 

specifying complex behaviors, based on transition systems and on temporal 
logic. More specifically, we consider formalisms such as Unity, TlA and CCS. 

Chapter 9 is an introduction to proof theory, which not only provides the 
essential concepts for understanding computer-aided proof systems, but serves 
as a foundation for typing systems and computational aspects of logic, to be 
considered in the last two chapters. 

Chapter 10 is essentially a short presentation of the algebraic approach to 
formal methods, with an emphasis on abstract data types. 

The discussion on typing started there is continued in Chapter 11, where 
we present its relation to A-calculus and to higher-order constructive logic. 

Finally, Chapter 12 is devoted to an implementation of these principles in a 
very expressive logic, the calculus of inductive constructions, which is supported 
by proof assistants such as Coq and Lego. This chapter ends with a brief account 
of other formal techniques based on a higher-order logic, more specifically HOl 
and PVS, and ends with some research perspectives. 

The reading difficulty may vary a lot from one section to the next. The 
reader already acquainted with basic concepts may skip sections presented in 
this font; they are also identified by the symbol: 

00 
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Paragraphs that may be postponed until a second reading, such as somewhat 
technical asides, are identified by a Mobius band: 

Finally, pitfalls are indicated by the following symbol: 

We also tried to follow a consistent discipline in our use of fonts. Here are 
some samples: 

- a defined term, for example: a left gyrating dahu is a quadruped whose left 
legs are much shorter than its right legsj 

- an arbitrary mathematical object: this is represented by a letter such as d or 
L· , 

- a program or a formal specification component, which would be entered on 
the keyboard: if l<r then theta:=theta+lj 

- a formal language or a support tool: the method myth. 

1.8 Notes and Suggestions for Further Reading 

A report of the US National Institute of Standard and Technology presents, in 
its first volume [CGR93a], a set of formal techniques having industrial appli
cations. Its second volume [CGR93b] collects several case studies which were 
performed prior to 1993. [Rus93] is another useful document on formal meth
ods, written for NASA - and more oriented towards the needs of aerospace 
systems. It contains many interesting ideas, even if its author claims that it is 
sometimes biased by his involvment in a particular approach. 

The book by Lalement [Lal93] allows one to obtain a deeper knowledge of 
many topics introduced here. In it, one may find complementary concepts on 
equational logic, rewriting and resolution. A handbook devoted to mathemati
cal logic for computer scientIsts has been published [AGM92a, AGM92b]. For a 
broader introduction, one of the best references is the Handbook of Theoretical 
Computer Science [vL90a, vL90b] which, as indicated by its name, covers all 
theoretical bases of computer science, far beyond logic. We particularly rec
ommend the second volume [vL90b], devoted to formal models and semantics. 
Chapters 1 to 14 and 16 to 19 are very readable. -

A number of topics are not covered here, even though they could be con
sidered relevant, because tackling them would have carried us too far from our 
path. This is true in the case of category theory. Developed from the middle of 
the 20th century, partly for establishing the foundations of mathematics on a 
more structured basis than set theory,5 it still plays quite an important role in 

5The initial motivation was actually different: the idea was to transfer results from 
group theory to topology, in order, for example, to classify geometrical shapes. 
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theoretical computer science, notably in algebraic specifications [EM85, EM90] 
and in typing systems [L886, Hue90, AL91]. The basic reference is [Mac71], in
tended for mathematicians, but computer science-oriented introductions have 
been available for several years, amongst them [Hoa89] and [BW90]. The afore
mentioned manual [AGM92a] also contains a chapter devoted to category the
ory. 



2. Introductory Exercise 

A new problem is always tackled, at the outset, via both intuition and empirical 
methods. The design of software systems is no exception. The first step is 
to determine the object! to be realized. We then have to describe it. Most 
of the time, one employs the usual means of expression to this effect: our 
mother tongue, explanatory diagrams. Subsequent steps are devoted to code 
writing, generally using a high level language. An intuitive understanding of 
the language constructs is then key. Of course, people involved in this process 
employ some reasoning: ''in that case, such an event happens, then ... etc." 

We will proceed in this manner with an elementary case study. We will 
introduce - or recall - step-by-step the rudiments of logic and set theory 
which make up the framework of formal methods, demonstrating how they can 
enhance specifications and programs: they simply allow one to describe things 
and to reason in a better way. 

In this chapter, concepts are introduced in an intuitive way, with more 
rigorous definitions coming in later chapters. Our aim is not to solve everything, 
but to raise a number of questions. 

2.1 Exposition 

The exercise we propose is quite simple, viz. the search for an element in a 
table. This is a very banal problem, but we can nevertheless already observe a 
classic pitfall. This can be illustrated with the following dialog, where S. is in 
charge of the specification and R. is responsible for the realization (program). 

S.: "Please write a program to search for an element in a table!" 
R.: "What kind of table? A list? An array? A tree? Are the ele
ments sorted? Do they have a key?" 
S.: "I don't want to consider these implementation issues. That is 
your job." 
R.: "But what should be done if the sought element is not in the 
table?" 
S.: "Sorry?" 

lIn this book the word object is to be understood with its usual meaning, without 
regard to its connotation in computer science. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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s. faces the following dilemma: 

- either, he plays R's game, and then may well end up doing R's work; 
- or, he sticks to his guns, and R may well make irrevocable choices - perhaps 

unconsciously - which could later turn out wrong for S. 

2.2 Sketch of a Formal Specification 

The formulation given by S., as stated above, is too vague. We need to make it 
more precise, without going into algorithmic details. Let us see how elementary 
mathematical concepts could help. 

I8"'te.1 A table is a collection of objects organized in some way. A general 
~ mathematical concept for organized collections is that of a structure, 
that is, a set endowed with composition laws. Let us ignore the laws at the moment: 
they are about organization and we still don't know how to organize the table. 

Instead of "collection" we will use the word "set". A set, intuitively, is 
a collection of objects, termed its elements. What is the point of replacing the 
word "collection" by another? Actually, there is a whole body of well-established 
definitions, notations, properties and techniques. This allows us to manipulate sets 
and reason about them in a secure way. Moreover we will see in Chapter 7 that a 
collection is not necessarily a set. The statement x is a member of E is denoted 
by x E E. 

I8"'te.1 If we represent the table by a set T, we already know that the element 
~ to be found is an x such that x E T. But the previous specification 
"search for an element in a table" implicitly tells us that we don't want an arbitrary 
element. In order to characterize it we make use of a property we expect of it. 
Which property we choose matters little here. In any case, the element has to exist 
and we must also be able to check whether or not the property holds on given 
elements. 

We formalize this property using the concept of a predicate: we introduce 
a symbol, say P, and make P(x) denote the fact that x satisfies the property P. 
P is called a predicate symbol. 

In summary, we introduce a set T which represents the table, a predicate 
P defined over T, and we have to search for an element x, which is a member 
of T and such that P(x). In later chapters we will see how this specification 
can be expressed in real formal specification languages. For the moment we 
will content ourselves with a semi-formal presentation, that is, a mixture of 
formulas (especially in line 4) and informal text. 

1 T: set (read: T is a set) 
2 P: predicate defined for all elements of T 
3 table-search-program 
4 x E T and P(x) 
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In line 3 we have the unknown: the expected program. In lines 1 and 2 we 
have two assertions stating what we know before the execution of the program: 
they are called the preconditions. In line 4 we have another assertion, the 
postcondition, to describe the result. The desired program is then specified 
by a pair (precondition, postcondition). This is one of the basic principles of 
formal specification. 

What does it meaning? In a real-life (and complete) formal specification, 
assertions would be logical formulas, that can be assigned a mathematical mean
ing - a semantics. For the moment let us content ourselves with their intuitive 
meaning, as we stated previously. This specification is concerned with the state 
of the world, or merely that tiny part of it we are interested in here. In con
crete terms, it is just computer memory, or at least an abstract version of 
it. The precondition2 states here that the state has two components, a set T 
and a predicate P, whereas the postcondition states that it contains an ad
ditional component, the element Xj moreover, T, P and x must satisfy the 
aforementioned conditions. The meaning of a specification expressed in this 
form (precondition, postcondition) is then: 

If the program is executed from a state satisfying the precondition, 
then, after execution, the state reached satisfies the postcondition. 

Remark. The properties of T and P are actually invariants of the program 
we desire: the latter should return x without changing anything about T and 
P. Otherwise R. could plainly return a table containing just 0, the predicate 
''null'' and x = o. In order to prevent this, let us rephrase the lines 3 and 4 in 
the form: 

program ... returns x with postconditio~ 

and we agree that everything outside returns and with is invariant. 

1 T: set 
2 P: predicate defined for all elements of T 
3 table-search-program returns 
4 x with x E T and P(x) 

Our new specification indicates what is necessary at this stage and nothing 
more. No premature design decisions involving a specific representation are 
made. However, this is more precise than the informal text as a result of the 
use of mathematical concepts - albeit elementary ones. R. can take advantage 
of it so long as the implementation data structures faithfully represent sets, 
elements or predicates. For example, it is easy to convince oneself that a list, 
an array, or a tree, can represent a set. 

This intuition can be rigorously confirmed by assigning a mathe
matical meaning to programming statements. This is the topic of 

2The reader having some knowledge of logic may be somewhat reluctant to consider 
the declarations (e.g. in line 1) as components of logical formulas. This is, however, 
legitimate in some powerful logics, such as the ones we consider towards the end of 
this book. For the time-being, it is easier to interpret this as a slight abuse oflanguage. 
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semantics, particularly denotational semantics. We return to this at the end of 
the chapter. 

In summary, in order to eliminate the original dilemma, the trick was to con
sider the correct level of abstraction. One of the main assets of logic and related 
mathematics is their provision of a large palette of abstraction mechanisms. 

2.3 Is There a Solution? 

We still did not answer R. 's last question. Let us reformulate it as follows: what 
happens if there is no member x of T such that P{x)? Several approaches can 
be considered. 

2.3.1 Doing Nothing 

Let us first analyze the meaning given to the specification above 
(precondition, postcondition): 

If the program is executed from a state satisfying the precondition, 
then, after execution, the state reached satisfies the postcondition. 

For this discussion we just need to recognize its logical shape: it is an implica
tion, A:} B. 

IB"'!e.l A formula such as A :} B means "if A then B" and is read A implies 
~ B. Here A represents the assertion "initially, T is a set, P is a predicate 
and P is defined for all elements of T"; B represents the assertion "after execution 
x satisfies x E T and P(x),,; to be more rigorous we should repeat the constraints 
of A as part of B: see Remark on page 17. This omission has no consequence in 
what follows. 

The use of "after" could suggest that time plays an important role 
~ here. On the contrary, we must forget about time because we want 
to retain the usual framework of plain logic, which is sufficient for our current 
needs (time will be considered in Chapter 8). We then adopt the viewpoint 
of an omniscient creature able to consider simultaneously all past, present and 
future events. Whether this event occurs before that event is no more important 
than whether this value is smaller than that one. 

How can we formalize B, which has two components, "after execution" and 
"x satisfies xET and P(x)"? The first term raises a problem because a program 
may well not terminate its execution - we say that it loops - or may terminate 
its execution in an abnormal way, for instance as the result of an interrupt. This 
can happen, for example, if there is an attempt to divide a number by zero. 
A possible interpretation of "after execution" which takes this into account is: 
''if the execution of the program terminates, then ... ". This is called partial 
correctness. 

Let us investigate the consequences of this interpretation. Formally, B can 
be decomposed into Bl :} B2 • 
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We take here as B 1 : "the execution of the program terminates" and as 
B2 : "x satisfies x E T and P(x)". 

It matters little that we don't know whether the postcondition B2 is false 
or true: if Bl is false, B is true whatever the truth value of B2 - we return 
to this basic fact in § 3.4.2. As a consequence, R. has the freedom to provide a 
program which loops or aborts if there is no x in T such that P(x). Actually R. 
even has the freedom to exaggerate this problem: he could deliver a program 
which loops in all cases. Of course this is not satisfactory. 

2.3.2 Attempting the Impossible 

S. could consider that the previous interpretation of B is too wide and then 
add to his requirements. 

''I want your program to terminate3 normally and return an ele
ment in the table satisfying P." 

This is called total correctness. Formally, S. suggests Bl A B2 (read A and B) 
instead of Bl => B2 • However R. can quite reasonably reply: 

''That's impossible: you might as well ask me for the moon on a 
silver platter!" 

Indeed, there are specifications which are unfeasible. Again, division by zero is 
another example of this kind: ''find x such that ax = 2" is impossible to realize 
when a = 0 is allowed. In each of the above examples something is required 
which may not exist. There are more subtle cases of unfeasible specifications. 
Take a program P, written in the language of your choice and containing a 
numerical variable. Now ask the question: ''will the value of this variable be 
null during execution?" There is an answer, either yes or no. But in general 
there is no program for computing it. 

_~ It is not sufficient to execute P and to test the value of the variable 
~ at each execution step. The program may well perform many, many 

computations before finding an assignment to zero. How can we be sure that 
the next step will not be the last one in this seemingly endless execution? 

These somewhat tricky issues are the concern of computability theory, which 
we tackle in § 3.3.4. 

2.3.3 Weakening the Postcondition 

Our current specification is unsatisfactory, but we can still try to modify it 
rather than completely reject it. Total correctness is preferable, so we start with 
our second interpretation. As the specification is unfeasible, that is, too strong, 
we will weaken it. The first thing we can do is to weaken the postcondition. 

3lmplicitly: "I want the execution of your program to terminate." In the following, 
"program termination" always refers to the termination of executions of that program. 
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In other words, we will ask that the program returns an x which does not 
necessarily satisfy (x E T) 1\ P(x}. But, for the program to be useful, we will 
ask for an additional piece of information that tells us whether x satisfies the 
required property or not. More precisely, we ask the program to return not only 
x, but an ordered pair (b,x) where b is a Boolean which is true if (xET}I\P(x) 
and false otherwise. 

It is clear that the postcondition on x is weakened. What about b, which 
was not even mentioned before? For the sake of comparison, we can suppose 
that the previous specification asked also for a fake b without any constraint. 
The last line of the specification would then have been: 

(b,x) with (x E T) 1\ P(x). 

As the new specification puts a constraint on b, we conclude that the postcon
dition on b is stronger. 

IB"'te.I The set of Booleans is a set with exactly two elements representing the 
~ truth values true and false. This set is denoted by IB = {true, false}. 
More generally one can define a set E by listing its elements in any order. We use 
the notation E = {el' e2, ... en}. This kind of definition is called by extension. 
Only finite sets can be defined in this way. The empty set is often denoted by {21 

instead of D. 
A number of programming languages such as Pascal have a built-in 

boolean datatype. In other languages. such as C. the values true and false are 
encoded by the integers 1 and O. respectively. 

Here is the new specification: 

1 T: set 
2 P: predicate defined for all elements of T 
3 table-search-program returns 
4 (b,x) with b E {true,false} 
5 and (x E T) 1\ P(x) if b=true 
6 and (V x E T) ~P(x) if b=false 

This possibility, the most satisfactory for S., will be investigated in § 2.4.4 
under a somewhat different, but equivalent, form. 

IB"'te.I The formula at line 6 (literally: for all x in T. not P(x}) means that no 
~ x in T satisfies P(x}. The set of ordered pairs (a, b) where a E A and 
bE B is denoted by A x B. it is the Cartesian product of A and B. Be warned 
that order matters: (a, b) ::j:. (b, a). The other important set-theoretic constructs 
involving two sets A and B are the intersection AnB and the union AUB; AnB 
is the set of elements which are both members of A and B. while AUB is the set 
of elements which are members of A or B (or both). 

2.3.4 Intermezzo: Sum of Sets 

Here we have the opportunity to present a simple and key concept, which is 
ubiquitous in computer science, but often in a hidden form and then, unfortu-
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nately, largely underestimated: the sum of two sets,4 also called their disjoint 
union. 

The ordered pair (b, x) is not quite so simple. We could consider it as a 
member of $ x T. This is not very accurate. When b = false, nothing is known 
about x, so we have no reason to suppose that x E T, especially not when 
T=0! 

Let us temporarily forget our previous implementation of the result by the 
means of an ordered pair. The key idea is that the result is either an element 
of T or the representation of a failure. Let us call R its domain. Can we take 
R = T U {failure}, where failure is a value as well as true, false and elements 
of T, rather than R = $ x T? Almost: it works on condition that failure 
is not already a member of T, otherwise nothing could distinguish it. This 
can be handled at the level of the precondition, but we often prefer to avoid 
additional constraints. We then introduce a construct combining two sets A 
and B and providing a way of recognizing where an element comes from. In 
particular, common elements of A and B will be distinguished. Such a set is 
called the sum of A and B and is denoted by A + B. Let us illustrate the idea 
on R = T + {failure}, which is relevant in our example. Only lines 4 to 6 of the 
previous specification are modified: 

1 T: set 
2 P: predicate defined for all elements of T 
3 table-search-program returns 
4 r with rET + {fai lure}, such that 
5 P(x) if r comes from (element x of) T 
6 (V x E T) ,P(x) if r comes from {failure} 

The sum is not a primitive concept in set theory; it is built upon other 
constructs. The most natural way to proceed is to tag elements of A and B 
with different tags. Let us call the tagged sets AT and BT. Then we take 
A + B = AT U BT. The tagging operation maps an element x to an ordered 
pair c = (t, x), where t is the tag chosen for x, e.g. true if x is taken from A or 
false if x is taken from B.5 In order to know where c comes from, we just have 
to check its first component t. Then we again get our specification (page 20). 

In summary, A + B is a subset of $ x (A U B): 

A+B=({true} x A) U ({false} xB) . 

It is easy to generalize this construct to multiple sums and it turns out to 
be quite useful when one needs to describe data that can take several different 
formats. 

4Later we consider the sum of two types, but the basic idea is the same. 
5The choice of true and false is completely arbitrary, but it happens to be consistent 

with the specification on page 20. 
Note also that, an x of A n B yields two distinct elements of A + B, (true, x) and 

(false, x). 



22 Understanding Formal Methods 

2.3.5 Strengthening the Precondition 

Besides weakening the postcondition, there is another way to weaken a specifi
cation: strengthening the precondition. It makes R. 's job easier if he is a priori 
guaranteed that there is an element in the table satisfying the required prop
erty. Formally, we use the symbol 3 (read: there exists). We get the following 
specification: 

1 T: set 
2 P: predicate defined for all elements of T 
3 (3 x E T) P(x) 
4 table-search-program returns 
5 x with x E T and P(x) 

It is up to the engineer in charge of the integration of that piece of software 
in its environment to ensure that it will be used correctly, that is, that the 
precondition is satisfied on each occasion that it is used. 

Otherwise, he runs the risk of losing control of execution. In partic
ular, the piece of software under consideration can not only abort 

(which at least can be noticed), or loop, but it could also return a fanci
ful result without warning. Indeed, recall that the meaning of a specification 
(precondition, postcondition) is roughly precondition=*postcondition: if the pre
condition is false, this implication is true even if the postcondition is not satisfied. 
It is therefore better to avoid strengthening the precondition; this is particularly 
the case when using assertions which are not easy to verify. 

How can we actually use an abstract specification to direct the construction 
of a correct implementation? This is our next topic. We start with the last 
specification, which is the easiest version of it to implement. 

2A Program Development 

In order to implement the previous specification, the obvious intuitive idea is 
to examine every element of T until a suitable x is found. Until now the set 
T that we used as a model for the table was left undetermined. For a simple 
program we need to be more specific. We take here T = N. 

~ N is the set of so-called natural integers 0, 1, 2 ... Other important 
~ sets of numbers are Z (positive and negative integers, and zero), Q 
(rationals, i.e. quotients of integers) and IR (reals). The latter can be constructed 
from the natural numbers. 

Confusing mathematical integers with the integers of a programming 
language is slightly improper: generally the latter are bounded. However this issue 
has no consequence in our example. 

The property P will be left abstract. We only assume that there is an 
expression in the programming language under consideration which computes 
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P(x) for all x of T.6 The specified problem then becomes the search for an 
integer x satisfying P(x). It is at least as general as the search for an element 
in an array. 

2.4.1 Prelude: Correctness of a Loop 

The programs we are interested in are made up of a loop allowing a simple 
operation to be repeated while traversing the table - for us, elements of N. 
We write it: 

while test do body done 

2.4.1.1 Partial Correctness. In order to show that a postcondition Q is true 
after the execution of a loop, the simplest way is to prove that Q is kept true 
at each iteration of the loop! More precisely, if Q is true at the starting point 
of the loop, and if executing the body preserves the truth of Q, it is clear that 
Q is still true after any number of iterations. Such an assertion is called an 
invariant of the loop. Beware: the invariant can be temporarily violated inside 
the body; only its status before and after every iteration matters. 

This technique is evidently incomplete: if we are interested only in things 
which do not change, what is the point of executing the body of the loop? 
Actually the invariant provides only an abstract, partial, view of the state of 
the program. The state is supposed to change on every iteration; however, this 
is precisely what we forget with the technique of the invariant. 

Surprisingly, a very small addition turns out to be sufficient to derive a 
proof method which is powerful enough for our needs, at least with partial 
correctness issues. We just have to take into account the failure of the test 
which is necessary for exiting the loop. Let C be the assertion corresponding 
to this test; we decompose the postcondition Q into I 1\ ..,C, where I is the 
invariant of the loop. We can also take advantage of the truth of C at the 
beginning of an iteration. This yields the following reasoning scheme: 

if I is true at the starting point of the loop 
and, if the body of the loop establishes I from I 1\ C, 
then we have I 1\ ..,C at the exit point of the loop. 

(2.1) 

In order to have total correctness, we still have to ensure that exiting the 
loop will actually occur. Here again we need to study (an abstract version of) 
state changes during execution. Somewhat strangely, the key concept is again 
the concept of invariant. 

2.4.1.2 Termination. For the sake of simplicity we exclude abortion or ex
ception mechanisms. We can then informally represent the behavior of our 
looping program by a sequence 

6 In the pseudo-language we employ here we retain the notation P(x). In languages 
without Booleans, one can use a function f returning 0 or 1, such that P(x) is 
represented by the test f(x)=1. 
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true, body, true, body, ... true, body, false , , 
'" n iterations 

(n may happen to be zero) if it terminates, or 

true, body, true, body, ... true, body, ... 

if it does not terminate. In order to ensure total correctness of the program, 
we have to prove that the second case does not occur. 

The technique that can generally be used is to identify a value v, called the 
loop variant, which depends only on the state, and which satisfies the following 
conditions: 

v is a natural number (a non-negative integer), 

v decreases at every iteration. 

Indeed, each iteration step results in a distinct value of v; but we have 

a strictly decreasing sequence of non-negative integers 
is necessarily finite. (2.2) 

As a passing remark, (VN) provides an assertion which must be integrated 
into the loop invariant. For example, the program 

while x,eO do x:=x-2 done 

does not terminate if the initial value of x is odd. This problem becomes ap
parent if, in an attempt to prove the termination of this loop, we choose the 
value of x as the variant v: the input condition C in an iteration ensures only 
v ,e 0, which, using the invariant (VN), yields v E {I, 2, 3, 4 ... }; after x: =x-2 we 
would have v E {-I, 0,1,2, ... }, and the allowed value -1 would violate (VN). 

Assuming that the initial value of x is different from 1 would not solve the 
problem for a similar reason. 

I8"'ie.l This would amount to taking I ~f vE {a, 2, 3, 4 ... } as the invariant (~f 
~ means "is defined as"). At the starting point of an iteration we would 
have Il\v,eO, hence v E {2, 3, 4 ... }; after x: =x-2 it becomes vE {a, 1,2 ... }, which 
is unfortunately different from the invariant I we expect. 

By contrast, if the initial value of x is even, we can take I ~f v E {a, 2, 4 ... } 
as the loop invariant. At the starting point of an iteration we have 11\ C, that 
is v E {2,4 ... }; after x:=x-2 it becomes v E {a, 2 ... } which does indeed conform 
to (VN). 

The behavior of a correct loop can then be roughly summarized as follows: 

while the state is not satisfactory, change it in a way such that 
the invariant is kept true and the variant decreases. 

The concept of a variant can be stated in a much more accurate manner using 
well-founded relations; we return to this in § 3.5. 
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2.4.2 Linear Search 

We assume here that there is at least one natural integer satisfying P. The 
search is performed by attemping different integers one by one, hence the term 
linear. 

1 P: predicate defined for all elements of N 
2 (3 x E N) P (x) 
3 integer-search-program returns 
4 x with (x E N) /\ P(x) 

The proposed program is of course: 

1 x:=O; 
2 while ~P(x) do x:=x+l done 

The following reasoning may help to convince ourselves that the above program 
is correct. 

Partial correctness (if the program terminates, then the postcondition is 
satisfied): 

- x, initialized to 0, is incremented by 1 at every step; then we have always 
x E N, this invariant is still true at the exit point of the loop; 

- ~P(x) forces the next execution step to be in the loop, then P(x) is neces
sarily satisfied at the exit point of the loop. 

Total correctness (the program terminates). 
Let N be an integer such that P(N) is true (the precondition ensures the 
existence of such an N), and let us take v = N - x as the variant: 

(VN) N - x is an integer because N E N and we know (see the above on partial 
correctness) that x E N. We still have to show that the property v 2: 0, 
which is true after x: =0, is left invariant; let us rephrase this as x :::; N 
(since v = N - x). At the beginning of an iteration step, we necessarily 
have ~P(x) which yields x =1= N, since N satisfies P(N); hence x :::; N 
boils down to x < N; after the assignment x: =x+1, this yields x :::; N as 
expected, since N and x are integers. 

(Vd N - x decreases at every iteration because x increases. 

In the above reasoning, N is not necessarily the integer that will be 
I.~ returned by the algorithm: the latter is actually the smaller integer 
satisfying P. We need an N such that P(N) holds only for purposes guaran
teeing termination. 

2.4.3 Discussion: Reasoning Figures 

The above reasoning is not that long, but that would be the case with more 
complex specifications and programs. Therefore it is desirable to be able to 
check a proof in a systematic way. To this effect one reduces this checking 
to the successive application of primitive reasoning steps, that is, reasoning 
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steps simple enough that we can have no doubt about their validity. Logicians 
formalize them in a deduction system. A great advantage then is that the process 
can be aided by automated tools. Let us make an inventory of the ingredients 
needed in the above proof. 

2.4.3.1 Logical Laws. A number of steps are purely logical steps: the ones 
related to connectives such as V (or), A (and), => (implies), ..., (not). For exam
ple, from v>O V v=O (which was written N - x ~ 0) and from v~O (coming 
from x ~ N) we deduced v > O. More formally, from A V B and from ...,B we 
deduced A. Such a deduction principle is written in the same way as a fraction, 
where premises take the place of the numerator while the conclusion takes the 
place of the denominator: 

AVB ...,B 
A 

(2.3) 

The following formula contains a similar idea: 

(A V B) A...,B => A . (2.4) 

However, the latter must be regarded as an ordinary logical expression, in the 
same way as (a + b) x (-b)/a is aI). arithmetical expression. In contrast (2.3) 
denotes a deduction step that yields the conclusion A from hypotheses A V B 
and ...,B. A complete reasoning consists of a combination of similar steps. This 
can be viewed as follows: 

hypotheses 
.!. .!. .!. 

reasoning 

.!. 
conclusion 

Formulas such as (2.4) allow us to represent the hypotheses, the conclusion, or 
the fact that the former entails the latter, but not the proof itself. We will see 
in Chapter 9 how the box "reasoning" can be formalized using rules analogous 
to (2.3). 

Other issues will be tackled, for instance: 

- what is the precise link between (2.3) and (2.4)? 
- how can we check the validity of a formula like (2.4)? 

2.4.3.2 Manipulation of Equalities. Aiming at deducing x ~ N from ...,P(x) 
and from P(N), let us suppose that x = N and derive a contradiction. We can 
then replace x with N in ...,P(x), which yields ...,P(N), in a contradiction with 
the second premise. The general line of reasoning (reduction to the absurd) 
is a matter for the previous subsection. However, we also used the principle 
of substitution of equals by equals, which is very important in spite of its 
simplicity. 
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2.4.3.3 Proper Laws. We also employed laws which are specific to the do
main of the model, for example arithmetic rules, allowing us to transform 
N - x =I 0 into N =I x, or laws about assignments. The behavior of a piece 
of a program 5 is described using the notation {P} 5 {Q}, which means that 
starting from the precondition P, executing 5 establishes the postcondition Q. 

{P} 5 {Q} is itself a logical formula, just as are P and Q. The latter two 
are logical formulas about the state that we get from the variables of the pro
gram, whereas {P} 5 {Q} is about its execution. The reasoning scheme (2.1) 
for verifying the partial correctness of a loop, given on page 23, can also be 
formalized by means of a premise/conclusion rule: 

{I 1\ C} 5 {I} 
(2.5) 

{I} while C do 5 done {I 1\ ...,C} 

If"Ie.I The formula {I}lwhile C do 5 donel{II\...,C} is made up offormulas 
~ such as I and C, and of pieces of programs such as 5 and the part that 
is framed. In a similar way, an assertion such as P 1\ (1 + 1 = 2) is made up of 
another assertion (P) and of integers. 

2.4.3.4 Reasoning by Induction. There is a particularly powerful means 
for proving that a property Q is true for all natural integers n. We proceed in 
two steps: 

1. we show that Q is true for n = 0 ; 
2. we show that if Q is true of an arbitrary integer, then Q is kept true 

for the next integer. 

This principle, called induction, can also be written in the previous format: 

Q(O) Vn n E N 1\ Q(n) :::} Q(n + 1) 
Vn n EN:::} Q(n) 

(2.6) 

Reasoning by induction is ubiquitous, though sometimes in a hidden format. 
The principle of induction allows us to justify that a loop invariant is true after 
any number of iterations given that it is initially true and that it is preserved on 
every iteration. It is also required to prove that a strictly decreasing sequence 
of natural integers is necessarily finite (which is in turn the key argument for 
justifying the technique of loop variants, see (2.2) on page 24). All important 
properties of integers and data structures such as lists or trees require a form 
of induction. An automated environment for formal methods must support this 
kind of reasoning; simply handling logical connectors is far from sufficient. 

2.4.4 Bounded Linear Search 

If no integer satisfies the property P, it is clear that the program on page 25 
does not terminate. 
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I8""e.I If this were the case, we know from partial correctness that, at the 
~ exit point of the loop, x would satisfy P{x), in contradiction with the 
previous hypothesis. 

2.4.4.1 Specification. We use the specification given in § 2.3.4 on page 21. 
With T = N we can write it as: 

1 P: predicate defined for all elements of N 
2 table-search-program returns 
3 r with r E N + {faHure} , such that 
4 P(x) if r comes from (elt. x of) N 
5 (V x E N) .,P(x) if r comes from {fai~ure} 

But this is too difficult, mainly because of line 5 where we have a quantification 
over an infinite number of elements. 

If a general program solving this problem could exist, for an arbitrary 
P, it could in theory be used to solve conjectures or difficult problems 

of arithmetic. For example, let us consider Fermat's last theorem (recently 
proved by Wiles): for any n greater than 2 we cannot find three integers a, b 
and e such that an + bn = en. We would take, for P{x): 

3n 3a 3b3e 
(n<x) 1\ (a<x) 1\ (b<x) 1\ (e<x) 1\ an+3 + bn+3 = en +3 

Here we limit ourselves to finite tables. They are modeled as an interval of 
integers. We use [p .. q[ to denote the set of integers greater or equal to p and 
strictly smaller than q. In particular, if p = q, the interval [p .. q[ is empty. 

1 (p E N) 1\ (q E N) 1\ p~q 
2 P: predicate defined for all elements of [po .q[ 
3 table-search-program returns 
4 r with r E [po .q[ + {fai ~ure}, such that 
5 P(x) if r comes from (elt. x of) [p .. q[ 
6 (V i E [p .. q[) .,P(i) if r comes from {fai~ure} 

In the present situation we can take advantage of the structure of the table to 
avoid the introduction of the Boolean b (see page 20): we simply represent the 
lack of an element satisfying P(x) in the table by returning a value of x such 
that x = q. In other words, for T = [p .. q[, we can model {failure} by {q} and 
T + {failure} by [p .. q[ u {q} = [p .. q]. Thus we get the following specification: 

1 (p E N) 1\ (q E N) 1\ p~q 
2 P: predicate defined for all elements of [p .. q[ 
3 table-search-program returns 
4 x with x E N 1\ p~x 1\ x~q 
5 and P (x) if x<q 
6 and (V i E N) (p~i 1\ i<q) ::} .,P(i) if x=q 

2.4.4.2 A Naive Attempt. We could try the following program: 

1 x:=p; 
2 while x~q 1\ .,p (x) do x: =x+l done ; 
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Aiming at a correctness proof of this program, we consider the loop invariant 
I that simply tells us that, on the one hand, x is kept confined to the expected 
domain (It) and, on the other hand, values of x investigated so far do not 
satisfy P (I2): 

I ~f It 1\ 12 , 

II ~f X E N 1\ P ~ x 1\ x ~ q , 
.. I ... 

domain of x 

12 ~f ViEN(p~i 1\ i <x)=*-,P(i) 
... , 

'" unsuccessful exploration 

This invariant is established before the loop: It comes from the precondition 
and, with regard to 12 , p ~ i 1\ i < x is necessarily false because x = p. 

The partial correctness criterion of while tells us that the negation of x :f. 
q 1\ -,P(x) is verified after line 2 of the program. A logically equivalent formula 
is 

x = q V P(x) . (2.7) 

In the case where x = q, the invariant 12 can be written Vi E N (p ~ i 1\ i < 
q) =* -,P(i), which agrees with line 6 of the specification. If x :f. q, the exit 
condition (2.7) forces P(x); with It we then get all the ingredients of lines 4 
and 5 of the specification. 

We still have to examine total correctness. But ... 

2.4.4.3 Beware of Limits. There is a well-known snag for the experienced 
programmer. If there is no element of [p .. q[ which satisfies P, the exit test 
of the loop of line 2 is performed for x = q, which means that the condition 
q :f. q 1\ -,P(q) is computed. The inequality q :f. q is quietly evaluated to false; 
but what about -,P(q)? P is not supposed to be defined at q. The precondition 
of line 2 has been designed intentionally, because it is a typical programming 
problem: array overflows. 

Let us first remark that usually, in logic, an expression having the form 
b 1\ anything evaluates to false if the value of b is false. From this point of view 
we don't hesitate: the assertion q :f. q 1\ -,P(q) has a value which is false. 

We will see in Chapter 5 that, in usual logic, all functions are total 
and predicates are defined everywhere. When we want to model a 

partial object f (predicate or function), we have to extend it in an arbitrary 
way over the whole domain under consideration, and to introduce an additional 
predicate characterizing the elements where f is defined. The expression f (x) 
is then defined, even if x is outside the expected domain of f (the domain of 
a function is the set of elements where it is defined). In our case the assertion 
P(q) has a value, but it is arbitrary and unknown: hence q :f. q 1\ -,P(q) takes 
the value false. 
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However, the very fact that this assertion has a value does not mean that 
at the level of the program the corresponding computation succeeds. It is a 
well-known fact that when executing, a program fragment may starve (hang) 
in a loop, abort, or raise an exception. This is typically what may happen in the 
case of an array overflow.7 Modeling these phenomena requires the introduc
tion of an additional value which represents the indefinite. The mathematical 
representation of the evaluation of a Boolean expression by a program compu
tation is then more complex than the evaluation of the corresponding logical 
assertion. 

In order to take this into account, a number of programming languages 
make it explicit that the computation of A 1\ B starts with the computation of 
Aj if A = false the result false is directly returned without evaluating B. In our 
example this works quite well. In the general case, if B cannot be evaluated, 
then B I\A cannot either, according to this evaluation strategy. Hence a property 
as simple as A 1\ B = B 1\ A is lost, and actually many common properties 
of logical connectors are invalidated at the level of programs. This can make 
reasoning more complicated. 

Another possibility is to ensure that evaluating P(x) is performed only for 
values of x which are strictly smaller than q. Thus we can content ourselves with 
the two normal truth values. But, obviously, the previous program needs to be 
modified. Let us investigate this idea. rugor would require that we indicate for
mally that each evaluation of P(x) is performed under good circumstances. To 
this effect we should insert the assertion x < q before all instructions contain
ing P(x), and prove that those assertions are true in the indicated places. This 
leads us to mix specifications and programs. Appropriate syntactic means will 
be presented in Chapter 4. Here we simply follow this approach in an informal 
manner. 

The issue raised here is not a limitation of formal methods but a 
~ subtle point related to the semantics of programs: in spite of appear
ances we have to be careful not to confuse Boolean expressions occurring in 
tests with logical expressions occurring in assertions. Therefore in the follow
ing, we distinguish the logical constants f and t, used in formulas, and the 
Booleans false and true, used in programming. 

2.4.4.4 Another Program. Since the occurrence of P(x) in the exit test of 
the loop is harmful, let us remove it. What is left is while x =I- q do body to be 
determined. But, when exiting the loop we would necessarily have x = q, which 
is not what we expect. 

A basic technique which turns out to be useful in this kind of situation is 
to replace a constant (the only one we have in the test is q) by a variable, say 
y. When exiting a loop while x =I- y do etc. we have x = y, and we want one 
of the following assertions to be true: 

TIt is at least the most meaningful behavior (except when we only want to read 
a value for which we proved, as here, that its value is irrelevant). In most cases, 
allowing the execution to continue leads to unpredictable results often difficult to 
analyze. Languages such as C make this unfortunate choice. 
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- either x = y < q, if P{x) (line 5 of the specification), 
- or x = y = q, if there is no satisfactory element in the table (line 6 of the 

specification) . 

We will naturally test P(x) in the body of the loop, with the intention of 
exiting the loop in the case of success; then we have to equate x and y, without 
modifying x since x contains the value we are looking for: hence we consider 
y: =x. If the test fails, x is incremented as in the previous program. If the 
successive tests always fail, y must behave like q in the previous program, q 
is then a good candidate for the initial value of y. Hence we have an elegant 
program which may escape even our experienced programmer: 

1 
2 
3 

x:=p ; y:=q ; 
while x=f.y do 

if P(x) then y:=x else x:=x+l done ; 

The correctness proof is performed as above. We just have to add in the 
invariant, that y is between x and q (see II) and that x satisfies P when y is 
strictly smaller then q (13): 

I ~f II /\ 12 /\ 13 , 

II ~f X E N /\ yEN /\ P ~ x /\ x ~ Y /\ Y ~ q , , , 
" domain of z and of 11 

12 ~f Vi EN (p ~ i /\ i < x) ~ ...,P{i) , ... , 

'" unsuccessful exploration 

13 ~f Y < q ~ P(x) , , .. 
success 

Now we can check that at the entry point of the loop body, we have x =f. y, 
hence x < q because of II' Then P(x) can be easily computed. 

For loop termination concerns, we can take y - x as the variant; details are 
left as an exercise. 

2.4.5 Discussion 

This little example illustrates a tricky point that occurs in programming, in 
formal specification, and in logic as well: handling partial functions. 

IB""ieI A partial function is a function which is not defined everywhere. For 
~ example. if we consider functions over real numbers. l/x is not defined 
for x = O. and Vx is not defined for x < O. For an example over N. the square root 
function is only defined over {O, 1,4,9 ... J. Basic notions of functions are recalled 
in § 3.4.3 on page 48. 

An array can be regarded as a partial function which is defined over an 
interval of integers, i.e. a (special) subset of N. It may happen that computing 
a function which is described in a programming language either loops or aborts 
for particular values of its arguments; then we still have a partial function. 
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We already have a problem at the notation level: what is denoted by f(x) 
when f is partial and is not defined for x? The matter would be simpler if we 
could tell in advance whether or not f is defined for x. But in the general case 
such knowledge cannot be provided by mechanical methods, if x is the result of 
a computation. We will consider three main approaches to this issue, one based 
on classical two-valued logic, one using a third truth value and one based on 
types. 

It is important to keep in mind that notations coming from mathematics 
often take a slightly different meaning in programming. This was illustrated in 
§ 2.4.4.3 on P A Q and on P (x). 8 There is another pitfall with the concept of a 
variable. The concept we use in a programming language like C is quite different 
from the concept we use in mathematics: it is essentially a memory address, and 
generally corresponds to values that are difficult to predict because of aliasing 
phenomena, that is, when two names refer to the same piece of memory. 

2.5 Summary 

Considering the right abstraction level is essential for writing precise specifica
tions without getting lost in the details. Logic turns out to be an excellent tool 
in this area. This chapter also introduced, in a semi-formal way, a specification 
technique based on logical assertions as well as simple reasoning about them. 
Reasoning obviously lies within the realm of logic. 

We also observed the ambiguity of informal text, and that such ambiguities 
can be overlooked at first sight: recall the two interpretations proposed on page 
17 for a specification based on a precondition and a postcondition. Moreover, 
similarities between mathematical notations and programming languages may 
cause a number of confusions: program variables are not exactly mathematical 
variables; Boolean expressions cannot always be considered to be predicates; 
partial functions have a somewhat different status. 

Our example for illustration purposes was very simple. What happens when 
we consider real large-scale software? The risk of lapses, ambiguities and in
consistencies increases dramatically. Formalizing (parts of) the specification 
becomes more difficult. However, it should be noted that, during the lifecycle 
of a software, we always have at least one formalization step: encoding in a 
programming language. Moreover it is better to formalize our knowledge as 
early as possible, so we can then derive information about the behavior of the 
system under consideration, compare the latter with desired properties, and 
make more accurate design decisions. At the same time, it is important not 
to freeze implementation choices too early. In this respect, good abstraction 
mechanisms are essential. 

Hence, powerful and expressive languages endowed with a precise seman
tics turn out to be very useful. Again, logic provides essential tools. However, 

8Recall how P (x) was introduced in our toy programming language on page 23. 
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they have to be chosen very carefully. The difficulty of this task should not be 
underestimated. 

2.6 Semantics 

Real software is written in programming languages, then compiled 
and executed on real (or virtual) machines. A complete guarantee Qf 

their behavior would require exhaustive verification right down to the hardware 
level. This is of course a gigantic task, but one against which we are not, 
however, entirely powerless. We will not consider here the application of formal 
methods to hardware specification and verification, although they are used in 
that arena at least as much as for software. 

In contrast let us say a few words on programming languages. Rea
soning about concrete programs is legitimate provided that the language used 
is endowed with a well-understood formal semantics. There are several kinds 
of semantics. Among them, the most important are denotational semantics, 
axiomatic semantics and operational semantics. 

Denotational semantics aims at giving programs a mathematical 
meaning which is independent from computations on particular machines, in
cluding abstract machines. In most cases this mathematical meaning takes the 
form of a function covering an appropriate domain. In contrast, operational se
mantics defines the behavior of a program by its effect on an abstract machine. 
Finally, axiomatic semantics tells us the effect of each program statement on 
assertions over the state of an abstract machine. 

Each semantics has its uses. Denotational semantics provides a better 
representation of the very nature of a program. Operational semantics may form 
the basis of the design of a compiler. Reasoning rules to be applied to concrete 
programs are based on axiomatic semantics. The preferred situation is when 
all three type of semantics are available and when each one is consistent with 
the others. 

2.7 Notes and Suggestions for Further Reading 

Many textbooks on formal specification techniques (e.g. [PST91, Jon90, Mor90, 
Wor92, WL88]) provide an easy-to-read introduction to logic and set-theoretic 
concepts used in techniques such as Z, B or VDM. 

The idea of reasoning about programs seems to be as old as programming 
itself. It was mentioned in the 1940s by the logician Alan Turing, who invented 
the concept of a universal machine (a machine where the program is regis
tered in memory). Logical assertions were introduced in flow charts in 1967 by 
Floyd [Flo67], then in structured programming languages following the seminal 
work of Hoare [Hoa69] and Dijkstra, we return to these in Chapter 4. 
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There are several introductory textbooks on programming language seman
tics. Hanne and Flemming Nielson's book [NN92] present the main approaches 
clearly. The short book by Gordon [Gor79] and the reference book by Stoy 
[Sto77] are more specifically devoted to denotational semantics. One may con
sult [Sch88] for a further study. 

The bounded linear search algorithm comes basically from textbooks by 
[Coh90] and [Ka190] on Dijkstra-style approaches. The starting point of the 
authors is a specification similar to the last one in § 2.4.4.1, where x = q 
encodes the failure of the search. This specification is simple to understand 
and perfectly relevant if the problem to be solved is the search for an element 
in an array. Why did we dismiss T U {failure} in a first stage and fiI.ally come 
back to it? Precisely because our initial problem was to search for an element 
in a table, whatever the actual detailed structure of the table. The concept 
of sum introduced in § 2.3.4 perfectly fits our requirements for a high-level 
specification. Actually, most implementations considered in programming turn 
out to use data structures with two distinct variants. 



3. A Presentation of Logical Tools 

Mathematical logic has spread out in a variety of ways - model theory, 
proof theory, set theory, computability - according to Barwise's classifica
tion [Bar77]. To this taxonomy we can add type theory, which has become 
more important since the time of Barwise's overview. From our point of view, 
the importance of logic can be summarized as follows: 

- it provides a natural framework for precisely constructing and expressing 
various concepts in computing; 

- it lends itself well to formalization. 

The first of these points has been described in Chapter 2. The properties 
of a program are quite naturally expressed in logic. The language of sets also 
finds many applications in this domain. Variables manipulated by programs 
range over a state space that is nothing more than a set defined by compos
ing particular basic sets (specifically, integers, characters, etc.) by means of 
set operations (for example, the record construct of the Pascal language or the 
struct construct of C are both a form of Cartesian product). In other respects, 
computability theory makes us aware of the existence of unrealizable specifica
tions.1 Finally, type correctness makes programming more accurate and more 
secure. 

Returning to the second point, above, our interest in formalization is twofold. 
On the one hand, the rigor of our specification texts and our reasoning about 
them is increased, since this is based on the manipulation of symbols that may 
be easily verified; on the other hand, the effort may be automated, or at least 
aided, by computer. It must be noted that the complete formalization of proofs, 
whether in software development or in a mathematical context, has a tendency 
to submerge the principal ideas under a plethora of more or less trivial lemmas. 
For such an approach to be viable, at least a partial automation proves to be 
indispensable in practice.2 Proof theory provides essential tools in this respect. 

On a practical level, mathematical logic aids in developing specification 
languages. An intuitive understanding of concepts, such as we acquire in school 
and in college, is often sufficient. Certain specification languages such as Z or 
B transform the language of sets and logic to accommodate the organizational 
needs of computing by means of adequate structuring mechanisms. 

INot because they are contradictory, but more subtly because no program can be 
derived to compute the desired function. 

2 An alternative point of view is presented in § 9.6. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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Knowledge of certain more advanced aspects of logic is often very useful. 
This will be illustrated in § 3.1. Section 3.2 will give an overview of the historical 
context of mathematical logical. We will describe the different branches in § 3.3. 
Basic mathematical terms will be recalled in § 3.4. We will end with more 
technical discussions on well-founded relations and ordinals from § 3.5 - these 
concepts playa key role in issues of termination and computability in § 3.7. 
The last two sections may be omitted on a first reading. 

3.1 Some Applications of Logic 

3.1.1 Programming 

Let's take a piece of paper on which are drawn some ordinary figures, and 
try to determine if a given point is inside this figure, or if a given line cuts 
that figure. In three dimensions, this presents a very concrete problem of aerial 
control. The reader is invited to spend a few minutes considering a solution in 
the programming language of his or her choice. 

Do we, for example, construct some form of structured variables for each 
basic form? Do we try to combine everything into a tree structure? We must 
consider every possible interaction. 

It's much more simple: we use the characteristic function of the figure under 
consideration, that is a function that for every point returns the value true 
if the point belongs to the figure, and the value false otherwise. The reader 
should be able to easily express the characteristic function of basic figures (discs, 
rectangles, etc.) in the programming language of choice. But this representation 
doesn't really catch our interest unless we can construct new figures from known 
figures. For example, the intersection of two figures represented by f and 9 is 
a function which, when applied to the point p, returns true if and only if 
f(p) = true and g(p) = true. The function that computes the intersection is 
very general, and makes a total abstraction from the particulars of the figures 
themselves. Other forms of composition (complement, union) are also easy to 
obtain, as are transformations such as translations, symmetries or rotations. 

Everything rests on one essential ingredient: the ability to pass functions 
as parameters and return functions as a result. What programming language 
should we choose? At first sight we find the concept of a pointer to a function, 
widely used in the C programming language, to be convenient. In reality, this is 
only sufficient to cover the case when the functions used are finite in number and 
are known in advance. The problem with not perceiving these limitations is that 
we may hope to be able to resolve the problem by taking a sufficiently shrewd 
approach. In reality, only the functional languages, based on the A-calculus (see 
later) such as Scheme, ML or Haskell, provide a sufficiently general mechanism. 

The underlying problem is to know if functions are considered as objects 
that can be manipulated in the same way as data structures. This is not a 
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trivial question. We will see that in set-based specification techniques, we regu
larly manipulate binary relations, functions being a particular case of relations. 
These relations are intended to be implemented with data structures (tables, 
pointers, etc.) or algorithms (procedures, functions). Choosing the right solu
tion is delicate. If the development is undertaken unadvisedly, or rashly, it may 
well end up with an inefficient or overly complex implementation - or just fail. 

3.1.2 Sums and Unions 

Let us examine some other constructs used in formal languages. The reader 
probably knows already how to use symbols such as U and can associate it 

. with a simple intuitive interpretation - combining the elements of two sets. 
This notation is generally used to combine sets of the same "kind". For example 
we can state: 

{x E IR 11 $ x $ 11"} U {x E IR I 2 $ x $ 211"} 
={xEIRII$x$211"} . 

We don't feel the need to combine dissimilar sets, for example a set of integers, 
a set of couples and a set of sets: 

{I, 2, 3}, {(I, 2), (3,4)} and {{I, 3, 4}, {I, 5}} 

which would yield: 

{I, 2, 3, (1,2), (3,4), {I,3,4}, {I,5}} 

but after all, nothing is impossible. We actually often need to mix heterogeneous 
data in computing. For example, in protocols, when we want to manipulate 
messages having different formats in a uniform way. Or in parsers, when we 
construct a syntax tree: a node corresponding to a statement can have two 
children if it represents the sequential composition of two statements, three 
children if it represents an if-then-else statement, etc.; moreover we see that 
nodes can represent statements or expressions. A data structure representing 
elementary geometric figures, say circles or triangles, would have, respectively, 
two fields (the center, which is a point, and the radius, which is a distance) or 
three fields (the vertices, which are points). A more elaborate example is the 
set of finite integer sequences, which can be seen as an infinite union:3 

{,,} U N U (N x N) U (N x N x N) ... 

However, mixing heterogeneous objects is not harmless. It is plainly mean
ingful to reject, at compile time, a test like a = b if a and b have different types. 
The usual interpretation is that a and b take their values from two different 

3We need a singleton for representing the empty sequence. The usual set
theoretical trick is to take {0}. 
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sets A and B, say floats and strings. But we could just as easily agree that a 
and b take their values from the same set: A U B! And let us stress that we 
cannot just disallow A U B, as this notion is needed in the previous examples. 

How can we get the flexibility that we need while simultaneously controlling 
the coherency of data and operations? The concept of sum introduced in 2.3.4 
is just the ticket. In a good type system, A, B and A + B can be distinguished. 

A sum is dealt with using an operator able to check whether a given element 
s comes from an element a of A or from an element b of B, and then to direct the 
computation appropriately; the computation depends on a in the first case and 
on b in the second case. Such constructs are available in modern languages like 
ML. In Pascal (or C) it is possible to emulate a sum using a record construct 
with variants and a switch field, but it is the responsibility of the programmer 
to ensure that a variant is always used in a way consistent with the switch 
field. Note that during the initial design of ASN1, a standardized language for 
describing the format of data exchanged in protocols, sums were not recognized 
as a primitive concept, leading to many complications. 

In ASN1, the expression CHOICE { a A, b B } yields a value whose 
type is either A or B. Switch fields (like a or b) are mandatory only 

since 1994. Before this date, they were confused with labels, which are integers 
encoding the type of the fields of a compound value. They are clumsy and 
cannot solve the ambiguity which appears if A and B happen to represent the 
same type. 

3.1.3 Chasing Paradoxes Away 

Let us again consider the example of sequences. They can be characterized by 
the following property: ''to be empty or an integer or a pair of integers or etc.". 

We often need to form sets from elements satisfying a given property - such 
a set is defined by comprehension. In this way we enter into the realm of the 
first version of set theory, where every collection made of objects characterized 
by a given property is a set. This so-called ''naive set theory" turned out to be 
inconsistent! Technically, an inconsistent system is a system where one thing 
and its contrary can be proved (formally: P /I. ..,P) or, equivalently, everything 
can be proved. 

Let us consider one of the simplest paradoxes, called Russell's paradox. In 
general, a set is not a member of itself. For instance, we have ..,(~ E ~) because 
~ is not a Boolean. Could we imagine a set which is a member of itself? Yes, 
though we have to think a bit.4 Anyway, what matters is not whether such sets 
exist or not, but that we consider the property x E x and its negation. 

Let us define by comprehension R cIJf {x I ",(xEx)}. If RER, R must satisfy 
the characteristic property of members of R, that is, ..,(R E R). If ..,(R E R), R 
possesses the characteristic property, hence R E R. If we define P cIJf R E R, 
we have P and ..,p at the same time, which is inconsistent. 

4 Consider , for instance, the set of sets which can be defined with less than a 
hundred English words. 
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~ Formally we have just shown that P ~ -,p and -,p ~ P. By the 
\Ie::! equivalence (3.6) on page 47, the first implication yields P~ (P~f), 
which by (3.11) boils down to (P 1\ P) ~ f, then to P ~ f which we use twice. 
First, it can be written -,P, and we deduce P from the second implication. 
Second, combined with P we get f. 

The same paradox arises if one accepts too broad a concept of ''property'' 
(instead of set), more specifically if one accepts that the scope of a property 
may extend to all objects, including properties. Just replace every set by its 
characteristic property in the above reasoning. We then consider properties A 
which are false when applied to themselves and we define: R(A) ~ -,A(A) , 
which has VA R(A) ¢:} -,A(A) as a consequence. Taking A = R we deduce the 
absurd R(R) ¢:} -,R(R). 

We will see in the following that several solutions have been proposed in 
order to avoid paradoxes. For the moment, let us just mention that the most 
celebrated in mathematics is the axiomatic set theory of Zermelo-Fraenkel. 
However, as it is an untyped theory, it is not well suited to computer science. 
This explains why specification languages based on set theory, such as Z and 
B, introduce an additional typing mechanism. 

In summary, logic provides concepts and tools that allow us to understand 
the benefits, limitations and design issues of specification and programming 
languages. One has to pay attention to two pitfalls: 

- a lack of expressiveness may lead to complications in using a language; for 
instance, it is sometimes just impossible to state the properties we wish to 
verify; 

- conversely, some powerful constructs which seem correct at first sight may 
turn out to be much too powerful; that is, in the case of a property lan
guage, the underlying logic may become inconsistent; or, in the case of a 
programming language, they may lead to run-time errors which are difficult 
to analyze. 

3.2 Antecedents 

From an historical perspective, mathematical logic emerged a century ago for 
the purposes of precisely and rigorously constructing the foundations of math
ematics. It was known, since the times of Dedekind and Cantor, that all math
ematical objects (numbers, functions, vectors and so on) could be constructed 
from natural integers using only set-theoretic operations. However, those opera
tions, when defined in an intuitive way, allowed one to derive paradoxes such as 
Russell's paradox. The whole mathematical edifice was threatened, leading to 
the ''foundation crisis", and then to an intensive activity aiming at establishing 
common reasoning principles, such as deductive or inductive reasoning, on firm 
ground. This was one of the main motivations for David Hilbert to put forward 
his well-known programme, that would (in principle) reduce mathematics to 
finite m8l'lipulation of symbols. 
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A number of techniques invented in this framework happen to fit well with 
the needs of computer science, because, on the one hand, symbol manipulation 
plays a central role and, on the other hand, manipulated objects (both programs 
and data) are of finite or countable size (see § 3.4.6). Among theories born at 
that time, and which are of interest to us, we can cite predicate logic, type 
theory, axiomatic set theory, the A-calculus, and intuitionistic logic. If we add 
the works of the 1930s on proof theory (Gentzen and Herbrand) we can see 
that the foundations of modern programming were largely available before the 
birth of the first computer! 

On the mathematical side, things took an unexpected path in 1931, when 
Kurt Godel proved his famous incompleteness theorem for arithmetic, sounding 
the death-knell of Hilbert's programme. To put it in a concrete way, it means 
that the most secure and restrictive reasoning forms are not strong enough 
to justify the principle of induction, not even to mention the stronger axioms 
contained in Zermelo-Fraenkel set theory. However, the latter turned out to be 
sufficiently powerful to serve as a basis for all known mathematics, and it is 
unlikely that an inconsistency will be discovered in it. The Zermelo-Fraenkel 
system remains the most commonly used nowadays. 

3.3 The Different Branches of Logic 

3.3.1 Model Theory 

There are basically two complementary ways of writing a specification: 

- describing the properties of a system; 
- providing a model of the system by means of built-in constructs. 

One sometimes uses the terminology property oriented and model oriented 
formal specification. Properties are expressed by logical axioms whereas models 
are derived with the help of set-theoretic operations. This duality is already 
present in mathematical logic, where we have a syntax for expressing logical 
properties and a semantics describing what we are talking about. This aspect 
oflogic is called model theory. One distinguishes, on the one hand, the concept 
of a logical statement built upon a formal language, for example: 

Vx3y(y > x) , (3.1) 

and on the other hand the concept of a model satisfying this statement; for in
stance, (3.1) admits, among other models, N endowed with the relation "greater
than", lR endowed with the relation "less-than" and N endowed with the relation 

. ''is-a-multiple-of''. 
A fundamental concept of model theory is the relation called logical conse

quence or semantic consequence. A sentence E is a semantic consequence of 
the sentences A, B, C ... if every model having the properties A, B, C ... has also 
the property E. This is a very concrete relation. Let us consider, for instance, 
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the three properties "every terminal is a piece of equipment", "every piece of 
equipment possesses a registration number" and ''this phone is a terminal". A 
practical consequence, of interest to the department in charge of inventories, 
is that in any situation where the above three properties hold true, we have, 
systematically, ''this phone possesses a registration number". The concept of 
model is represented here by what we just called a situation. 

3.3.2 Proof Theory 

However, the concept of semantic consequence suffers from a big handicap: it is 
very difficult or even impossible to check it directly, because we must consider 
every possible model and there is, in general, an infinite number of them. This 
is why one may prefer to use another relation called provability. We say that 
a sentence E is provable from the sentences A, B, C ... if we can construct a 
formal proof of E using only hypotheses A, B, C ... in combination with axioms 
and the rules of logic. E is refutable if its negation is provable. 

Of course, the logician must ensure that those formal manipulations respect 
the semantics, hence the concept of soundness. The converse property (every 
semantic consequence is provable) is a form of completeness. Another kind 
of completeness relates a collection of formulas r with one intended model 
M, stating that the latter is completely characterized by r, i.e. every true 
(respectively false) formula in M is provable (respectively refutable) from r. 

If we consider the formal specification of a piece of software, we can easily 
admit a specification to be incomplete at a high level stage. We only expect that 
the operations of our software respect a number of constraints, expressed by 
the means of logical formulas, but we may want to leave several options open. 
For instance, if we specify the calculation of .J2 with a tolerance of 10-3 , the 
programmer is free to provide an implementation computing any result between 
.J2 - 10-3 and .J2 + 10-3 . In many protocol specifications, some messages 
have to be answered in a very precise manner while others are considered less 
important. Sometimes we cannot afford incompleteness: in security software, 
all possible cases must be handled. 

Apart from the links between semantic consequence and provability, there 
are interesting issues concerning provability alone. For example: if we know 
that E is provable, can we find a proof of E using only sub-formulas of E? 
If the answer is yes, the proof search space can be significantly restricted. 
This is especially important for automated proof tools. The study of axiom 
sets and logical rules, seen as formal calculations (by this we mean purely 
syntactic manipulations where we forget how formulas are interpreted) and 
their relationship with the concept of semantic consequence are the realm of 
proof theory. 

In model theory, the semantics of logical sentences is provided by truth 
values. This is sometimes called the Tarskian tradition, in honor of the logician 
Tarski who deeply clarified its basis. Proof theory provides a different semantic 
perspective, which is in some sense more accurate, where logical sentences are 
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associated with a set of proofs that conclude to these sentences, instead of to 
a simple value (true or false). This set of proofs can also be seen as a set of 
algorithms. This tradition is sometimes called Heytingian [GLT89]. 

The aim of Heyting was to interpret intuitionistic logic invented by Brouwer 
in a formal manner, during the foundation crisis. (At the same time normal 
logic was termed classical logic.) Intuitionistic logic contests the validity of 
a number of laws. The most well-known of these is the law of the excluded 
middle, which is formally stated as p V -'p. Let us first point out that some 
consequences of this law are somewhat unexpected, for instance: ''when you 
cast a dice, if you get an even result then it is smaller than three, or conversely". 
Formally, p~t V t~p is accepted by classical logic but rejected by intuitionistic 
logic. We will see in § 3.7.3 another surprising example which is related to 
recursive functions. More deeply, the excluded middle is rejected because of a 
new interpretation of disjunction: in order to accept p V q, intuitionists want 
to know which proposition is provable amongst p and q. More precisely, it is 
enough for them to have the capability to compute the answer to that question. 
Then they can accept some instances of p V "'p, but not anyone. 

In order to illustrate the difference in points of view, let us take a situation x 
in a game of chess and let r (x) denote the fact that the black king is in check and 
in the situation x. An intuitionist can accept the sentence r(x)V-,r(x) because, 
by a mechanical application of the rules of the game (the explicit definition of 
rex)) we can know whether the black king is in check in the situation x. Such 
reasoning remains valid in classical logic, of course. But in this framework we 
can also conclude this immediately using the law of the excluded middle. We 
can see that the explanation required by the intuitionist provides much more 
information. 

The existential quantifier is interesting as well. In order to prove 3x P(x), 
the intuitionist wants to know, or to be able to compute a witness, x satisfy
ing P(x). A proof that the hypothesis ..,3x P{x) leads to a contradiction, for 
instance, is not sufficient. 

Simple common situations, where the law of the excluded middle is rejected 
by intuitionists, can be expressed in the form (3n pen)) V ..,(3np{n», or, equiv
alently, (3np{n)) V ("In ..,p{n», where p is a property of natural numbers for 
which it is unknown whether, or not, there exists an n such that pen). Even 
if we have a mechanical procedure for deciding, for any given n, whether pen) 
holds or not - formally: even if we know "In pen) V...,p(n) - the obvious algo
rithm for testing (3n p{ n» V ("In ..,p( n», which successively checks whether, or 
not, p{O), pel), ... , would involve an infinite number of tests if p happens to be 
false everywhere. As this algorithm may not terminate, it cannot be considered 
as reliable for providing an answer to our question. Suitable properties p can 
be constructed from unsolved mathematical conjectures. So-called Brouwerian 
arguments use, typically, the existence of 100 consecutive '9's arbitrarily far 
into the decimal expansion of the number 7r. 
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Intuitionistic logic has important uses in computer science because of its 
constructive features. In particular, there is a close relationship with type sys
tems which we consider in Chapter 11. 

3.3.3 Axiomatic Set Theory and Type Theory 

A real model, like the one considered above in the example of telephone equip
ment, is not quite conventional in model theory. One merely considers mathe
matical structures, that is, sets endowed with particular operations. The same 
is true in computer science: in a model-oriented technique, models are written 
using set-theoretical constructs, though they are much less sophisticated than 
in model theory. For instance, one would consider an abstract set of equipment, 
having the same relation with reality as data structures of the corresponding 
software. 

In order to be able to reason in a safe manner, building blocks for such sets 
need to be well defined. However, we know that the problems raised are not 
trivial. Several solutions have been proposed for eliminating the paradoxes of 
''naIve'' set theory. 

3.3.3.1 Typing Formulas. The most ambitious solution was proposed by 
Bertrand Russell [vH67, p. 199]. His idea was to introduce types in order to 
prohibit expressions like x E x, or any expression which would yield the lat
ter after a calculation. Actually type theory was not an attempt to save set 
theory or to reconstruct it on safe ground, but rather a new approach to es
tablishing the foundations of mathematics. The first versions of type theory 
turned out to be unsatisfactory because they imposed inconvenient restrictions 
and some axioms were ad hoc. The idea has been significantly reshaped since 
then, expecially following the work of Martin-Lof [ML84], and a fair amount of 
mathematics can now be developed in a typed framework. 

Ideas progressed in a similar way in computer science, and even more suc
cessfully: the first typing systems, for languages such as Pascal, proved to be 
too restrictive. But, subsequent progress led to programming languages that 
are both convenient in practice and strongly typed (notably, languages of the 
ML family). 

A number of important ideas came to light with typing, such as the idea of 
stratification. Typing, at least in its most elementary form, stratifies sets (and 
properties) in distinct layers: at layer 0, individuals; at layer 1, sets of individ
uals (and properties about individuals); at layer 2, sets of sets of individuals 
(and properties of sets of individuals); and so on. Distinguishing first-order 
logic, second-order logic, etc. (see below) comes directly from this idea. This 
kind of typing is called predicative, which means that in order to define a 
concept, only concepts defined in lower layers can be used. 

We find something analogous in computer science, when a software system 
is structured into layers. A function or a procedure which is defined using only 
previously defined functions and procedures can also be qualified as predica
tive. Note that in computer science we generally use the terminology recursive 
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instead of impredicative: saying that a recursive function is defined as "a func
tion of itself", a paradoxical way of stating things, is precisely recognizing that 
this function has an impredicative definition. There is a clear motivation to use 
only predicative definitions in logic: paradoxes like Russell's are then avoided. 
Note that in our presentation in § 3.1.3, the set R is impredicatively defined. 

3.3.3.2 Axiomatizing Set Theory. The other attempt to suppress para
doxes consisted of defining set theory using an axiomatic form, in the frame
work of predicate logic. The main inventors were Zermelo,5 Fraenkel and 
Skolem. In Shoenfield's presentation in [Bar77, ch. B.1], the idea of stratifi
cation appears quite clearly. This can explain why the well-known paradoxes 
could not be reproduced. One of the most important points concerns the def
inition of a set by comprehension, that is, by the means of a characteristic 
property of its elements. An axiom, called the separation axiom, states that 
we can form a set by comprehension only if we first have a sufficiently large 
set where we take elements having the desired property. As a consequence, we 
cannot directly define Au B as the set of elements x such that (x E A) V (x E B). 

Thanks to this axiomatization, it proved possible to retrieve the ingredients 
provided by the ''naive'' theory of Cantor, that were needed for developing the 
desired mathematical concepts, and hence its quick operational success. 

3.3.4 Computability Theory 

A last part of logic is the study of computable functions, that is, functions 
which can actually be defined by computations. This is an intuitive concept 
which must be formalized in order to become workable. Several proposals were 
made in the 1940s, among others: Turing machines, A-calculus (Church) and 
recursive functions6 (G6del, Herbrand). Each of these approaches is a way of 
formalizing the concept of an algorithm, and in essence, defines a primitive 
programming language. 

A simple reasoning on set sizes shows that many functions are not com
putable.7 Moreover, it turned out that all aforementioned formalisms represent 
exactly the same class of functions: for instance we can encode any partial 
recursive function with a Turing machine and vice versa. The concept of a 
computational process seems then to be faithfully represented by any of these 
formalisms. This postulation is known as the Church thesis. To date, it has 
never been shown to be wrong. 

5Zermelo's first paper on this topic was published the same year as 'the one by 
Russell on type theory, cf. [vH67]. 

6Note that the meaning of "recursive" in logic is precise but, unfortunately, different 
from its meaning in computer science. We saw that the latter corresponds rather to 
"impredicative". The definition of "recursive" is given at the end of this chapter. 

7If we restrict ourselves to functions over natural integers (without loss of general
ity, because all useful data structures can be encoded by integers), the set of functions 
from N to {O, I} - and a fortiori to N - is not countable, whereas the set of func
tions defined by the means of a language having a finite or countable vocabulary is 
countable. 
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As a consequence, a programming language is said ''to have the power of 
Turing machines" if it has the maximal expressive power we can expect - but 
it does not tell us whether this language is easy or difficult to use. Informally, 
a Turing machine is composed of an internal state, a tape with an infinite 
number of squares, a read-write head and instructions used to move the head 
and/or to write on the current square according to the current state and the 
symbol present on the current square. All common programming languages, 
including assembly languages, have the power of Turing machines. Among for
malisms which do not have the power of Turing machines, we can cite finite 
state automata (which can parse or generate regular languages) and push-down 
automata (which can parse or generate context-free languages). Roughly, in or
der to get the power of Turing machines, the key ingredients are: 

- basic arithmetic operations (addition, compare to zero); 
- a notion of loop where the exit condition is computed at each iteration (e.g. 

the while of Pascal in comparison with the for); 
- unbounded memory space; note that only a finite amount of memory is avail

able on real computers, but the difference is hardly perceptible in practice. 

Once this class of functions came to light, a number of fundamental ques
tions could be asked and sometimes solved. The most well known of them is 
the halting problem of Turing machines: can we mechanically and in a finite 
number of steps, decide whether an arbitrary Turing machine running on arbi
trary input data will eventually reach the state "computation end"? To put it 
in other words, can we know in advance - say, at compile time - whether or 
not the execution of a program will end, or whether a partial recursive function 
is defined on a given input data? It can be shown that this problem is actually 
undecidable, which means that no Turing machine can compute the answer to 
this question. As a practical consequence, a computer that could tell in advance 
whether an arbitrary program "loops" or not is definitely magical. 

Notes. When we try to prove the correctness of algorithms, proving their 
termination is a crucial issue. The aforementioned result does not prevent us 
from doing it, it just states limitations on the extent of the help that we can 
expect from automation. 

Note that this undecidability result came after the incompleteness theorem 
of G6del; it is, moreover, proven along similar lines. Decidability and complete
ness are actually strongly related questions. 

Computability (or recursion) theory comprises many other technical results 
that are not covered in this book. Their impact on formal methods is, in any 
case, quite weak nowadays. 

3.4 Mathematical Reminders 

We recall here useful basic concepts of set theory, logic and algebra. 
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3.4.1 Set Notations 

00 In the following, A, B, C ... denote "sets" whereas a, b, c ... denote 
8A " " " tJ ~ elements; we use quotes because the concepts of elements and sets 

are in fact relative, the members of a set can quite acceptably be sets themselves. 

If'lf.:'j A singleton is a set having exactly one element, such as {a}. An un-
~ ordered pair is a set having exactly two elements, such as {a, b}. The 
set with no elements is denoted by 0. Two sets are disjoint if their intersection is 
empty. 

If'lf.:'j We say that A is included in B, and written A c B, if every element of 
~ A is also an element of B. In particular, we have A C A and 0 C A for 
any set A. If A is included in B, we also say that A is a subset of B and that B 
is a superset of A. Two sets A and B are equal if they contain exactly the same 
elements. Hence A = B if and only if A c Band B C A. A is strictly included 
in B if A c B and A -:j:. B. Then A is also called a proper subset of B. The set 
of subsets of A is called the powerset of A, it is denoted by peA) or 2A. 

If'lf.:'j The union, the intersection and the Cartesian product of two sets were 
~ previously introduced on page 20. The Cartesian square of A is A x A. 
The difference A - B is the set of elements which are members of A but not of 
B. The symmetric difference A \ B is the set of elements which are members of 
either A or B (but not A and B). Thus A \ B = (A U B) - (A n B). 

If'lf.:'j The set An denotes the Cartesian product A x A . .. x A (with n occur-
~ rences of A), i.e. the set of n-tuples (ai,'" ,an) such that ai E A. Ai 
is identified with A. We agree that AO is the singleton {0} - another singleton 
would do the job just as well, this one is the most simple we can construct in a 
universe where no element is known a priori. 

If'lf.:'j Besides definitions by extension introduced on page 20, it is possible to 
~ define a set by comprehension, i.e. by providing a characteristic property 
of its elements. We use {x I P(x)} to denote the set of elements x such that P(x), 
and {x EEl P(x)} to denote the set of elements x which are members of E and 
such that P(x). The second form is better because the first can lead to paradoxes. 

3.4.2 Logical Operators 

If'lf.:'j Tables 3.1 and 3.2 summarize the intuitive meaning of logical operators 
~ as well as their relation to set-theoretic operations. These intuitions will 
be developed and explained in subsequent chapters. 
The meaning of conjunction A. and of negation.., is just the one you would expect. 
The same is true of disjunction V as well, but be aware that we have a non exclusive 
or. Interpreting implication P~Q must be done with greater caution: nothing tells 
us that there is an actual causality relation between P and Q. We can only say 
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Table 3.1 Table 3.2 

t true E xeE 
f false 
..., not 
A and 
V or 
=> implies 
{::} is equivalent to 

A,B P,Q 
AnB inter PAQ 
AUB union PVQ 
A-B minus PA...,Q 

A\B ~mmetric ...,(P {::} Q) ifference 
V for all f2J empty set f 
3 exists 

. that Q happens to be true when P is true. Thus Vx R(x) => S(x) means that 
all x verifying R verify S as well. If no x verifies R, we agree that the formula 
VxR(x)=>S(x) is true. We have, therefore, in this caseVxf=>S{x) and, as S(x) 
may be true or false, we see that both r => t and r => f are true. 

i""re.I The logical equivalence P <=> Q is an abbreviation for the conjunction 
~ (P => Q) A (Q => P). It behaves like an equality; hence we can replace 
P with Q when P {::} Q. Table 2 above can read: x e An B {::} x E A A x E B, 
etc., x E 0 {::} f. 

Numerous logical laws can be stated using equivalences. For instance, 
consecutive conjunctions can be reordered with PAQ {::} QAP and (PAQ)AR {::} 
P A (Q A R). The same is true for disjunction. We have also P A -,p {::} rand 
Pv...,p {::} t. 

The constants t and f can be eliminated using PA t {::} P, Pvf {::} P, 
PAf {::} rand Pvt {::} t. Hence we see that xE 0 {::} r boils down to xE 0=>f. 

Here are other very useful identities: 

P V (Q A R) {::} (P V Q) A (P V R) 

P A (Q V R) {::} (P A Q) V (P A R) 
-,-,p {::} P 

P => Q {::} -,p V Q 
P => r {::} -,p 

-,(P A Q) {::} -,Q V -,P 
-,(P V Q) {::} -,Q A -,p 
-Nx P(x) {::} 3x -,P(x) 

...,3x P(x) {::} Vx -,P(x) 

(P A Q) => R {::} P => (Q => R) 
(P A U) => Q {::} P => (-,U V Q) 

(3.2) 

(3.3) 

(3.4) 
(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

For example, using (3.6), the last line of Table 2 is equivalent to -,x E 0: as 
expected, no element can be a member of 0. The laws (3.7) to (3.1O), called De 
Morgan's laws, allow us to distribute negation across other connectives. The 
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equivalence (3.11) provides two ways for expressing "if I have P, if I have Q 
then I have R". This can also be written P => Q => R. Using (3.5) we get the 
equivalence (3.12) that allows us to move a formula U to the opposite side of 
an implication at the price of a negation. 

EXERCISE. Show the equivalence (P V Q) 1\ -,(P 1\ Q) {:::> -,(P {:::> Q). 
Justify A \ B {:::> -,(P {:::> Q), where P 1;f x E A and Q 1;f X E B, from 
A \ B = (A U B) - (A n B). 

EXERCISE. Find the logical laws used in the reasoning on page 29 for proving 
partial correctness of the first bounded linear search program. 

3.4.3 Relations and Functions 

I8"lf.:J A (binary) relation R from A to B is a subset of Ax B. Its elements, 
~ which are ordered pairs (a, b) with a E A and bE B, are also denoted 
by a t-+ b. Then we say that a is related to b or that a maps to b by R. We often 
use the infix notation aR b instead of (a, b) E R . 
A simple example of a relation is the identity relation on a set A, which is the set 
of all ordered pairs a t-+ a such that a E A. 
A relation R on A is reflexive if for all x in A, xRx. 
It is symmetric if '<ix, YEA, xRy => yRx. 
It is anti-symmetric if '<ix, yEA, (xRy 1\ yRx) => x=y. 
It is transitive if '<ix, y, z E A, (xRy 1\ yRz) => xRz. 
An equivalence relation is a reflexive, symmetric and transitive relation. An order 
is a reflexive, anti-symmetric and transitive relation. An order is total when two 
elements can always be compared: '<ix, yEA, xRy V yRx. In the opposite case 
(or if we don't know) we have a partial order. 
If R is an order on A and if B is a subset of A, an element m of A is a lower bound 
(respectively an upper bound) of B if'<ibEB mRb (respectively '<ibEB bRm). 

I8"lf.:J A relation R from A to B is defined at a with a E A, if there exists an 
~ ordered pair a t-+ b in R, i.e. if a is mapped to an element of B by R. 
The domain of R is the set of elements a such that R is defined at a. R is a total 
relation if its domain is A. In the opposite case (or if we don't know) we say that 
R is partial. The set of total functions from A to B is denoted by A -+ B. 

~ A function I from A to B is a relation such that if x t-+ YI and x H Y2 
~ are members of I, then YI = Y2 (intuitively, applying a function to a 
given element always yields the same result). If x E A and if x is in the domain of 
I, we denote Ix or I(x) the unique element y of B such that x t-+ y is a member 
of I. 

The composition of two functions I and 9 from B to C and from A 
to B, respectively is the function from A to C denoted by 9 0 I such that 
(g 0 1) x = g(fx). This definition generalizes if I and 9 are relations. In that case 
x t-+ z is a member of 9 0 I if and only if there exists a y in B such that x t-+ y 
is a member of I and y t-+ z is a member of g. 
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IB"'Ie.I The first projection PI is the function from A x B to A defined by 
~ PI (a, b) = a. Similarly the second projection P2 is defined by PI (a, b) = 
b. More generally, the ith projection is the function from Al x ... Ai X ••• to Ai 
defined by Pi{al, ... ai, ... ) = ai. 

IB"'Ie.I A function is injective if distinct elements are mapped to distinct ele-
~ ments. A function / from A to B is surjective if all elements of Bare 
mapped by /. A bijection is a total, injective and surjective function. 

3.4.4 Operations 

IB"'Ie.I An operation * on the set A is a total function from A x A to A. It is 
~ commutative iffor all X,y of A we have x*y = x*y. It is associative 
iffor all x,y,z of Awe have (x*y)*z = x*(y*z). 

IB"'Ie.I The element e is called an left identity element of * (respectively a 
~ right identity element) iffor all x in A we have e * x = x (respectively 
x * e = x). The element a is called a left absorbing element of * (respectively 
a right absorbing element) if for all x in A we have a * x = a (respectively 
x*a = a). The element x' is called a left inverse (respectively right inverse) of x 
if x' *x = e (respectively x*x~ = e). An identity element (respectively an inverse, 
an absorbing element) is a left and right identity (respectively inverse, absorbing) 
element. 

IB"'Ie.I Notation: when the underlying operation * is clear from the context, it 
~ is often omitted: one writes xy instead of x*y. If * is associative, one 
also writes xn for x * ... * x (with n occurrences of x). The inverse of an element 
x (when it exists) is denoted by X-I. 

IB"'Ie.I Example: given a set A, let 'RA denote the set of relations on A. Then 0 

~ is an operation on 'RA, with the identity relation as an identity element. 
The inverse of a relation R (written R-I) is then the set of ordered pairs y t-+ x. 
such that x t-+ y is in R. A function is injective if and only if the inverse relation 
is a function. A function is surjective if and only if the inverse relation is total. A 
function is bijective if and only if the inverse relation is a total function. 

An element x is said to be idempotent if x * x = x. The operation * is 
idempotent if all elements of A are idempotent. 

EXERCISE. The connectives 1\, V, => and <=> can be seen as operations on 
B (see § 5.1.3). Which of them are commutative? Associative? Idempotent? 
Which ones possess an identity element? An absorbing element? Invertible 
elements? Do not neglect <=>. 
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3.4.5 Morphisms 

Let us consider the set of natural integers endowed with addition and the 
identity element 0 on the one hand, the set of natural integers endowed with 
multiplication and the identity element 1 on the other hand. The function <p 
which maps n in N to 3n preserves the identity element and the operation in 
the following sense: <p(0) = 1 and <p(m + n) = <p(m) x <pen). We say that <p is 
a morphism from (N, +, 0) to (N, x, 1). 

Let us consider a more general case. We take a set E endowed with a 
function I, an operation *, and a relation R. This structure is denoted by a 
4-tuple: (E, I, *, R). Let us take a similar structure (E', f', *', R'). A morphism 
of (E, I, *, R) to (E', f', *', R') is a function <p from E to E' which preserves 
the structure in the following sense. Let x, y, z be arbitrary elements of E and 
let x', y', z' their respective targets by <p: thus we have x' = <p(x), y' = <p(y) 
and z' = <pC z). The function <p is a morphism if: 

- <p preserves the function: if y = I(x), then y' = f'(x'); 
- <p preserves the operation: if z = x * y then z' = x' *' y'; 
- <p preserves the relation: if xRy then x'R'y'. 

An isomorphism is a bijective morphism. Two structures are isomorphic if 
they are related by an isomorphism. Intuitively, we can to a fair extent agree 
that they are identical because they have exactly the same properties. 

3.4.6 Numbers 

Common number sets (N, Z, Q and IR) are recalled on page 22. Natural numbers 
can be generated from the empty set using the following encoding: 0 is encoded 
by {} = 0, 1 is encoded by {OJ = {0}, 2 is encoded by {O, I} = {0, {0}}, ... 
n is encoded by {O, ... n - I}. 

It is not as obvious as it may seem to define what is a finite or an infinite 
set. A first idea could be to count its elements and to say that the set E is 
infinite if there is an injection (an injective function) from N to E. In fact, the 
"axiom of infinity" stated in Chapter 7 says that there is a set containing N. We 
can avoid the reference to N in the following way: a set E is said to be infinite 
if and only if there is a bijection from E to a proper subset of E. 

A set E is countable if there exists a sequence (un) of elements of E covering 
E, or, equivalently, if there exists a surjective function from N to E (intuitively: 
we can count the elements of E). For example, finite sets, N itself, Z, Q Pp(N) 
(the set of finite subsets ofN) are countable. Among sets that are not countable 
we have lR. and peN) (the set of all subsets of N). Here is an important example 
for computer science: a set whose elements can always be denoted by a finite 
sequence of characters taken in a finite alphabet is countable. In particular, the 
set of programs defined in all programming languages is countable, whereas the 
set of functions on natural numbers is not countable. 

A collection where the element can be repeated is called a family or a 
multiset. Formally, if E is a set, a family of elements of E is a total function 
from E to N. 
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3.4.7 Sequences 

~ A sequence Uo, Ul, .•. Un. ••• of elements Ui of E is a total function 
~ from N to E: Un is just another notation for u(n). A sequence can be 
defined directly (for example Vn = n 2 ) or by induction. by providing the value of 
Uo and a function yielding the value of Un+l from Un (for example Uo = 0 and 
Un+l = Un + 2n + 1). The typical way of proving properties of such sequences is 
through proof by induction. On the last example it is easy to prove: 'tin Un = Vn . 

_~ We sometimes need to talk about sequences that are finite or infinite. 
~ We mean, total functions from A to E, where A is either a subset of 
N of the form {n E N I n < a} for a given natural number a, or N itself. We will 
then use the explicit terminology ''finite or infinite sequence", ''finite sequence" 
when A has the first form and ''infinite sequence" when A has the second form. 
In other contexts "sequence" will always denote an infinite sequence. 

3.5 Well-founded Relations and Ordinals 

3.5.1 Loop Variant and Well-founded Relation 

We have seen in § 2.4.1.2 that the termination of a program can be studied 
by considering a quantity v that decreases at each step while staying in N. Let 
us emphasize the last point. It is not enough to ensure that the variant v is a 
decreasing number: 

- an integer can decrease ad vitam reternam by taking arbitrarily large negative 
values; 

- a positive rational or real number can decrease while approaching a lower 
limit without reaching it. 

The point is that v must take a finite number of values. Reasoning with a "de
creasing number" is of course an incorrect wording, which has to be formalized 
with a finite or infinite sequence Vo, Vl, .•. Vn , ... as we will see below. 

In order to model the problem of termination, let us first consider the set 
S of the values that can be taken by the state of a program.s The change in 
this state is observed at certain points between which we admit that nothing 
important can happen.9 Each execution step corresponds to a state transition 
which is modeled as an ordered pair (Si' S I) where Si and S I, the value of 
the state respectively at the beginning and at the end of the transition, are 

8For the sake of completeness we should include in the state a component for the 
program counter and another for the execution stack. We proceed in this manner in 
order to define an operational semantics. 

9We can choose fine grain observation, corresponding to elementary instructions 
or large grain observation, corresponding to blocks of such instructions: the point is 
that executing those "grains" always terminates. 



52 Understanding Formal Methods 

members of S. We then introduce the set of transitions 7, which is a relation 
on S. 

When we reason with a variant v, the latter is a function of the state s. Each 
transition (Si' sf) at the level of states corresponds to a transition (V(Si), v(s f)) 
at the level of the variant. The general situation is then captured by a set S 
endowed with a relation T. 

The changes of the state during an execution beginning at initial state 
So are then modeled by a finite or infinite sequence So, SI, ... Sn, ... such that 
two consecutive elements Sk and SkH are always related by 7. Ensuring the 
termination of the program boils down to prohibiting the sequence from being 
infinite. For example, in the case of natural integers, there is no infinite sequence 
Vo, VI, ... Vn , ... such that Vo > VI > ... > Vn > ... , which allowed us to justify 
the technique of the variant on page 24. When no such sequence exists the 
relation is said to be Noetherian. We can similarly consider the inverse relation 
(recall that, for instance, < and> are inverse relations). We then have a well
founded relation. Let us develop this concept. 

Let E be a set and R a relation on E. Let x and y be two elements of E, we 
say that x is a predecessor of y for R if x R y. When there is no ambiguity we 
simply say that x is a predecessor of y. A chain is a finite or infinite sequence 
eo, el, ... en , ... of elements of E such that enH is always a predecessor of 
en: Vn E N enHRen. R is a well-founded relation if R contains no infinite 
chains. 10 

The concept of predecessor that we use here generalizes from the 
L~ usual one on integers: just take for R the relation noted Rl below. 
For an arbitrary relation R, the predecessor of an element, when it exists, need 
not be unique. 

In summary, expressing that a program terminates boils down to saying 
that the underlying transition relation 7 is Noetherian, or that the inverse 
relation 7-1 is well founded. In practice, instead of reasoning directly on the 
set of states S endowed with 7-1 , it is worth considering a simplified view E 
of S endowed with a corresponding relation R, which must be well founded as 
well. The loop variant presented in the above example amounts to taking N for 
E and < for R. 

3.5.2 Exalllples 

The relation < is well founded on N, but is not well founded on Il, nor on any 
interval of IR or of Q. Any relation included in a well-founded relation is also 
well founded. Hence all sets of ordered pairs of natural integers (m, n) verifying 
m < n are well founded. Here are three examples: 

Rl ~f {(n,n+l) I n E N} 

lONothing prevents the repetition of an element in a sequence. If x is such that 
xRx, the sequence x, x, ... x, ... is then an infinite chain. If x and y satisfy xRy and 
yRx, the sequence x, y, ... x, y, ... is an infinite sequence as well. 
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R2 ~ {(n,2n+e) I nEN /\ n>O /\ (e=OVe=l)} 

R3 ~ {(n,n+2) I n E N} 

The relation > is not well founded on N, but it becomes so on a finite subset 
of N. As a consequence, relations having the form R4(q) are well-founded: 

R4(q) ~ {(n+1,n) In E N /\ n<q} 

Here is a very important example. Let R be a well-founded relation on E and 
let S be a well-founded relation on F, the relation defined over E x F by 

R5 ~f{«x,u),(x',v» Ix,x'EE /\ u,vEF /\ xRx'} u 
{((x,u), (x,u'» I x E E /\ u,u' E F /\ uSu'} 

is well founded. This construction corresponds to the lexicographic ordering 
used by all of us when consulting a dictionary.u This example is more subtle 
than the previous ones. If we consider the relation < on N (or its subsets R I , 

R2 and R3), we have already observed that all decreasing sequences are finite. 
But additionally, we know an upper bound on the length of such sequences 
as soon as we know the first element (the latter is such an upper bound). In 
contrast, if we take the structure (N, <) or even (N, R I ) for (F, S) in R5 , it 
is no longer possible to give an upper bound for decreasing sequences starting 
from (xo, no) if there is no Xl in E such that Xl R Xo. In that case there exist an 
infinite number of finite decreasing sequences starting from (xo, no), and their 
length is arbitrarily large. 

The lexicographic ordering on the Cartesian product of two or of 
any finite number of well-founded sets is well founded. Note however, 

that the lexicographic order on words, that is, arbitrarily large finite sequences 
of elements of a well-founded set E, is not well founded. For instance, with 
E = {O, I} and 0 < 1, we have the infinite decreasing chain 1, 01, 001, 0001, 
etc. 

Generalizing the technique of loop variants with well-founded relations can 
be useful in two ways: 

1. We can acquire a knowledge of the number of iterations performed 
when executing a loop. 

2. We can cope with more complex situations involving several loops, 
whether embedded or not. 

3.5.2.1 Counting Iterations in a Loop. First recall that the number of 
iterations ni depends on the initial value Vo of the variant. In general, the 
latter depends in turn on a preliminary computation or on an external event 
- reading a number for example - and is then essentially unpredictable. In 
contrast we can ask how ni depends on Vo. 

llOne should pay attention to the following technical point: a well-founded relation 
like R or S is not an order because it cannot be reflexive. We come back to the links 
between these concepts in § 3.5.4.1. 
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Let us take N as the domain of the variant. If the well-founded relation at 
hand is <, we only know that ni :::; Vo. If the relation is RI , we have ni = Vo. 
If the relation is R2, we know that ni is close to the base 2 logarithm of Vo. 

3.5.2.2 Using more Complex Well-Founded Relations. In order to 
study the termination of programs composed of several loops using only one 
well-founded relation, the domain E we have to consider for the latter has to 
be largerl2 than N. Here we content ourselves with the simple case of a pro
gram made of a first loop, followed by the computation or the reading of an 
arbitrarily large positive integer L and finally a second loop. 

Let us first consider each loop separately. Assume that the variant of the 
first is v in N endowed with RI whereas the variant of the second is w also in 
N endowed with RI • For all initial values Vo and wo, it is intuitively clear that 
the program terminates since each loop terminates. If we knew in advance the 
value of wo, we could take u = v + w as the global variant, in the same domain 
N endowed with R I • To be more precise, u would be defined as v + Wo in the 
first loop, as Wo between the two loops and as w in the second loop. But we 
cannot proceed in this way if the value L taken by Wo is unknown in advance 
and arbitrarily large. 

A satisfactory solution is to take for E the sum of two copies of Nor, 
equivalently, the Cartesian productl3 {O, I} x N. The variant u is (1, v) in the 
first loop, (1,0) between the two loops (let us call this element w) and (0, w) in 
the second loop. Our well-founded relation RI,1 is defined by (i, n)RI,1 (i, n+ 1) 
(intuitively it behaves like RI on each copy of N) and (0, n)RI,1 w. RI,1 is 
contained in the relation R5 above, where we take E = {O, I}, R = {(O, I)}, 
F = N and S = RI . 

Let us point out that, in contrast with most relations presented so far, 
the element (w) admits an infinite number of predecessors in RI,I. However, a 
decreasing sequence starting from any element of {O, I} x N is necessarily finite. 

A relation like R4(q) can be convenient in practice. For instance, R4(N) may 
be used for a direct termination proof of the bounded linear search program 
instead of reasoning on the difference N - x, as we did on page 25. 

We also remark on R2, R3 and R4 that it is not required that only one 
value (0) has no predecessor, even if we consider only natural (Le. non-negative) 
numbers:14 in R2, we have ° and 1; in R3 we have ° and all odd natural numbers; 
in ~(q) we have all numbers greater or equal to q. This is reflected in the loop 
invariant and in the exit test. For example, with~, we have to ensure that, at 
the beginning of the loop, the variant v is strictly less than q (condition (Vd 
on page 24, reshaped with ~, tells us that during an iteration v is necessarily 
incremented by 1); in this situation, we are led to put v ~ q in the invariant, 

l2In a sense coming from the theory of ordinal numbers, see below. 
l3Technically we can also represent N + N by N (consider even and odd numbers). 

But it would only make the definition of the well-founded relation more complicated 
with no compensation in the reasoning. The concept of ordinal presented below clar-
ifies the situation. . 

l4We choose to keep 0 ~ v in the invariant. 
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and then to take v = q as the exit condition. With Ra the exit test would 
correspond to v = 0 and the invariant would entail that v is even. 

3.5.3 Well-founded Induction 

Given a well-founded relation R on a set E, we can prove that a property P is 
true on all elements of E by showing the following proposition (H) which tells 
us, in familiar terminology, that P propagates: 

given any element x of E, 
if P is true on all predecessors of x, 
then P is true on x. 

(H) 

In particular, we have to show that P is true on all x without a predecessor, 
which corresponds to the base cases. 

This kind of reasoning is called well-founded induction. Usual induction 
on N is a (simple) special case of well-founded induction, where the relation 
considered is R I . Assume that, despite the fact that (H) has been shown, we 
have an element eo where P is not true; eo has at least one predecessor, since 
P is true for all elements without a predecessor; by (H) we also know that P is 
false on at least one of the predecessors of eo; let el be one of them. Repeating 
the process would then yield an infinite decreasing chain eo, el, ... en, ... , which 
is impossible because R is well-founded. 

The previous reasoning implicitly uses a principle called the axiom 
of choice, which will be introduced in Chapter 7. Indeed, in order 

to construct the chain eo, elo ... en, ... we simultaneously construct the infinite 
family Po, PI, ... Pn , ... where Pi is the non-empty set of predecessors of ei. At 
each step, we have to choose ei+1 in Pi. 

The rule of the loop is an application of well-founded induction. Let us 
illustrate what happens with the relation Rs. This corresponds to a loop B 
where the initial value of v is even: 

while v#O do ... v:=v - 2 ... done 

We then have to show the property P( n) defined by {v = n A I} B {I}, where I 
is the loop invariant. We distinguish the ''true'' base case n = 0 (corresponding 
to a successful exit test) from the ''false'' ones (odd values of v). In the latter 
cases P(n) is trivially true by reduction to the absurd, provided we put "v is 
even" in the invariant. 

3.5.4 Well Orders and Ordinals 

We can present well-founded induction from special order relations. Here are 
some preliminary definitions. The main point to remember is that two isomor
phic ordered sets are essentially the same up to the name of their elements. A 
set E endowed with an order R will be denoted by a 2-uple (E, R). 
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Let (E, R) and (F, S) be two ordered sets. A function f from E to F is 
monotone if the order is preserved by f: 

'r/x,yEE xRy ~ f(x)S f(y) . 

An isomorphism is a monotonic bijection. Two ordered sets (E, R) and (F, S) 
are isomorphic if there is an isomorphism from (E, R) to (F, S). 

3.5.4.1 Well Orders. Let E be a set endowed with an order R. Given a 
subset A of E, a minimum of A, if it exists, is an element a of A such that 
there is no predecessor different from a in A: if xRa A x E A then x = a (R is 
reflexive!). IT R is total, a minimum of A must be unique. 

We say that R is a well order if R is total and if every subset of E possesses 
a minimum. Note that E possesses a unique minimum m in that case. 

Let us note R,#, the relation defined by xR,# y if and only if xRy and x "# y. 
IT R is a well order, ~ is a well-founded relation. Conversely it is possible to 
construct a well order from a well-founded relation. But beware: a given well 
order can come from several well-founded relations. 

The concept of a well-founded induction is defined as in § 3.5.3 if we replace 
R with ~. The base case concerns only m. This principle can be justified as 
follows. Suppose that the set A of elements e which do not verify P is not empty, 
A possesses a minimum a which must be different from m; the predecessors of 
a are not members of A, hence they verify P, but with (H) we then have that 
P is also true of a, so a cannot be a member of A, a contradiction. 

Some well orders are especially important: ordinals. 

3.5.4.2 Ordinals. Let E be a set endowed with the well order R. The section 
Xa determined by an element a of E is defined as the set of elements x which 
are smaller than a: 

Xa ~f {xEElx~a} 

E endowed with the well order R is an ordinal if for all a of E we have Xa = a. 
Thus, to verify that 3 is an ordinal, we just have to remember that in set theory 
3 ~f {a, 1, 2}, which actually yields 2 ~f {a, I} = X 2 • The first ordinals are 
exactly 0, {0}, {0, {0}}, etc., where the order is inclusion or, equivalently, 
membership (the two relations happen to coincide on ordinals). 

Given an arbitrary ordinal x we can construct its successor x U {x}. We 
then start from 0 and we construct all natural numbers step by step. The next 
step consists of taking N itself (it can be shown that N satisfies the required 
properties). N is traditionally noted w in this context. 

The process carries on in the same way: w, wU{w} (noted w+l), etc. Apart 
from ° only two cases can occur for an ordinal: either it contains a greatest 
element, it has then the shape x U {x} and it is called a successor ordinal; or, 
it does not contain a greatest element and it is called a limit ordinal. 

The first limit ordinal is w. The next one, noted 2w, is the limit of {a, 1, ... w, 
w + 1, ... }. Carrying on this process we define 3w, ... nw, ... w2 , ••• wW , ••• ww'" , 
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... until a new limit ordinal EO which verifies w'o = EO. There are still many 
other ordinals. Ordinals up to EO are used in the automated proof assistant of 
Boyer-Moore and in PVS in order to formalize termination arguments [Rus93]. 

An important theorem about ordinals states that a well order is always 
isomorphic to an ordinal. Ordinals can then be used for measuring the com
plexity of termination proofs of algorithms. Let us also remember that the most 
general form of induction is well-founded induction, because the concept of a 
well-founded relation is finer than the concept of well order. 

3.5.4.3 Ordinals and Cardinals. Cardinals are another concept of set the
ory that can be used for measuring the size of a set. We will not go into detail 
here. We say that two sets have the same cardinality if there exists a bijection 
between them. Finite sets have a cardinal 0, 1, 2, ... n with n E N. 

Next we have N itself, whose cardinality is denoted No (pronounced aleph 
zero). We already know from § 3.4.6 that many infinite sets are countable: in 
other words, their cardinality is No. 

Another important point is the following. If the cardinal of a set E is 0:, 

then the cardinal of peE) is strictly greater than 0:. 

All ordinals presented so far are countable. A better wording is: the un
derlying sets of those ordinals are countable. We must remember that what 
matters in an ordinal is the corresponding order. Indeed, there are many (non
isomorphic) ways to order the elements of N, and each of them corresponds to 
a different ordinal.15 However, the order is completely irrelevant for cardinals. 

In contrast to ordinals, cardinals don't seem to have applications in formal 
methods. Note, however, that they play an important role in set theory. 

One of the first questions raised at the very beginning of development 
in set theory was the following: let c be the cardinal of lR; c is also the 

cardinal of peN), thus we have c > No; but is there an intermediate cardinal? 
Cantor thought that the answer should be no - this is called the continuum 
hypothesis - but the question turned out to be arduous. G6del showed in the 
1930s that this hypothesis is consistent with (i.e. cannot be disproved from) 
the axioms of set theory, while conversely Cohen showed in 1963 that it cannot 
be proven in set theory. This reveals the somewhat arbitrary character of set 
theory. We come back to this point at the end of Chapter 7. 

3.6 Fixed Points 

Let £ be a set and I be a function from £ to £. A fixed point of I is an element 
x of £ such that x = I(x). For example 1 and 5 are fixed points of the function 

15For example, if the order we consider is <, the corresponding ordinal is w. How
ever, let us consider the order R, defined by xRy if x < y and x =f:. 0, and by x < 0 
for all x: the corresponding ordinal is w + 1. Intuitively, in the latter case, natural 
integers are put in the following order: 1, 2, ... o. The two relations < and R are not 
isomorphic since only the second one possesses a greatest element. 
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on R that maps x to (x2 + 5)/6. The theorem of Knaster-Tarski states that 
under quite general conditions, f is guaranteed to have a least or a greatest 
fixed point. This allows us to define x by a fixed-point equation. 

We suppose that (1) £ is ordered by a relation ~j (2) f is monotone, 
that is, x ~ y~ f(x) ~ f(y)j (3) all non-empty subsets A of £ have a 

greatest lower bound glb(A) (it is not necessary that glb(A) is a member of A)j 
and (4) post, = {x E £ I f(x) ~ x} is non-empty (elements of post, are called 
post-fixed points of I). In our example we have 4 E post,. Then f possesses a 
least fixed point which is p., = glb(post,). 

Indeed - let us remove the index f - as p. is a lower bound of 
post-fixed points, we have p. ~ x for all x such that f(x) ~ x, then, as f is 
monotone: f(p.) ~ f(x) ~ Xj then f(p.) is also a lower bound of post. As p. is 
greater than all lower bounds, we get f(p.) ~ p.. By monotony f(f(p.» ~ f(p.), 
hence f(p.) E post, then p. ~ f(p.) since I' is a lower bound of post. By anti
symmetry of ~ we have that I' = f (1'). 

Symmetrically, if all non-empty subsets A of £ have a least upper 
bound lub(A) and if the set pre, = {x E £ I x ~ f(x)} of pre-fixed points of f 
is non-empty, then f possesses a greatest fixed point v, = lub(pre,). 

The least fixed point can also be reached from below when £ possesses 
a least element .1 (take £ = [0, +oo[ in the previous example): we construct 
the monotonic sequence (u)a with '1£0 = .1, Ua+1 = f(ua) and Ulim(a,,) = 
lub{u(an )}. The process ends at the first limit ordinal w if f is continuous, i.e. 
f(lub{xi}) = lub{J(xi)} for all monotonic sequences (Xi)iEN. For the greatest 
fixed point, one would proceed symmetrically from a greatest element Tin E. 

The relation ~ is not required to be total here. We can then apply the 
previous results with the inclusion relation on a set of sets, for example £ = 
P(E): 0 plays the role of .1, glb(A) is the intersection of elements of A, lub(A) 
is the union of elements of A and E plays the role of T. 

3.7 More About Computability 

Here we give more precise definitions for the concepts of computability men
tioned above [Gir87b, Bar90]. Here, unless we explicitly write partial recursive 
junction, a recursive junction will mean a total recursive junction, according to 
the original definition of Godel and Herbrand. Note that, following the work of 
Kleene, many textbooks use the opposite convention. 

Let us consider a problem P. If we have a search process for solutions 
of P at our disposal which (i) succeeds if a solution exists, and (ii) 

answers ''no'' in the converse case, this process is called a decision procedure. 
If condition (i) only is satisfied, i.e. if the process may go on looking indefinitely 
for a solution where no solution exists, it is called a semi-decision procedure. 
To summarize what follows, a decision algorithm is a recursive function, while 
a semi-decision procedure is a partial recursive function. 
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~ For the remainder of this chapter, the functions considered are arith-
'8 metic functions. By that we mean functions that take natural integers 
as input and that return a natural integer. For the sake of uniformity, constants 
are considered to be functions of arity O. In order to lighten the notation, ap
plying a function f to n arguments Xl ... xn is denoted by f (l), where l is seen 
as the n-tuple (Xl, ... , Xn) - the value of n is the arity of f. 

In order to formalize the concept of an algorithm, we need a formal 
language capable of expressing algorithms, and we have to stipulate 

the computations associated with legal expressions. This can be done with very 
low level constructs, but it is more convenient to use functions directly. It is easy 
to understand, for example, how to compute the composition of two functions 
provided one knows how to compute each of them separately. We proceed by 
introducing primitive recursive functions, then recursive functions and finally 
partial recursive functions, which correspond to progressively larger classes of 
algorithms. 

_~ It is important to keep in mind the distinction between the function 
... ~ which is computed, that is, a set of ordered pairs (the extension of 

the function), and the algorithm which performs the computation: two different 
algorithms may independently and correctly compute the same function f; 
for example one of them could be primitive recursive while the other is not. 
According to the following definition, f is then considered as primitive recursive. 
Indeed, the word function below takes its extensional meaning - though the 
underlying computation remains crucial in the rules (~) given below. 

It may transpire that the most efficient algorithm that computes a 
given primitive recursive function is not primitive recursive. For instance, the 
obvious primitive recursive way for computing the minimum of two integers 
m and n is not symmetrical: it takes e.g. m steps, while a better algorithm 
would take min(m,n) steps. Indeed, a result due to Loic Colson shows that 
the latter algorithm cannot be encoded using primitive recursion. Recursion 
theory is then an important theoretical tool, but the light shed on the concept 
of expressivity is limited. 

3.7.1 Primitive Recursion 

The initial functions are: 

- the constant 0; 
- the successor function S(n) = n + 1; 
- the projections prf(xl, ... ,xn ) = Xi, 1 ~ i ~ n. 

We then consider the formation rules: 

(Rl) composition rule: take k + 1 functions hl' ... hk and 9 already constructed 
and construct the function f defined by f(X) = g(hl (l), ... , hk(l»; 
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(R2 ) primitive recursion rule: take two functions 9 and h already constructed 
and construct the function I defined by 

{ I(x, 0) = g(x) 
I(x,n+ 1) = h(x, n,/(x, n)) . 

A primitive recursive presentation or, a primitive recursive algorithm, is an 
expression constructed only from initial functions and by application of rules 
(Rt) and (R2). A function I is primitive recursive if there exists a primitive 
recursive presentation which computes f. 

The occurrence of I on the right of "=" in (R2) is not that prob
lematic. Indeed it is clear that l(x,O) is defined for all X, then l(x,I), and 
so on. The function I can be regarded as a sequence defined by induction but 
parameterized by x: I(x)o, . .. I(x)n, l(x)n+1, ... 

Examples. Addition is primitive recursive, as it can be defined by add(m, 0) = 
m and add(m,n + 1) = S(add(m,n)). Multiplication is defined in a similar 
way. We can then define the factorial function (fact(O) = 1 and fact(n + 1) = 
mult(n + 1, fact(n))) subtraction (see below), the exponential function, and 
many other functions over integers. The linear search of an integer n such that 
pen) = 0, is not primitive recursive even if Pis: 

R = R'(O) 

R'(n) = if pen) = 0 then n else R'(n + 1) 

There is no way to define this function using only the previous rules. By con
trast, there is a primitive recursive presentation of bounded linear search be
tween p and q similar to the program given in § 2.4.4. 

R=R'(q-p) 

{ R'(O)=q 
R'(n + 1) = h(n,R'(n)) 
hen, r2) = tzer(q - (n + 1), r2, pen + 1)) 

{ tzer(rl,r2,0) = rl 
tzer(rl,r2,n + 1) = r2 . 

Note that testing the equality to zero, realized by tzer, makes use of rule (R2 ), 

with 9 = prr and h = pri· 
In a programming language like Pascal, we get primitive recursive 

functions if we restrict iterative control structures to for loops (general while 
loops have to be prohibited16): in for loops, the number of iterations is com
puted (at run-time, however) belore the loop. One of the main properties of 
primitive recursive functions is that they are total, in other words the corre
sponding programs terminate in all cases. 

16goto statements and "recursive" (!) procedures must also be prohibited, as it is 
clear that such mechanisms are at least as powerful as the IIhile loop. 



A Presentation of Logical Tools 61 

_~ A number of functions over natural integers, like subtraction, are 
. ~ usually not defined everywhere. As a consequence of the last remark, 
their primitive recursive presentation extends them over the whole set N. The 
default value is often o. Thus the usual primitive recursive definition of the 
predecessor function is P(O) = 0 and P(n + 1) = n - using (R2) with 9 = 0 
and h(n, a) = n, that is, h = pr~. We get subtraction by iteration of P. 

There are total functions that cannot be defined by a primitive re
cursive presentation, but they are not that easy to find. One of the 

simplest is the Ackermann function: 

{ 
A(O,n) = n+ 1 
A(m + 1,0) = A(m, 1) 
A(m + 1,n + 1) = A(m,A(m + 1,n» . 

It can be shown that this function grows faster than all primitive recursive 
functions. Its termination can be proven by well-founded induction using a 
lexicographic ordering based on relation Rs of § 3.5.2, with E = F = N and 
R=S=R1 · 

3.7.2 Recursion, Decidability 

The previous examples clearly show that primitive recursive func
tions do not exhaust intuitively computable functions. In order to 

enrich our set of functions, let us introduce the following rule: 

(R3) minimalization rule: take a function 9 already constructed such that 

Vx3mg(x,m) = 0 (3.13) 

and construct the function f that maps x to the smaller m such that 
g(x,m) = 0, denoted by f(x) = JLm[g(x,m) = 0). 

Intuitively, a way to compute this function is by a linear search program: suc
cessively try m = 0, m = 1, etc. until an m satisfying g(x, m) = 0 is found. 

A recursive presentation, also called an algorithm, is an expression 
constructed only from initial functions and by application of rules (Rd, (R2 ) 

and (R3). A function f is recursive if there exists a recursive presentation 
which computes f. 

For example, the linear search program R given on page 60 is encoded 
by a trivial application of (R3): by hypothesis there exists an n such that P (n) = 
0, where P is primitive recursive; then we take simply R = JLm[P(m) = 0). 

Again, recursive functions are total functions: requiring condition 
(3.13) amounts to ensuring a priori that the previous linear search program 
terminates. In other words, intuitively, an algorithm is a program which pro
vides an answer for all input data. We then get a precise formal definition for 
the intuitive concept of an algorithm. This formal definition may be considered 
as arbitrary. However, as in physics, experience decides the matter. 
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Here we encode a predicate P by a function f p from tuples of integers 
to {O, I}. A predicate is recursive if the corresponding function f p is 

recursive. We can also define a recursive set E as a set (of integers, or of tuples 
of integers) having a recursive characteristic function. It means that we have at 
our disposal an algorithm for deciding, given any tuple X, whether or not P(x}, 
or equivalently, whether or not x is a member of E. We say that a problem is 
decidable if the corresponding predicate is recursive. In the opposite case we 
say that the problem is undecidable. 

3.7.3 Partial Recursion, Semi-Decidability 

In practice and in logic as well, we need to consider programs which 
do not always terminate. Thus we are led to weaken the rule (R3) 

by relaxing condition (3.13). 

(R3') partial minimalization rule: take a function 9 already constructed and 
construct the function f such that, if there exists an m such that g(x, m} = 
0, returns f(X) = J,tm[g(x,m} = 0], or else is not defined. 

The new rule (R3') allows one to construct partial functions. Therefore, we now 
agree that our rules construct partial functions from partial functions. 

A partial recursive presentation is an expression constructed only 
from initial functions and by application of rules (Rl), (R2 ) and (R3'). A func
tion f is partial recursive if there ~xists a partial recursive presentation which 
computes f. Here is another definition: a partial recursive function is a function 
which can be encoded using a Turing machineP The Church thesis for par
tially computable functions states that the class of partial recursive functions 
formalizes the intuitive concept of program. 

Roughly, we can say that a recursive function is a partial recursive 
function whose termination is proven in all cases. Let us consider the linear 
search program given on page 60, where we add an integer parameter x in the 
search criterion P: 

R(x) = R'(x, 0) 
R'(x,n) = if P(x,n) = 0 then n else R'(x,n + 1) 

In general, the search succeeds only for special values of x. For example, if we 
want to search the smaller n such that 2n = x, we can choose for P(x, n) the 
expression (x - 2n) + (2n - x) (pay attention to the definition of subtraction!); 
then it is clear that the computation terminates for even values of x and for no 
others. 

Here is another example of a partial recursive function, sometimes 
called the Syracuse function. It can only return 1, and in all known experiments 

17We don't present a formal definition of Turing machines here: it is a bit long but 
raises no difficulty. 
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it does return. But termination for all inputs remains an open problem so far, 
thus we don't know if this function is recursive. 

{ 
U(O) = U(l) = 1 
U(n) = U(~) if n is even and n > 1 
U(n) = U(3n + 1) if n is odd and n > 1 

What is the status of the function tu that returns 1 if U is total 
~ and otherwise returns 01 This presentation of tu is not recursive. 
However, the function ki' which returns a fixed i, is recursive; then tu is recur
sive as well, since tu is either ko, or klo though we don't know which one. We 
conclude that a computable function, as formally defined in recursion theory 
- a classical theory admitting the excluded middle principle, is not quite the 
same as a function we know how to compute. 

The last important basic concept we present here is the concept of a 
recursively enumerable predicate or set. As suggested by the name, it 

is a set which can be completely covered by application of a calculable function 
on 0, 1,2, etc. Equivalently, we can say that membership of this set is a semi
decidable problem. 

We say that a set is recursively enumerable if it is the domain of a 
partial recursive function. We say that a predicate P is recursively enumer
able: 

- if it is the characteristic predicate of a recursively enumerable set; 
- or, equivalently, if the function 9 defined by g(x) = 0 for all x such 

that P(x), and undefined elsewhere, is partial recursive; 
- or, equivalently, if there exists a recursive function I such that, for 

all y verifying P(y), there exists x such that y = I(x). 

Let x be an integer and let P and Q be partial recursive predicates. The 
functions computing P(x)I\Q(x), P(x)VQ(x) and ...,P(x) are partial recursive. 
H P and Q are recursive, these functions are recursive as well, which allows 
us to determine if P(x), Q(x), P(x) 1\ Q(x), P(x) V Q(x) and ...,P(x) are true. 
H P and Q are only recursively enumerable, we are only able to determine if 
P(x), Q(x), P(x) 1\ Q(x) and P(x) V Q(x) are true. We have also the following 
theorem: 

Theorem 3.1 
A predicate (respectively, a set) is recursive if and only if itself and its negation 
(respectively, its complement) are recursively enumerable. 

3.7.4 A Few Words on Logical Complexity 

H the predicate P is recursively enumerable, then so are the pred
icates P(x) 1\ Q(x), P(x) V Q(x) Vx < n P(x), 3x < n P(x) and 

3x P(x). However, ...,P(x) and Vx P(x) are not always recursively enumerable. 
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The intuitive idea is that it is possible to encode the search for an x satis
fying P(x) by pseudo-simultaneously checking P(O), P(l), etc., but checking 
Vx P(x) would in general require an infinite number of verifications. As a con
sequence, a formula including unbounded quantifiers and (partial) recursive 
predicates specifies a relation between its free variables, but we may not have 
any algorithm for computing it. A relation thus specified is called arithmetical. 

Kleene established that arithmetical relations can be classified ac
cording to the arithmetical hierarchy, which measures their logical complex
ity. Formulas are put under the form VXn3Xn-l"'~ or 3xn VXn-l ... ~, where 
the predicate ~ is primitive recursive. Each class is characterized by the first 
quantifier and the number of quantifier alternations. Formulas of the first 
kind are designated by n~, formulas of the second kind by !:~. For exam
ple 3n n 2 = 25 is !:?, while Vc3r r2 5: c A c < (r+I)2 is ng. The reader can 
consult [vL90a, Cou91, Sho93] for a rigorous definition. 

There is a tight link between complexity of program termination 
proofs, ordinals and logical complexity [Gir87b, CW97, Wai91, Wai93]. 

3.8 Notes and Suggestions for Further Reading 

The reader interested in the sources of mathematical logic can find the texts 
of founding fathers edited and commented on by J. van Heijenoort in [vH67]. 
The Handbook 0/ Mathematical Logic [Bar77) is a reference book for specialists. 
However, a number of chapters are very accessible, notably: the first, which is a 
good introduction to model theory; the chapter written by Shoenfield is a good 
introduction to set theory; and the chapter written by Rabin includes many 
decidability results. 

The example of geometric figures comes from a contest organized by the 
US Air Force. Two teams, championing a functional language (Haskell, in fact), 
submitted similar solutions based on the principles18 indicated in § 3.1.1. There 
are many introductory books on functional programming, for instance [Pau9I], 
[BW88], [CMP02] and [CM98]. 

18They beat all other approaches hands down, which came as a surprise because 
traditionally favorite domains for functional languages were compilation or theorem 
provers. 



4. Hoare Logic 

The techniques to be discussed in this chapter are aimed at reasoning about 
algorithms. We first introduce the traditional notation for annotating a pro
gram with assertions. This yields a special kind of proposition and we give the 
logical rules which govern them - specifically, Hoare logic. Finally, we show 
another interpretation of these rules, due to Dijkstra, which leads to a technique 
allowing one to calculate a program that establishes a given assertion. 

4.1 Introducing Assertions in Programs 

Chapter 2 showed how to specify what we expect from a program or from a 
piece of code, using assertions which are logical formulas over the input and 
output data of this program. It turned out to be useful to put assertions inside 
a program, because (among other reasons) instructions sometimes make sense 
only if they are executed from a suitable state. This state is itself defined by 
the value of all program variables at a given time. 

For instance, let us suppose that the state is defined by three numerical 
variables x, y and z, and that the program consists of a sequence of instructions: 

51 ; 52 ; 53 ; z:=2/(y-x) ; 55 

Just before the fourth instruction, x has to be different from y. Such conditions 
are traditionally inserted at the relevant point in the code between curly (or, 
set) brackets: 

51 ; 52 ; 53 ; { ,(x=y) } z:=2/(y-x) ; 55 

We could then complete the table search program of page 31 as follows: 

1 x:=p; y:=q ; 
2 while xi-y do { p::;x<q } 
3 if P(x) then y:=x else x:=x+l done; 

Here is the program together with its complete specification, derived from the 
last specification (page 28). Recall that line 8, which is in the form A =? B =? e, 
reads A=? (B =? e), that is, "A implies that B implies e", or in other words, 
''if I have A and I have B then I have C". 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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1 (p EN) /\ (q EN) /\ p~q , 
2 P: predicate defined for all elements of [po .q[ } 
3 x:=p; y:=q ; 
4 while x=j;y do { p~x /\ x<q } 
5 if P(x) then y:=x else x:=x+l done 
6 {x E N /\ p~x /\ x~q 
7 /\ x<q => P(x) 
8 /\ x=q => ('V i E N) (p~i /\ i<q) => -.P(i) } 

We have to deal with two concepts of a variable. The concept we use 
~ in programming is a name that concretely denotes a piece of memory, 
or, more abstractly, a portion of the state whose contents varies in t,he course 
of execution. This is, for instance, the case with x and y in the above program. 
In addition, we have logical variables which are used to construct logical for
mulas. Such variables were used informally throughout Chapter 3, for example 
x on pages 42 and 44. They will be formally introduced in Chapter 5. They 
represent a value that does not depend on execution but rather on external 
considerations. However, we need to mention program variables in logical for
mulas - assertions - and consequently mix these two kinds of variables! We 
already did that with x and N on page 25. Any effective use of rule (4.4) below 
mentions program variables within I and the logical variable V. 

Fortunately, the confusion can be tolerated to an extent. The key 
~ point is not to fall into the pitfall of aliasing, as mentioned on page 32. 
In brief, we can agree that the state assigns a value to logical as well as pro
gram variables, but that logical variables can be considered as constants during 
execution. Note that, in our table search program, p and q are also arbitrary 
constants. We consider this point again in connection with the semantics of 
logical formulas (see § 5.2.3). 

In Chapter 8 we will take an additional view point, where the semantics of 
program variables itself is manipulated: they are regarded as fields (or more 
mathematically: projections) of the state. 

4.2 Verification Using Hoare Logic 

The correctness proof of a program will be structured according to the structure 
of the program itself. Let us first analyze the latter. A program is composed 
of program elements (sequence, alternative constructs, loops) which are them
selves composed of smaller and smaller elements, until we have the simplest 
ones, that is, assignment. Each program element (including the whole program 
itself) can be considered separately: it performs its own action on the state, 
which is also formalized by a relation between a precondition and a postcondi
tion. For example, the above program is the sequential composition of: 

- line 3, which is itself the sequential composition of: 
- the assignment x: =p, 
- the assignment y: =q, 
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- lines 4 and 5: a loop whose body is: 
- line 5: an alternative between 

- the assignment y: =x, 
- the assignment x:=x+1. 

4.2.1 Rules of Hoare Logic 

The relation between the precondition and the postcondition of a compound 
element depends only on the components and on the kind of composition. Hence 
we can construct the proof incrementally. The simplest examples are the empty 
statement skip, which establishes the postcondition P from the precondition 

. P, and the sequential composition 5 j 5'. 
On page 27 we introduced the notation {P} 5 {Q} for "5 establishes the 

postcondition Q from the precondition P". The effect of skip is then axioma
tized as 

{P} skip {P} . (4.1) 

On the other hand, it is clear that, if {Pd 5 {P2 } and if {P2 } 5' {P3 } then the 
sequence 5 j 5' establishes the postcondition P3 from the precondition Pl - This 
deduction rule is given as: 

{Pd 5 {P2 } {P2 } 5' {P3 } 

{Pd 5 j 5' {P3 } 
(4.2) 

The rule for alternation, the ''if-then-else'' statement, is not very difficult 
either. Premises read:" 51 (respectively 52) establishes Q from the precondition 
P in the case when C is true (respectively false)": 

{P A C} 51 {Q} {P A ..,C} 52 {Q} 
{P} if C then 51 else 52 {Q} 

(4.3) 

The rule for the loop involves an invariant denoted by I, which occurs in 
the precondition and which must be preserved by the body of the loop when 
the input condition C is true, and a natural integer v - the variant - which 
decreases at each execution of the body of the loop « can be replaced with 
another well-founded relation). Then termination is guaranteed and both I and 
..,C are true at the exit of the loop: 

{IAC)=*VEN {IACAv=V}5{IAv<V} 
{I} while C do 5 {I A ..,C} (4.4) 

We have another useful rule, which tells us that we can strengthen the 
precondition and weaken the postcondition: 

P'=*P {P}S{Q} Q=*Q' (4.5) {PI} 5 {Q/} 
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We are left with the rule for assignment, which may seem surprising at first 
sight because it works backwards. It is actually an axiom, that is, a rule without 
a premise, since an assignment is not composed of simpler program elements:1 

{[x := ElP} x:=E {P} . (4.6) 

The formula [x := ElP represents P where E is substituted for x. This axiom 
goes from the postcondition to the precondition: it states that every property 
which is true for x after the assignment must be true for E before the assign
ment. For example, if x > 5 is the postcondition of x: =x+l, Intuitively, we had 
x > 4 before this assignment; we get an equivalent precondition if we replace 
x with x + 1 in the postcondition: x + 1 > 5. 

An axiom such as {P} x:=E {P 1\ x = E} would be unsatisfactory for at 
least two reasons: 

1. x may occur in P, then we cannot keep the same P in both the pre
condition and the postcondition; 

2. x may also occur in E; for example x: =x+l certainly does not establish 
the postcondition x = x + 1. 

4.2.2 Correctness of the Bounded Linear Search Program 

Now we have all the ingredients we need for concocting a formal correctness 
proof of the program on page 66. Five formulas (not counting the specification 
itself) to prove the correctness of a three-line program may seem like rather a 
lot. However, our example happens to concentrate all fundamental constructs 
into a small space.2 Rules (4.1) to (4.6) are sufficient for proving the correct
ness of arbitrarily complex algorithms. Of course, we also need normal laws of 
logic, for example the laws recalled in § 3.4.2 or others which are explained in 
forthcoming chapters. 

Let us now show that our program is correct. We analyze its structure. First 
we have a sequential composition of two consecutive assignments followed by 
a loop. Then we apply rule (4.2), where P1 and P3 are, respectively, the pre
condition and the postcondition of the specification. We have to find P2 , which 
is also the loop invariant 1 according to (4.4). Following the idea explained in 
our informal reasoning on pages 29 and 31 we consider: 

1 ~f It 1\ 12 1\ 13 , 

It ~fxENl\yENI\P:Sxl\x:Syl\y:Sq, .. , 
v 

domain of x and of y 

h d~f Vi E N (p :s i 1\ i < x) => -,P( i) , .. ~ ... 
unsuccessful exploration 

IFor the sake of simplicity, we agree that expressions on the right-hand side of an 
assignment don't have side effects. 

2The programming language we consider here has the power of Turing machines. 
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13 ~f Y < q => P{x) . 
, # 

success 

Rule (4.5) is often used in the following way: in order to prove {PI} 5 {Q}, 
take a precondition P such that {P} 5 {Q} is easy to show, and verify that P 
is a consequence of P'. This strategy works when 5 is an assignment and Q is 
known: a simple reading of (4.6) provides a good candidate for P. 

We verify easily that I is true after the two assignments of line 3, by an 
application of (4.6), and taking the precondition into account. Indeed, the latter 
entails [x := p] [y := q]I. 

The loop variant is v = y - x. We still have to verify 

{I 1\ xi=y 1\ y-x= V} 5 {I 1\ y-x<V} 

where 5 is an alternative. Note that the assertion we introduced in line 4 of 
the program is a consequence of I 1\ x i= y. We apply rule (4.3). It is easy to 
verify that the variant decreases in the two branches; we now consider invariant 
preservation. 

In the first branch, after simplification, [y := x]I1 yields x E Nl\p :s; xl\x :s; q 
which is a consequence of 11; [y := x]I2 yields exactly 12; [y := x]I3 is in the 
form A=> P(x) which is satisfied since P{x) plays the role of C in (4.3). 

The precondition oBhe second branch contains 11 and x i= y, thus it implies 
x < y; that is (in N) x + 1 :s; y, hence [x := x + 1]11 is satisfied. On the other 
hand, as -,P{x) is initially true, we also have -,y < q taking 13 into account; 
then [x := x+ 1]13 is in the form A=>P{x+ 1) where A is false. We are left with 
[x := x + 1]12 which can be decomposed in 121\ -,P(x) and is clearly satisfied. 

Finally, the postcondition we look for is a consequence of I 1\ -,C, that is, 
I 1\ x = y here: we just use ordinary logical manipulations. 

4.3 Program Calculus 

The use of Hoare logic we just considered requires that we look a posteriori for 
intermediate assertions, such as loop invariants. This may turn out to be crip
pling. Other researchers, notably Dijkstra, advocate a different, constructive, 
approach whereby a program is designed together with its correctness proof. 
In short, one has to start from a given postcondition Q and then look for a 
program that establishes Q from the precondition. Often, analyzing Q provides 
interesting hints to finding the program. 

4.3.1 Calculation of a Loop 

Let us again consider bounded linear search. The postcondition is: 

xEN I\p:S;x 1\ x:S;q 
1\ x < q => P(x) 
1\ x = q => Vi EN (p :s; i 1\ i :s; q) => -,P(i) 

(4.7) 

(4.8) 

(4.9) 
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Our idea is, of course, to use a loop. Its postcondition, given (4.4), is a con
junction I A ..,C. The first strategy we can try is to share out the conjuncts 
(4.7) to (4.9) among I and ..,C. Assertions about the domain of x in (4.7) fall 
clearly within the invariant. The assertion (4.9), which involves a quantifier, is 
too complicated for a test. Let us then envisage ..,C = x < q ~ P(x), that is 
C = x<q A ..,P(x). This leads us to a program having the following shape: 

1 x:=p; 
2 while x<q A ..,P(x) do ... done ; 

The body of the loop - x: =x+l - can be guessed at without calculation. We 
then get a variant of the first algorithm for linear bounded search given on 
page 28, as well as a good approximation to the invariant to be used in its 
correctness proof. This is not so bad, although this program requires P to be 
defined over q. A derivation of the second program is explained in [Coh90]. 

4.3.2 Calculation of an Assignment Statement 

A striking example for the synthesis of an assignment statement, inspired by 
[Coh90], is the computation of the cube of a natural integer N where the only 
allowed arithmetical operation is addition. The first postcondition we consider 
is c = N3. 

Aiming at a loop, a technique already mentioned (page 30) consists of re
placing a constant with a variable. The effect of this transform is to put the 
postcondition in the form I A -,C. Here the only available constant is N, hence 
we put the postcondition in the form c=x3 Ax=N. Then we look for a program 
having the following shape: 

1 establish I ; 
2 while x#N do 
3 preserve I while making x closer to N done ; 

where the loop invariant is I ~ c=x3 • 

An obvious way to establish I at the beginning of the loop is to take x = 
c = O. We can partially guess the body of the loop: increment x, with the aim 
of successively computing 13 , 23 , 33 , etc. The loop variant is N - x, and we will 
leave this unchanged. 

The loop body contains x: =x+ 1 and an assignment to c such that the invari
ant is preserved. Here reasoning is made easier if we consider a simultaneous 
assignment: the sequential composition ofx:=x+l and C:= ... would introduce 
a cumbersome intermediate state. The shape we envisage for line 3 is then: 

3 x,c := x+l,~ done ; 

where ~ is an expression that is yet to be found, and we want (invariant 
preservation and assignment rule): 

I Ax#N ~ [x,c:= x + 1,~]I (4.10) 
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We get an equation where the unknown is the program, or at least a part of the 
latter: the expression E. In order to solve (4.10) we calculate:s 

[x, c := x + 1, E] I 
= {definition of I} 

[x,c:= x + 1,E](c = xS) 

= {simultaneous substitution} 

E = (x + l)s 
= {arithmetic} 

E = xS +3x2 +3x+ 1 

= {use ofthe hypothesis I, that is c = XS} 

E=c+3x2 +3x+l. 

The expression 3x2 +3x+l raises a problem: it is not a sum of known quantities. 
Let us introduce d and assume, at the same time, that d = 3x2 + 3x + 1. We 
can complete the previous calculation: 

E=c+3x2 +3x+l 
= {use of the hypothesis d = 3x2 + 3x + I} 

E=c+d. 

To summarize, we have: 

(c = xS A d = 3x2 + 3x + 1) ~ 
[x,c:= x + l,c+ d)(c = XS) , 

(4.11) 

to be compared with (4.10). Then we actually consider I ~f 11 A 12 with 
11 ~f c = xS and 12 ~f d = 3x2 + 3x + 1. The implication (4.11) can then be 
written 

I ~ [x,c:= x + l,c+ d)I1 . 

Note that, if [8] is a substitution, [8](11 A 12 ) = [8]11 A [8]12, we still have to 
establish that 12 is invariant; that is, to find an appropriate assignment for d. 
Then we calculate (E' is an expression to be found): 

[x,c,d:= x + l,c+ d,E'] 12 
= {definition of 12 , substitution, arithmetic} 

E' = 3{x2 + 2x + 1) + 3(x + 1) + 1 
= {use of the hypothesis 12} 

E' = d+6x+6 
= {invention of e satisfying Is ~f e = 6x + 6} 

3The format we use is explained in § 9.6.2. 
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E'=d+e. 

We repeat the process in order to make 13 invariant: 

[x,c,d,e:= x + 1,e + d,d + e,E"] 13 
= {definition of 13 , substitution, arithmetic} 

E" = 6(x + 1) + 6 
= {use of the hypothesis 13 } 

E" =e+6 . 

We just have to initialize the loop by means of a simultaneous assignment, that 
is, to (easily) find C, D and E such that: 

[x,c,d,e:= O,C,D,Ej1 . 

This leads us to the following nice program: 

1 x,c,d,e:= 0,0,1,6 ; 
2 while x¥=N do 
3 x,c,d,e := x+l,c+d,d+e,e+6 done 

4.3.3 Weakest Precondition 

Given two assertions A and B, we say that A is stronger than B, and that B 
is weaker than A, if A => B. 

The process illustrated in § 4.3.2 rests on a calculation of expressions having 
the shape [S]P where S is a substitution and P is a predicate - an assertion 
which depends on a number of variables. This process can be generalized if, for 
each program element 5, we have at our disposal a simple means to calculate 
the weakest precondition P such that {P} 5 {Q}. The latter is denoted4 by 
[5]Q. 

[5] is called a predicate transformer: when applied to Q, it returns the 
weakest P such that {P} 5 {Q}: 

{P} 5 {Q} <=> P => [S]Q 

We have for example : 

Q, [skip]Q ~ 

[x:=E]Q ~r 

[5 j 5'] 

[x:= E]Q 

~ [5] 0 [5'] . 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

It turns out to be convenient to generalize the classical construct if Bl then 
51 else 52 to a non-deterministic choice: 

4This notation, used in the B language (see Chapter 6), is inspired by the notation 
of substitutions. Dijkstra's original notation is wp.S.Q . 
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where B2 does not need to be the negation of Bl. The corresponding weakest 
precondition is: 

(4.16) 

This construct fits better with program calculation, as well as multiple as
signment with relation to sequential composition of assignments. Note that it 
is easy to translate an algorithm written with non-deterministic choices and 
multiple assignments into a programming language with usual alternative con
structs and sequential composition of single assignments. We don't give further 
details here; the ideas are explained and illustrated with many examples in 
[Dij76, Coh90, Kal90]. The above constructs (sequential composition, multi
ple assignment, skip, loop, choice expressed with D) make up the language of 
guarded commands devised by Dijkstra. 

4.4 Scope of These Techniques 

Hoare logic has been used in a number of industrial projects, to provide guar
antees on critical programs following their realization. A notable example is the 
railway signaling software for line A of RER in Paris. However, it turned out 
to be difficult to transfer the results to versions of the software implemented 
for other towns. I) 

The techniques d la Dijkstra allow skilled people to design algorithms which 
can be surprisingly subtle and elegant. Large-scale programming, however, is 
not within the scope of these techniques. Structuring mechanisms, such as 
subroutines, modules and so on are needed for more realistically sized systems. 
Normal programming languages include somewhat complex features, such as 
recursive procedures with side effects, pointers, dynamic data structures, etc. 
But it is not that simple to define and to use an axiomatic semantics for them. 
Apart from algorithm design, the techniques considered in this chapter apply 
mainly to small subsets of common programming languages. It is interesting 
to remark that such subsets fit well with the programming standards used 
for critical software. Moreover, recall that "complete" C and languages derived 
from it are seriously disadvantaged compared to languages provided with a 
clear formal semantics, such as Ml. 

In any case, methods and techniques introduced in this chapter are useful for 
everyday programming. Even an informal use of invariants and variants makes 
the design of a loop significantly easier. For example, who never hesitated when 
considering initial or terminal values of a loop index? 

5Development teams decided then to switch to B, which is quite similar in some 
respects, but offers techniques and tools that are useful for maintenance. 



74 Understanding Formal Methods 

Let us also remark that in a programming language, such as Eiffel [Mey88], 
using assertions is explicitly and strongly encouraged. They can be checked at 
run-time and are linked to the exception mechanisms, providing a valuable aid 
to debugging. Similar features are also available in Objective Caml (a version 
of ML) and even, to some extent, in C. Note that only computable assertions 
(in particular, without unbounded universal quantifiers) make sense in this 
context. 

4.5 Notes and Suggestions for Further Reading 

Introducing assertions in programs is an idea dating back at least to Floyd 
[Flo67]. It has been structured under what is now called Hoare Logic in [Hoa69], 
and applied to Pascal in [HW73]. The language of guarded commands and 
Dijkstra's approach to the design of correct-by-construction sequential pro
grams are both presented by their author in [Dij76], and in various textbooks, 
e.g. [Kal90] and [Coh90]. 

Among recent innovations, a number of researchers have provided auto
mated support for Hoare-style proof of imperative programs in a general frame
work. For example, such ideas are developed and implemented by J.-C. Fillia.tre 
[Fil99] for Coq - the version of type theory that we consider in Chapter 12 -
and PVS - which is also discussed in this chapter. 

As mentioned earlier, the techniques considered in this chapter are essen
tially relevant when one considers programming-in-the-small. An important 
technique for dealing with larger-scale software development is refinement. The 
basic idea consists of relating concrete specifications to abstract specifications, 
so that we can reason about high-level properties of a system without be
ing hampered by unnecessary low-level details. We will say more about this 
in Chapter 6. The interested reader may also consult the article by Gardiner 
[GM91] and the book by de Roever [dRE98]. 



5. Classical Logic 

Logic provides a syntax for expressing properties. A ''meaning'' of these expres
sions and their compositions is defined by the concepts of an interpretation 
and of a model. We begin by introducing the most simple of these expressions, 
called propositions. We then present the general case of formulas, which are 
expressions that depend on the value of parameters called variables, or which 
can themselves be variables. These formulas may be quantified using V (for all) 
and 3 (there exists). 

In this chapter we examine different logics: the logic of propositions (§ 5.1), 
first-order logic (§ 5.2), and higher-order logic (§ 5.5), along with a variant 
of first-order logic, which we will examine as part of a dil;lcussion of partial 
functions (§ 5.4). Equality and arithmetic are tackled in § 5.3. We conclude 
with basic concepts of model theory (§ 5.6). 

5.1 Propositional Logic 

5.1.1 Atomic Propositions 

We assume a collection of elementary expressions called atomic propositions, 
which are application dependent. These atomic propositions may then be com
bined by means of logical connectors (and, or, not, etc.). There are two possi
bilities: 

1. We do not need to break down these expressions. In this case we represent 
them by a letter identifier (for example, P, Q, etc.)j if we need to better 
express the ideas we are trying to represent, we may use a longer identifier, 
for example i t_is_sunnYj these symbols are called proposition symbols; 

2. The atomic expression is structured. In this case the interpretation de
pends on the subject and there are as many possible interpretations as 
there are subjects. For example, we can consider the individuals denoted 
by Claudio, Elliot, John, and construct three expressions stating the fact 
that Claudio, Elliot and John are telephone subscribers in the same way 
as follows: is_a_subscriber(Claudio). We employ a functional notation 
that is justified by the fact that is_a_subscriber will be interpreted by a 
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function from the set of people to {true, false}. We call is_a_subscriber 
a one-place predicate symbol, or simply a one-place predicate.1 

Similarly, we can introduce predicates with any number of places. For example, 
to express that Claudio rents a given telephone we introduce the constants 
tell, tel2, etc., as well as a two-place predicate rents; now we can write: 

rents(Claudio, te127) . (5.1) 

Then, an individual can be expressed as a function of one, or several, other in
dividuals. For example, we can introduce the functions denoted by father_of, 
which allows us to express the fact that Elliot's father (the father of Elliot) 
rents telephone number 5: 

rents(father_of(Elliot), tel5) (5.2) 

Note. The first situation is a particular case of the second: the proposition sym
bols (P, Q, it_is_sunny) can be considered to represent zero-place predicates. 
On the other hand, the difference between the first type of expression and the 
second is superficial for now. For example, the collection of expressions above 
can be replaced by Claudio_is_subscribed, ... , Claudio_rents_ te127, 
father_of_Elliot_rents_teI5, etc. The advantage of a structured represen
tation of atomic propositions is that it allows for the synthesis of a great number 
of them in a systematic way. 

This comment suggests that the predicate calculus can be reduced to 
the propositional calculus (see the definitions below) provided that 

quantifiers can be eliminated. In fact, Herbrand showed that every first-order 
logic proof, within a sufficiently general class of formulas, may be transformed 
to a proof in the logic of propositions; Herbrand even provided an algorithm 
to perform this transformation. This has had important consequences in au
tomatic programming and the development of Prolog. We will return to this 
in Chapter 9. Henkin also used processes aimed at reducing propositions to 
first-order, thereby establishing results of completeness.2 See [Bar77, ch. 1] and 
[GaI86]. 

5.1.2 Syntax of Propositions 

Atomic propositions are the building blocks of propositions. It is convenient to 
have two predefined atomic propositions, t and f, representing the proposition 

1 It should be noted that this is an abuse of terminology. This will be made more 
clear when we address semantics. 

2It is a little unusual to present propositional logic by introducing function and 
predicate symbols straightaway. These symbols are essential only in first-order logic. 
They are already useful, however, and we can see a continuity between propositional 
logic and first-order logic. Really what distinguishes between them is the use of vari
ables and quantifiers. 
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that is always true and the proposition that is always false, respectively. To 
illustrate the terminology, consider expression (5.3): 

rents(father _of(Elliot), te15) 1\ rents(Claudio, te127) (5.3) 

In this example: 

- (5.3) is a proposition; 
- rents(father_of(Elliot),te15) and rents(Claudio,te127) are also propo-

sitions, more precisely atomic propositions; 
- father_of(Elliot), Elliot, te15, Claudio and te127 are terms, the last 

four being simply constant symbols; as no variable is used so far they are, in 
fact, constant terms; 

- rents is a predicate symbol; 
- father _of is a function symbol. 

Propositions are defined as follows: 

1. Every atomic proposition is a proposition; 
2. If A is a proposition, its negation, written -.A (pronounced ''not A") is a 

proposition; 
3. If A and B are propositions, Av B, AI\B, A::} B and A -¢:? B (pronounced 

" A and B", "A or B", "A implies B" and "A equivalent to B", respectively) 
are propositions; 

4. There are no other propositions other than those constructed via the pre
ceding three rules. 

Notes. 

(1) This definition gives only the essentials of propositions, the abstract syntax 
in computer science terminology. To reduce ambiguities in a concrete ex
pression such as P 1\ Q V R, it is convenient to introduce priority levels for 
the operations 1\, V, etc., as well as parentheses when necessary. In this 
book, we use conventional parentheses "(" and ")" for this, as well as square 
brackets "I" and "l" 

(2) Often the symbols "-t" and "J" are used in place of "::}", and "=" in place 
of "-¢:?". 

Atomic propositions are formally constructed by combining two ingredi
ents - predicate symbols and constant terms, the latter being themselves 
constructed by means of the constant symbols (such as te12) and the function 
symbols (such as father _Of) that we assumed initially: 

1. A proposition symbol is an atomic proposition; 
2. If P is an n-place predicate symbol, and if tl, ... tn are constant terms, 

then P(tl' ... tn) is an atomic proposition; 
3. Every constant symbol is a constant term; 
4. If I is an n-place function symbol, and if tl, ... tn are constant terms, then 

l(tl, ... tn) is a constant term; 
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5. There are no other atomic propositions or constant terms other than those 
constructed via the preceding four rules. 

A zero-place predicate can be viewed as an atomic proposition, in 
which case the first rule is a special case of the second. Similarly, a 

given symbol can be considered to be a zero-place function symbol, in which 
case the third rule is a special case of the fourth. 

5.1.3 Interpretation 

The approach to interpreting the preceding notions is as follows. First we as
sume the set B = {true,false}; true and false are called truth values. We then 
consider a universe of discourse V (more formally, a non-empty set of constants 
called a domain), satisfying certain properties. We then establish a correspon
dence between the symbols, individual people, and these properties. 

In our example we create a correspondence between given names and real 
people, let's say Claudio with Abbado, John and Elliot with Gardiner,3 the 
symbols tell, te12, etc. with actual telephones and the symbol father _of 
with the function that associates an individual with his/her father. To every 
atomic proposition we attach a truth value; for example truefor P, it_is_sunny 
and Claudio_is_subscribed, false for Q, John_is_subscribed and Elliot_ 
is_subscribed; if we prefer the structured representation, this amounts to as
sociating the function {Abbado J-t true, Gardiner J-t false} with the predicate 
symbol is_a_subscriber. 

The general case offers no surprises: constant symbols represent constants, 
function symbols represent functions, and so on. The only point that warrants 
particular attention is that all represented functions are total (they are defined 
for all values of the domain). We will return to this later. 

An interpretation I, therefore, is a correspondence that assigns: 

- an element CI from the domain V to every constant symbol C; 
- a total function h from vn to V to every n-place function symbol f; 
- an element PI of B, t and f being necessarily interpreted by true and false 

respectively, to each proposition symbol P; 
- a total function PI from vn to B to each n-place predicate symbol. 

tr'\\ If E is a set, by convention EO denotes a singleton, let's say {I}; that 
'-8 allows us to identify EO+n to En by means of a natural bijection 
(l,x) J-t x. Then every total function from EO to F may be identified as an 
element of F (the image of 1). Taking E = V and F = B (respectively, F = V) 
the assimilation of propositions as zero-place predicates (respectively, constants 
as zero-place functions) is justified. 

3Every constant symbol must correspond to an individual, but there is nothing to 
prevent two different symbols from relating to the same individual. 
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We see that an interpretation allows the assignment of a value in V to each 
constant term tj it is sufficient on each occurrence of a function symbol f in t, 
to apply the corresponding function h to the value of its arguments. Similarly, 
every atomic proposition P( ... ) has a truth value obtained by applying PI to 
the value of its possible arguments. 

The same approach allows for the assignment of a truth value to all propo
sitions. The connectives -', V, /I., :::} and {:::} are associated with B to Band 
B x B to B functions defined via well-known truth tables (Figure 5.1). 

P Q PVQ P/\Q P:::}Q P¢:::?Q ...,Q 
false false false false true true true 

false true true false true false false 

true false true false false false 
true true true true true true 

Figure 5.1: Truth tables. 

Observe that P /l.Q is true if and only if P andQ are both true. Nevertheless, 
it is unsatisfactory to present the semantics of /\ based solely on the usual 
meaning of the word and, because there are many such meanings! We can see 
three here: 

- I took my hat and my coat 
(concept of a collection or grouping) 

- I took my hat and I left 
(close to logical conjunction but with a concept of a temporal ordering) and 

- See Naples and die 
(concept of a permission and of a succession). 

The other connectives present similar ambiguities. The use of truth tables 
avoids this pitfall by invoking a clear mathematical concept, the application 
of a function to arguments. 

5.2 First-order Predicate Logic 

The language we've considered thus far, the propositional logic, doesn't allow 
us to express relatively simple facts, for example: 

- if Claudio rents telephone 2, then Claudio is a subscriber. 

It is clearly desirable to be able to capture more general properties, such as: 

- every individual who rents a telephone is a subscriber. 
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To this effect, we first need parameterized propositions, for example: 

- if x rents telephone y, then x is a subscriber. 

A parameterized proposition is called a formula. The next step consists of 
quantifying formulas. Universal quantification over x in 

- if x rents a telephone, then x is a subscriber 

expresses: 

- for all x, if x rents a telephone, then x is a subscriber. 

In plain English: 

- every individual who rents a telephone is a subscriber. 

This expression can be viewed as a potentially infinite conjunction: 

- if Claudio rents a telephone, then Claudio is a subscriber and if John rents 
a telephone, then John is a subscriber and etc. 

Finally, existential quantification of y in 

- x rents telephone y 

is: 

- there exists y such that x rents telephone y. 

In plain English: 

- x rents a telephone. 

In the same way, this expression can be viewed as a disjunction: 

- x rents telephone 1 or rents telephone 2 or ... etc. 

The logic employed here is predicate logic, or more precisely first-order 
predicate logic because the variables considered throughout are drawn from a 
domain of constants, V, and cannot represent functions over V nor propositions. 

5.2.1 Syntax 

We need to complete the notions of a term and of a proposition that we intro
duced earlier. We introduce into the language a set of variables V = {x,y, ... } 
and two symbols V (for all) and 3 (there exists), also called quantifiers (re
spectively, the universal and existential quantifiers). The constants, functions, 
variables and predicates that we assumed form what is termed a first-order 
language.4 

Terms, atomic formulas and formulas are then defined by replacing con
stant term with term, atomic proposition with atomic formula and proposition 
with formula in the previous definitions. We add the following rules: 

4What we often call a language is really a set of terms and formulas. That amounts 
to the same thing since the language here is completely determined by variables and 
the constant, function and predicate symbols. 



Classical Logic 81 

- every variable is a term; 
- if P is a formula and if x is a variable then \lxP and 3xP are formulas. x 

need not occur in P, although in practice this is often the case. 

By convention, a quantifier extends as far as possible, taking any parentheses 
into account. For example, \Ix P ~ Q does not represent (\lxP) ~ Q, but rather 
\lx(P~Q). . 

Example. Every x that rents some thing (y) is a subscriber: 

\lx[3y rents(x,y)] ~ is_a_subscriber(x) . (5.4) 

Comment. The expected interpretation here is that every person who rents 
a telephone is a subscriber, but in the given formula there is nothing that 
requires that x must denote a human being and that y must denote telephone 
equipment. In contrast to college mathematics, quantifiers are not constrained 
to a domain of definition (i.e., the set of human beings or the set of telephones, 
in the previous example): 

\Ix E humans, (3y E tels, rents(x, y)) ~ is_a_subscriber(x) . 

Writing the formula in such a way uses the concept of sets within the lan
guage, something that we have carefully avoided in this section. That doesn't 
constitute a reduction in the expressive power of the logic, as the same ef
fect is obtained by representing not sets (such as humans) but characteristic 
predicates: 

\Ix is_a_human(x)~ 
[(3y (is_a_tel(y) 1\ rents(x,y))) ~ is_a_subscriber(x)] 

(5.5) 

The concepts of a set, a function, etc., have only been used in an 
informal manner and in the metalanguage, so that the syntax and 

the necessary material for interpretation could be described. The syntax of 
logic itself does not include the symbol E. There is, however, an important first 
order language that uses E - axiomatic set theory. We note that the use of a 
symbol denoting a set is subject to certain restrictions. 

In set-based specification languages, quantifiers are necessarily con
strained: quantified formulas are of the form (\Ix E E)P or (3x E E)P, (also 
written \Ix E E. P or 3x E E. P), and the rules employed guarantee that E 
exists. But to justify the correctness of mechanisms employed, a well-developed 
theory of sets must be available beforehand. 

5.2.2 Example of the Table 

In the example of searching for an integer between two bounds, terms repre
sent natural numbers. These are constructed from a constant symbol 0 and a 
one-place function symbol S. The latter represents the successor function; for 
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example, the integer 2 is represented as S(8(0)). Other symbols representing 
addition, multiplication, and other operations on integers are useful but not 
necessary. 

An almost omnipresent predicate is that of equality. We introduce the two
place predicate (symbol) equal, but we will use the usual infix notation x = y 
instead of equal(x, y). Similarly, for comparisons, we will write the predicates < 
and $ in an infix manner. Moreover, we will consider the three-place predicate 
between, the intended meaning ofbetween(a, b, c) being: b is contained between 
a (inclusive) and c. 

Let us suppose that we wish to find an element divisible by 37 in the interval 
[p .. q[, where p and q are variables.5 We introduce the predicate symbol div37j 
the integer x to be found must satisfy the formula: 

(between{p,x,q) " div37(x)) 
V (x = q " 'Vi between{p, i, q) => ...,div37(i» 

(5.6) 

5.2.3 Interpretation 

How do we interpret a formula depending on x? Consider, for example, the 
formula is_a_subscriber(x). It is clear that its value, true or false, depends 
a priori on the value of x. We had a sUnilar situation for is_a_subscriber 
(without "(x)"), which was interpreted by a function from V to B. Here, we in
troduce the concept of an assignment, which is a function from a set of variables 
V to V. Let us fix an assignment r, the value given to is_a_subscriber(x) 
is then is_a_subscriberz(r(x)). More generally, the value of a term and the 
truth value of a formula over V depends on the interpretation I and on the 
assignment r. 

To interpret a quantified formula such as 3y rents(x, y), it should be noted 
that its truth value depends only on x and not on the quantified variable y: 
suppose that V contains only two constants Cl and C2, this formula has the 
same value as rents(x, Cl) V rents(x, C2). Note that we could just as easily 
have written 3z rents(x,z). We have uncovered the phenomenon of dummy 
variables, well known in mathematics, in expressions such as E;=l fey) or 
f fey) dy. 

In logic, we use the term free or bound variable. For example, in the formula 
3y rents(x, y), x is free while y is bound. Only free variables can be viewed as 
parameters of a formula. 

One must be conscious of the fact that in the same formula a vari
able x can have both free and bound occurrences; for example x in 

P(x, y) " 'VxQ(x, y). The free occurrences of x are defined by: (1) everyoccur
rence of x in a term or an atomic formula is free; (2) every free occurrence of 
x in P is also free in ""Pj (3) every free occurrence of x in P is also free in 
P V Q, p" Q, P => Q,P {::> Q; idem for every free occurrence of x in Q; (4) no 
occurrence of x in 'VxP or in 3xP is free. 

5Following the convention of Chapter 2, the value returned is q if no value divisible 
by 37 is contained in [p .. q[. 
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The substitution of c for x in R, where R is a term or a formula, is defined 
by replacing all free occurrences of x in R with c. We will write this [x := c]R. In 
the following definition, c will represent a constant and we will assume without 
loss of generality a constant symbol Cv for every value v of the domain V. When 
c is not a constant but rather a term possessing free variables, we must first 
rename all quantified variables of R - [x := y](3y(y > x» is not 3y(y > y) 
but 3YI (YI > y). 

To be completely rigorous it is necessary to mathematically define 
the concepts of a term, of an occurrence and of a substitution. That 

is done by defining a concept of a tree domain - intuitively, an address space 
structured in the form of a tree; a term is defined as an application of such a 
space to the set of constant and function symbols used. That is purely tech
nique, and gives the results one expects for justifying practical manipulations. 
The reader seeking a more rigorous exposition is directed to [GaI86]. 

We can now give the definition of the interpretation I of a formula in the 
assignment r: 
- the interpretation of constant, function and predicate symbols is the same 

as in the propositional case (assignment makes no change); 
- if x is a variable, its interpretation XI is r(x) ; 
- the connectors ..." /I., etc. are interpreted as before; 
- VxP is interpreted by true if for every value v of V, [x := cv]P has the value 

true, and by false otherwise; 
- 3xP is interpreted by true if there exists a value v of V for which the formula 

[x := cv]P has the value true, and by false otherwise. 

Overall, the truth value of a formula containing n free variables Xl, •.. Xn 

depends on r(xd, ... r(xn ). It may be useful to consider that this formula is 
interpreted by a function from V to lm. 

We already pointed out in § 4.1 that the variables used in programs 
represent "state portions" whose value varies during the course of an 

execution. Let us fix a program with its variables Yi; we can formalize it by 
the means of a set of states S and of an appropriate projection PYi for each 
variable Yi of the program, provided there is no aliasing. The value represented 
by the variable Yi in the state s is then PYi (s). We will proceed in this way in 
Chapter 8. 

Symmetrically, we can consider that in each state s, we have a func
tion rs such that rs(Yi) provides the value ofthe variable Yi in the given state. 
Indeed, r s is an assignment in the sense given above. Then we can reason in a 
formal way about a program by representing its variables by logical variables 
and each state by an assignment defined over these variables and over other 
regular logical variables as well. 

Let us for instance interpret the formula x ::; N of page 25. We 
represent an execution by a sequence of assignments r o, r l , ... where ri(X) 
varies according to the evolution of x allowed by the program, whereas ri(N) 
remains fixed: N is not part of the program. 
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The expressive power of first-order logic is considerably greater than that 
of the propositional logic, because one can potentially achieve infinity using a 
finite number of formulas. For example: 

int(O) A (\Ix int(x) :::} int(S(x))) 

has as a consequence 

int(S( ... S( 0) ... )) 
"-v-" 

n 

where n is arbitrarily large. To obtain the same result in the propositional logic, 
we would straightaway need to express an infinite number of propositions such 
as 

int(S(S(O))) . 

Note: as soon as we have at least one constant symbol and one function 
symbol, the possible combinations enable us to conceive of an infinite number 
of propositions, even if we cannot express them explicitly. 

5.3 Significant Examples 

Most applications require the use of at least integers and equality. For this 
reason, we introduce the necessary symbols and what we refer to as their theory, 
made up of logical formulas called axioms. The interested reader may wish to 
refer to more precise definitions of these concepts in § 5.6.1. 

5.3.1 Equational Languages 

A language £. is said to be equational if it contains the binary predicate =. 
This predicate, if it is to behave as equality, must always implicitly satisfy the 
following three axioms: 

- the fact that = is an equivalence relation (3 axioms);6 
- the principle of substitution of equals for equals, that is, the Principle of 

Leibniz. For every n-ary function symbol!, n axioms are required: 

VXl··· VXn VYi Xi = Yi:::} 

!( ... Xi-l,Xi,Xi+l ... ) = !( ... Xi-l,Yi,Xi+1 ... ) , 

likewise for every n-ary predicate symbol P: 

\lXl··· VXn \lYi Xi = Yi:::} 

P( ... Xi-l,Xi,Xi+l ... ) <=> P( ... Xi-l,Yi,Xi+1 ... ) 

This symbol is always interpreted by the equality over the domain of interpre
tation V. 

6In fact, reflexivity is sufficient; it, combined with the Principle of Leibniz, allows 
us to use symmetry and transitivity also. 
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In fact, the axioms allow for the interpretation of = by any equiv
alence relation compatible with the operations of the language £. 

(that is, a congruence). But it is also possible to consider the quotient of V 
by the relation V', which provides an interpretation under which "=" is indeed 
equality. 

Algebraic specification languages are equational languages. Most theories of 
mathematics are equational and, generally, model theory considers equational 
languages. On the other hand, basic proof theory generally does not address 
equality, which poses specific problems. While axioms are just equations, we 
must resort to the theory of rewriting systems. 

For more general axiomatizations, combining logical connectors and 
equality, an important technique employed in automatic proof is 

paramodulation [RW69]. We will not address that here, but the interested 
reader will find a good description in [CL73]. 

Comment. If we consider second-order logic, equality can be defined as the 
second-order predicate that expresses the fact that x and yare equal if they 
have exactly the same properties: 

x = Y ~f 'VP P(x) {::::} P(y) 

5.3.2 Peano Arithmetic 

A particularly important theory, due to Peano, is one which formalizes arith
metic. This is a first-order equational theory over the language composed of the 
constant 0, the unary function symbol S (representing the successor function), 
the binary function symbols "+" and ".", and the relation <. These operations 
are written here in the infix form, following common usage. The integer n is 
represented by S( ... S( 0) ... ). ---..,......... 

n 

5.3.2.1 Axioms of Peano Arithmetic. The axioms are as follows. 

No two integers are the same: 

"Ix -,(0 = Sex»~ , 
'Vx'Vy Sex) = S(y) ~ x = y . 

Axioms of addition: 

"Ix x + 0 = x , 
'Vx'Vy x + S(y) = sex + y) 

Axioms of multiplication: 

"Ix x.O = 0 , 
'Vx'Vy x.S(y) = x + (x.y) 
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Axioms of comparison: 

Vx -'(x<O) , 
VxVy x<S(y) {::} x<y V x=y . 

Note that the axioms of addition, multiplication and comparison are con
structed by systematically considering the possible patterns of the second ar
gument, which is either 0 or S(y). 

Our last axiom is actually a collection of axioms, because l/J represents an 
arbitrary first-order formula having x as a free variable. A collection of axioms 
defined in this way is called a schema. We then have an infinite number of 
possible instances for a schema. The key point is that they may be recognized 
by an algorithm: we say that Peano arithmetic is recursively axiomatizable. 

Induction schema: 

l/J(O) A [Vx l/J(x) ~ l/J(S(x))] ~ Vx l/J(x) 

We can, for example, take the formula x < S(x+ x) for l/J(x), signifying that 
x is less than or equal to 2x. The principle of induction in this case is: 

0< S(O+ 0) A ['v'x x < S(x+ x) ~ S(x) < S(S(x)+ S(x))] 
~ Vx x < S(x+ x) 

There is nothing to stop us from taking a generally false formula such as X= 0, 
for l/J(x): 

O=OA[Vxx=O~S(x)=O] ~ Vxx=O 

but of course there is no hope of proving the second premise! 
The formula l/J can be more complex, for instance it can depend on other 

free variables and use logical connectors. Moreover, it is acceptable to choose 
variables other than x for the induction. An interesting example is the following: 

l/J(x,y) = x<y ~ S(x) <S(y) . 

Taking y as the inductive variable, we obtain the axiom: 

(x<O~S(x)<S(O)) A 

(Vy (x<y~S(x)<S(y)):::} [x<S(y):::}S(x)<S(S(y))]) (5.7) 
:::} Vyx<y:::}S(x)<S(y). 

5.3.2.2 Application to the Table Example. For the table example that 
we described in § 5.2.2, we use the language of arithmetic augmented with two 
predicate symbols, between and div37. These symbols do not represent arbi
trary predicates, but are linked to < and =. We wish to define between(x,y,z) 
by x 5 yAy < z, but 5 does not exist in our language. We can introduce it and 
state the following axiom: 
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VxVy x':5:.y ~ x<y V x=y . 

Another possibility is to note that, thanks to the second axiom of comparison, 
one can always replace x':5:.y by x< S(y). We therefore can avoid "':5:." and state 
the following axiom about between: 

VxVyVz between(x,y,z) ~ x< S(y) /\ y<z (5.8) 

We don't really have a need to axiomatize div37, since it has no effect on 
the criteria for searching in a table. If it were necessary we could introduce a 
constant thirty _seven, with the axiom: 

thirty_seven = S( ... ( 0) ... ) 
'-v-' 

37 

The axiom of di v37 would then be: 

Vx div37(x) ~ 3y x = y.thirty_seven . 

5.3.2.3 Models of Arithmetic. This section refers to the concepts coming 
from model theory as described in § 5.6. 

It is intuitively clear that the set of natural numbers N together with 
obvious functions is a model of Peano arithmetic, which we call the 

standard model. But is it the only one? We can find others, such as the set 
of even integers where +, 0 and < are interpreted without change, while Sand 
"." are interpreted, respectively, by n t-+ n + 2 and m, n t-+ mn/2. In fact, these 
two models are identified by the isomorphism n t-+ 2n. 

We obtain a much more unexpected result by applying the theo
rem of compacity and the theorem of L6wenheim (cf. § 5.6.2) [GaI86]: Peano 
arithmetic admits a countable model non-isomorphic to N. The existence of 
such models, which we call non-standard models, shows that N is not entirely 
characterized by the axioms of Peano. We will see in § 9.8.2 that this fact 
may be established by other means, and in a stronger manner through G6del's 
theorem of incompleteness. On the one hand, G6del's proof, contrary to that 
of the theorem of L6wenheim, uses only the finite processes recommended by 
Hilbert and accepted by the intuitionists; on the other hand, it shows that the 
introduction of supplementary axioms to fill the gap serves no purpose. 

5.4 On Total Functions, Many-sorted Logics 

Function symbols are interpreted by total functions, whereas one might want 
to model partial functions. Let's take the function father as an example; if we 
interpret it over the concrete set A of inhabitants of London, it is clear that this 
function is far from being total. We are then driven to taking for the interpreta
tion of father a function from A to A associating with every person a his/her 
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legal father if the latter is in the set A, otherwise any value (for example, a it
self). It would be more judicious to name this predicate father_if_he_exists. 
This modeling must be completed by introducing a predicate has_a_father, 
which characterizes those persons whose father is also in the domain. 

In general, a partial function can be modeled by a total function and the 
characteristic predicate of its domain of definition. We use formulas that simul
taneously combine both of these aspects of the function, for example: 

"Ix has_a_father(x)::} 
[is_subscribed(father(x)) ::} is_subscribed(x)] . 

The need for characteristic predicates is far more obvious when the domain 
V mixes elements of different types, for example people and telephones (cf. the 
comment on page 81). 

The interpretation by total functions can be attacked as being artificial 
and redundant. In our example, it assigns a value a priori to father(te13) 
or to rents(tel1,te12), even though this value has no influence. But, blindly 
replacing total functions by partial functions brings its own complications. In 
particular, this can lead to the introduction of a third truth value 1., pronounced 
undefined. In fact, there are many three-valued logics, which have different 
properties and are less straightforward than ordinary logic. The specification 
languages VDM, Raise-SL and Abel use different three-vaIued logics. Typically 
it is less easy to reason with them; for example, in Abel, implication is not 
reflexive; in VDM, the deduction theorem (see § 9.1) does not hold; in Raise, 
conjunction and disjunction are not commutative. 

There are, nonetheless, some interesting compromises, consisting of fixing 
a priori the domains of definition of functions used. The most simple (multi
sorted logic) consists of decomposing the domain of interpretation V into several 
disjoint domains V l , ... Vi, ... Every n-ary function symbol is interpreted by a 
total function Vi! x ... X Vi" ~ Via. The key is that this partitioning of V can 
be expressed in the syntax and then checked statically: for each symbol used, 
we declare a signature using sorts (Le., domain symbols), father: person ~ 
person, for example. 

The interpretation naturally assigns one Vi to each sort. Interpretations 
obtained in this way are heterogeneous algebras or E-algebras, and they play 
a fundamental role in algebraic specification languages. 

In passing, we describe a concept used in Chapter 11: given a vo-
cabulary E offunction symbols il, h ... in, the initial algebra over 

E is the set of closed terms formed with il, h ... in. To be more precise, the 
concept of a morphism introduced in § 3.4.5 must be used: an algebra is initial 
as long as there exists a unique morphism between it and every other algebra 
over E. Every algebra isomorphic to the algebra of closed terms is initial. Let 
us take, for example, Peano arithmetic omitting addition, multiplication, com
parison and induction: all that remains is the set of terms generated by 0 and 
S, which signifies on the one hand that every natural number is represented by 
a term of the form S( ... (0) ... ), and on the other hand that two terms having 
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a different number of applications of S represent different integers. But if we 
add an axiom such as S(S(S(O))) = 0, with the intention of defining modulo 3 
arithmetic, the algebra we get is no longer initial in the class of algebras over E. 

Frequently, the domains of definition of certain operations are distinct, but 
not disjoint. For example, addition is defined over N x N, while division is only 
defined over (N - {O}) x N j the push operation is defined for all stacks, while 
the pop operation is only defined for non-empty stacks. In these two examples, 
we would like to express that for two domains Vi and Vj, we have Vi C Vj. 
For that, certain specification languages such as OBJ [GMOO, JKKM92] permit 
the declaration of an order between sorts. The underlying theory becomes more 
complex, and static verification may become impossible: determining that an 
expression has a non-null value is an undecidable problem in the general case. 
This leads to a restriction in the use of logical connectors. 

On the other hand, these extensions do not increase the expressive power 
of the ordinary (mono-sorted) first-order logic, in which all the restrictions 
mentioned are expressible by well-chosen characteristic predicates. In fact, dif
ferent logical connectors offer a great richness of expression which can be used 
profitably in defining a varied range of characteristic predicates. 

In summary, amongst the formalisms mentioned here, first-order logic of
fers the greatest expressive power, while multi- or order-sorted languages per
mit more static checking and ease of formulation. In order to achieve IDore 
expressive power, we must go beyond the first-order. 

5.5 Second-order and Higher-order Logics 

While expressing specifications and reasoning about their properties, we may 
end up introducing mathematical functions whose logical complexity is arbi
trarily great. This is particularly the case if we wish to express general principles 
in a uniform manner. 

First-order quantification holds only over variables from the domain of con
stants V. This does not allow for the expression of properties or of functions 
ranging over other functions or properties. Let us consider, for example, the 
composition of two functions. As we all know, this is defined as (g 0 f)(x) = 
g(f(x». This seems simple, yet the following assertions are not expressible in 
first-order logic. 

Vi Vg Vx (g 0 1)(x) = g(f(x» , 
Vi i 0 Id = I , 

VI Vg Vh h 0 (g 0 1) = (h 0 g) 0 I , 

Here are other examples: 

- if a property holds for 0 and if it is true for an integer then it is true for its 
successor, then it is true for all integers: 

VP [P(O) 1\ VnP(n) =} P(n + 1)] =} VxP(x) . 
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Similar inductive principles can be written for a large range of data types in 
computer science. 

- An injective function has a left inverse: 

'rIf ('rIx'rly xi- y => f(x) i- f(y)) => 3g'rlx g(J(x)) = x 

This property can be useful in refining to doubly-linked data structures.7 

- Given P, Q, ... , properties about individuals x, y, ... , we define P&Q as 
the property of x which is true if and only if x satisfies properties P and Q: 

(P&Q)(x) ~f P(x) /\ Q(x) . 

This concept of a conjunction is used in temporal logic, see § 8.5.1. 

- If P is a hereditary property of x and if y is a descendant of x, then y also 
has property P: 

'riP hereditary(P) => ['v'x'rlyP(x) /\ descendant(x, y) => P(y)] 

We note that 0 takes two functions as its arguments and returns a func
tion, that & takes two predicates as its arguments and returns a predicate, 
and that hereditary is a predicate over predicates. This feature is extremely 
interesting as it permits the expression of general reusable principles within 
very varied contexts. But here we must consider Russell's paradox (see page 
39, for a discussion of its second version) if we begin to write formulas such 
as hereditary(hereditary). To avoid this, Russell proposed a distinction be
tween two kinds of predicates: first-order predicates over first-order terms, and 
second-order predicates over first-order predicates (such as hereditary). Sim
ilarly, 0 is a second-order function. 

Second-order logic introduces, in addition to first-order predicates, func
tions and variables, second-order predicates, functions and variables which may 
be universally or existentially quantified. These quantifiers are sometimes writ
ten 'rI2 and 32 to distinguish them from first-order quantifiers. Second-order 
variables are interpreted by functions from '[)n to '[) or from '[)n to B. Second
order predicates and functions may take first-order predicates and functions as 
arguments. 

Repeating this process, we derive third, fourth and higher-order logics. In 
higher-order logic, we have variables, functions, predicates, and quantifiers of 
order n, for every integer n. We can refine this concept of an "order" and get 
type systems, as shown in Chapter 11. 

7For example, in a hotel reservation system where every reservation r is for a room 
f(r), one could specify that two different reservations are for two different rooms. This 
fact can be used at the specification level to talk about the reservation for a given 
room p, knowing that there is at most one. During a refinement, this reservation might 
be named g(p), representing f by a pointer to a room and 9 by an inverse pointer. 
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If Prop denotes the type of propositions, the type of predicates over, 
say, the natural numbers is nat -t Prop, while the type of predicates 

over such predicates is (nat -t Prop) -t Prop. Therefore, it is no longer possible 
to express Russell's paradox within a typed environment. Ensuring the total 
absence of paradoxes in a practical type system is not trivial, but has been 
done for the most common ones. 

In the semantics of programming languages, we often use higher-order func
tions or properties. This is typically the case in denotational semantics where 
the meaning S p of a program, or a program element, P, is a function from the 
initial state to the final state. To give the semantics of language constructors 
which form complex elements E, starting with simple elements E1 , E2 , ••• , we 
are naturally inclined to consider functions giving S E from S El' S E2 • •• One 
can also give the semantics of a program not as a transformation of states, but 
as a transformation of predicates expressed over the state. This approach, ad
vocated by Dijkstra, for the specification and construction of correct programs, 
is also the basis of the B method. 

These logics are considerably more expressive than first-order logic, but 
certain properties of decidability, which are useful in automatic proof, are lost. 
Interactive proof-assistant software has been developed using these logics, see 
Chapter 12. 

We mention here that second-order monadic logic (in which it is pos
sible to quantify over unary predicates) possesses interesting proper

ties of decidability relevant to computing science, especially automata theory. 
In this logic, we distinguish individual variables x, y, ... and unary predicate 
variables X, Y, ... which allows us to write formulas such as X(x). 

Equivalently, we can consider that second-order monadic logic is first
order logic augmented with set variables X, Y, ... ; instead of X(x) we then 
write x EX. These variables are interpreted by parts of V. 

Weak second-order monadic logic is defined with the same lan
guage, but the variables X, Y, ... are interpreted by finite parts of V. As 
a practical application, let us mention MONA [KM01], an environment using 
weak second-order monadic logic as its specification language. 

5.6 Model Theory 

Model theory [CK90, Bar77] has seen substantial mathematical developments, 
but seems to have little utility in the area of formal specification. On the other 
hand, the underlying ideas are often used, and are recalled here. We are con
cerned with completing the vocabulary introduced above with the idea of inter
pretation. We conclude with an illustration of two theorems of model theory. 
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5.6.1 Definitions 

We are given a first-order language C (most of the following definitions apply 
to languages of any order). 

A given interpretation M determines if an expression without free variables 
P of C is true or false. We say that M is a model of P, or that M satisfies P 
if P has the value true in M. We write this I=M P. 

In the following, we use the expression closed formula to refer to a formula 
without free variables. We note that a proposition is a closed formula without 
quantifiers. A theory is a collection of closed formulas. 

Let T be a theory over C. An interpretation M is a model of T, written 
1= M T, if M is a model of every formula of T. A theory T is said to be 
satis:6.able if it possesses a model, and unsatis:6.able otherwise. 

A key idea in logic is the relation of consequence. The fact that a closed 
formula is a consequence of other closed formulas does not depend on the 
interpretation. 

Given a closed formula P, and a collection of closed formulas r, we say that 
P is a logical consequence or a semantic consequence of r if every model of 
r is also a model of P. We write this r 1= P. 

The relations 1= and 1= M are easily distinguished: 1= expresses a 
~ relationship between formulas, while 1= M expresses a relationship 
between a (mathematical) model and a formula. 

Here are several properties of 1=: 
- if r 1= P, a fortiori r, Q 1= P ; 
- if r 1= P, and if P 1= Q, then r 1= Q ; 
- r 1= expresses that r is unsatisfiable; if r 1= P, then r, -,p 1=. 

The consequences of r form a set of formulas called the theory generated 
by r. The elements of r are called axioms of this theory. For example, the 
theory generated by the axioms (5.1), (5.2) and (5.4) comprises the formula 
is_subscribed(Claudio,te127). 

A statement such as (5.4) is not true in all interpretations; however, it is 
the case of statements such as: 

(P /\ Q)"*P , 
(3xVyP(x, y))"* (Vy3xP(x, y)) 

A closed formula T which is true in every interpretation is said to be valid, 
written 1= T; the intuitive meaning is that T is a semantic consequence without 
assumption. A valid proposition is called a tautology. We note that a valid 
formula is a semantic consequence of any theory; it is therefore not useful to 
introduce valid formulas amongst axioms of a theory. 
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The activity of modeling, whether in mathematics or computer sci
ence, often necessitates the search for a system of axioms charac

terizing the model under consideration. Occasionally, such a system does not 
necessarily exist within the given logic, typically first-order logic. Model theory 
provides tools which enable the detection of this sort of situation. 

To illustrate this proposition, here is a simple example drawn from 
commutative group theory. We consider first the axioms, over the equational 
first-order language formed from the constant 09 and the binary function +, 
written in infix form: 

VxVy x + y = y + x , 
VxVyVz (x + y) + z = x + (y + z) , 

"Ix x +09 = X , 

Vx3y x + y = 09 • 

The following are two properties of commutative groups, based on the concept 
of a divisor, that we would like to characterize axiomatically: we say that x is 
a divisor of y of order n if x + ... + x = y. 

... .... . , 
n times 

A commutative group is of finite order if every element is a divisor of o. A 
commutative group is divisible if every element possesses a divisor of order n, 
for all n. These concepts can be axiomatized in second-order logic, quantifying 
over the integer n. We can take 

"Ix 3n nat(n) A (times(n,x) = 09 , 

"In nat(n) => Vx3y times(n, x) = y , 

respectively for the axioms. The function times can be axiomatized by: 

"Ix times(O, x) = 09 , 

"In nat(n) => "Ix times(S(n), x) = x + times(n, x) . 

The problem is that the predicate nat is not first-order: the first-order axioms 
nat(O) and "In nat(n)=>nat(S(n», express that 0, S(O), S(S(O», etc. are natural 
numbers, but it must be added that these are the only ones. We have the 
following negative results: 

- it is impossible to characterize the class of divisible groups by means 
of a finite number of first-order axioms; 

- it is impossible to characterize the class of finite order groups by 
means of a set (even an infinite set) of first-order axioms. 

Moreover, we cannot axiomatize the real numbers in first-order logic. 
The proof of these results (see [Bar77, Ch. 1]) involves the following two theo
rems, which no longer hold true at second or higher orders. 

Theorem 5.1 (Lowenheim) 
Let T be a countable set of axioms; if there is a model of T, then there is a 
model of T whose set of elements is countable. 
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Theorem 5.2 (compacity) 
A first-order theory T admits a model if and only if every finite part of T 
admits a model. 

We can adapt this reasoning for various data structures of computer 
science and obtain similar results of impossibility, expressing that 

these structures cannot be characterized by a finite number of first-order ax
ioms. A simple example mentioned in [Jon90) is Veloso's stack. It has been 
known for a long time that normal first-order logic is not suitable for systems 
having only finite models [AU79). Logics with the concept of a fixed point were 
conceived to remedy this. 

5.7 Notes and Suggestions for Further Reading 

Propositional logic, first-order logic, and other issues discussed in this chapter 
are introduced in a number of texts. Particularly useful are the two volumes 
by Cori and Lascar [CLOO, CLOl), which are centered around the concept of a 
model. For a more detailed presentation of multi-sorted logic, see [Lal93) and 
[GaI86). [GG90) address the issue from a philosophical point of view. 

Reference works on model theory include [CK90). A good introduction to 
this topic can also be found in the first two chapters of [Bar77). 



6. Set-theoretic Specifications 

This chapter is devoted to formal methods based on set theory. In set theory, 
a system is modeled using sets which are either considered to be primitive sets 
(for instance, sets of individuals, of books, of keyboards, etc.) or constructed 
by means of combinations of primitive subsets using set-theoretic operations. 
Specific languages can be distinguished from each other according to the way 
set-theoretic concepts are used, their underlying logic or how they assist in the 
production of programs from specifications. In this chapter we will introduce 
some well-known formal notations representative of the approach: Z, which 
appeared in the 1970s, VDM, which was born in the 1960s, and B, which was 
developed in the 1990s. 

6.1 The Z Notation 

Z can be roughly described as a syntactic envelope built on top of usual clas
sical set-theoretic notations. The concept of a set is used as a universal means 
of expression. A first, and distinct, advantage of this approach is uniformity: 
the state space of a system is modeled as a set, types are sets, even operations 
are sets. Indeed, the latter are modeled as relations, that is, subsets of the 
Cartesian product of the set of states. Z provides symbols for various kinds of 
relations (functions, injections, partial injections, etc.) and a number of oper
ators allowing one to construct relations from previously known relations. 

6.1.1 Schemas 

In Z, the state space and the operations of a system are declared by means of 
tables called schema. A schema is made of two parts. In the first part, we declare 
fields much as we would declare variables in a language like Pascal. Each field 
has a type which is constructed from built-in sets (e.g. the set of integers) and 
the usual set-theoretic operators (union, Cartesian product, etc.). The second 
part of the schema states constraints on the possible values of the fields by 
means of logical assertions. 

A schema is surrounded with a frame. Its name is written in the first line of 
that frame. A horizontal line separates the declaration part and the predicate 
part. When several predicates are present, they are implicitly connected by a 
conjunction. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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.--____ Example _ schema ____ _ 
x,y : IE 

x~O 
y~5 

x+y=lO 

This simply denotes the definition of a set by comprehension, the usual math
ematical notation is: 

{(x, y) E IE x IE I x ~ 0 1\ Y ~ 5 1\ x + y = 1O} 

However, the schema notation becomes more interesting when the number of 
fields and the volume of assertions increase. 

Z provides mechanisms for schema composition that allow one to structure 
a specification. For instance, the previous schema can be obtained through the 
composition of the two next schema . 

...--__ ---.first _piece---- ...--___ second _piece----
x : IE y:IE 

More precisely, we get the first schema by adding a constraint on both x and y . 

...--____ Schema _ example ____ _ 
first_piece 
second_piece 

x + y = 10 

This schema can also be regarded as a subset of: 

{x E IE I x ~ O} x {y E IE I y ~ 5} , 

that is, a relation between first_piece and second_piece. We can of course 
introduce a schema that expresses the last constraint separately: 

...--______ constraint ______ _ 
x,y : IE 

x + y = 10 

The conjunction of our three schema can simply be written: 

Schema_example ~f 
first_piece 1\ second_piece 1\ constraint. 
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Other logical operators are allowed as well. Thus 

other_schema ~ 
(first_piece V second_piece) /\ constraint 

represents: 

....--_____ other schema _____ _ 
x,y : Z 

x~OVy~5 

x+y=lO 

Those combinations constitute the schema calculus. If SI and S2 are two 
schema and * is a logical operator (V, /\, etc.) the expression SI * S2 rep
resents the schema whose first part is the juxtaposition of declarations of SI 
and S2, and whose second part is Pr * P2 where PI (respectively P2 ) is the 
predicate present in the second part of SI (respectively S2). For the first clause 
to make sense, we must have no clash between the two declarations: common 
identifiers must have the same type. 

6.1.2 Operations 

The schema introduced up to now allow one to specify the state of a system. 
In order to describe an operation, two versions of the state are related: the 
state just before the operation and the state just after the operation. Z uses 
the following convention: if the first state is defined by variables x, y, z ... , the 
second is defined by variables x', y', z' ... 

r---___ state ____ _ ..---____ state' ____ _ 
x : Z x' : Z 

x>4 x' > 4 

(Actually we don't need to explicitly write state'.) In order to relate two suc
cessive states, we naturally make use of the schema composition notation in
troduced above: 

r-------an_ operation _____ _ 
state 
state' 

P(x,x') 

We see that the predicate we have in the second part of a state schema repre
sents the invariant of the system we are describing: it will be implicitly respected 
by all operations which act upon the system. 
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We can still use the schema calculus: here a complex operation can be 
decomposed into several simpler cases (using a disjunction of schema); or, it can 
result from the conjunction of several constraints on before-and-after relations 
on the state of the system. 

6.1.3 Example 

Let us try to formalize the search for an element in a table. We need a predefined 
set which contains all elements that are, or could be, present in the table. We 
call this set U. Formally, we declare it using square brackets: 

[U]. 

The current state of the table is a subset of U, we represent it by a variable T 
whic~ is a member of P(U). 

Let us now consider the predicate P. In Z, a natural thing to do is to consider 
Ptrue, the set of elements verifying P, with Ptrue E P(U). This predicate is 
not necessarily defined everywhere, hence we introduce the set Pdef, which 
contains Ptrue and represents the domain where P is defined. In other words, 
we agree that 

- P(x) is true if x E Ptrue, 
- P(x) is false if x E Pdef and x f/. Ptrue, 
- P(x) is undefined if x f/. Pdef. 

The system state is represented by the following schema. 

r---_______ Table _______ _ 
Ptrue, Pdef : P(U) 
T : P(U) 

Ptrue C Pdef 
Tc Pdef 

However, we have to ensure that Ptrue and Pdef are kept constant. Then we 
consider only composed operations built up from the following. 

r---______ Allowed_ op ______ _ 
Table 
Table' 

Ptrue' = Ptrue 
Pdef' = Pdef 

The operation we aim at returns an element of T verifying P if there is one. In 
order to take failure into account, we use a variable b as indicated on page 20. 
Its domain is {true,false}, and it is declared as follows: 

bool ::= true I false . 



[U] 
bool ::= true I fal$e 

Ptrue, Pdef : JP>(U) 

Ptrue ~ Pdef 
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.--____ Table ____ _ 
T : JP>(U) 

T ~ Pdef 

.--_______ ,Search, _______ _ 
STable 
x! : U 
b! : bool 
b! = true => x! E T 1\ x! E Ptrue 
b! = fal$e => 'r/x E T • x ¢ Ptrue 

Figure 6.1: Z $pecification of a table search 

The specification of the search operation indicates the expected values of x and 
b, and it states that T does not change . 

.--_______ Search ___ . ____ _ 
Allowed_op 
x:U 
b : bool 

T'=T 
b = true => x E T I\. x E Ptrue 
b = false => ("Ix E T) x rf. Ptrue 

Remarks. In some cases, the actual notation in Z slightly differs from set 
theory. Here P(U) and ("Ix E A) P(x) should be written IP'(U) and "Ix EA. 
P(x). In Z, the symbol C represents strict inclusion, whereas we should use <;. 
Moreover, lexicographic rules of Z allow identifiers to end with a question mark 
or an exclamation mark. In Z, it is understood that they represent input and 
output arguments of an operation, respectively. For consistency then, here we 
should replace x and b with x! and b!. 

It is also possible, in Z, to define constants with axioms. It is then better 
to introduce Ptrue and Pde! in this way and to remove Allowed _ op. Finally, 
the abbreviation :=: Table can be used for operations that do not modify the 
table. This is equivalent to declaring Table, Table' and to stating that nothing 
changes (that is, T' = T). A complete specification of the search for an element 
in a table using this notation is given in Figure 6.1. 

6.1.4 Relations and Functions 

In Z, as in set theory, the concept of relation is more primitive than 
the concept of a function. Let us see what happens with an assertion 



100 Understanding Formal Methods 

as simple as I(x) = y. Recall that, in first-order logic, I would be interpreted 
as a total function, thus the expression I(x) would make sense. In Z, one often 
manipulates partial functions or even relations instead of total functions. 

In fact the Z type system leads one to consider I from A to B as 
an element of P(A x B), i.e. a relation from A to B. The notation I(x) is 
then questionable and a number of authors prefer to avoid it. For instance, the 
assertion f(x) = y may be represented by another one which states that x is in 
the inverse image by I of the singleton {y} - the function from P(B) to P(A) 
that maps any subset Y of B to the set of elements a of A such that I(a) E Y, 
denoted by I-ILl, is always total function: 

The price to pay is that notations become heavy in many situations 
where it is straightforward to use functions. A specification style using rela
tional combinators (operators for constructing complex relations from simpler 
ones) helps to avoid this problem. But the notation becomes more difficult to 
understand. 

6.1.5 Typing 

Z semantics are based on the Zermelo-Fraenkel system, without the 
axiom of choice (which is not used here) and without the replacement 

schema (cf. § 7.2) [Spi88, CGR93a]. Within ZF, the latter restriction ensures 
the existence of a class of compartmentalized sets, thus providing a notion of 
type. 

First, we have built-in sets like Z (positive, null or negative integers) 
and other sets which are application-specific. We denote these sets by B I , B 2 , ••• 

in what follows, and we consider that they are disjoint. Z includes appropriate 
restrictions on the use of U that prevent us from forming the union of Bi and 
B j with i :/; j or constructing a set made of elements taken in different built-in 
sets. Then the type of a simple element x can be taken as the set Bi of which 
it is a member. The type of x is also the maximal set S such that xES. 

The property of compartmentalization is preserved when we intro
duce sets of subsets and Cartesian products of previously formed maximal sets. 
Then Bi can be regarded as base types from which we can form composed types 
P(Bi), Pi x Pj, P(Pi X Pj), etc. The type of a compound element is again the 
maximal set of which it is a member. Thus it is not too difficult to check that 
a Z specification is well typed. Criticisms of this type system will be addressed 
in § 10.2.10. 

In § 2.3.4, we showed that it is important to be able to construct sum 
types. This concept is available in Z and is referred to as a free type. 

We have already seen a simple example of free type: bool ::= true I false. This 
statement amounts to the declaration of a set (boon, two members in this set 
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( true and false), and assertions that the latter are distinct elements and are the 
sole members of bool. Let us consider a more significant example: binary trees. 
This example is also more complex because it is a recursive data structure. 
We declare it in Z as follows: tree ::= leaf{{N) I bin{{tree x tree». Here, leaf 
and bin are injections (respectively from N to tree and from tree x tree to tree) 
that have disjoint ranges and, taken together, cover tree. Simple constructors, 
like true and false, can be seen as injections from a singleton set. The essential 
ideas come from algebra and type theory (see Chapters 10 and 12). The point 
is to guarantee that the axioms induced by a free type are consistent (they 
don't entail the absurd). To this effect, constructors (i.e. bin, leaf, true and 
false in our examples) must respect a number of rules. Roughly speaking, as 
constructors are injections, their domain cannot have a larger cardinality than 

. their range, that is, the free type we want to define; for instance their domain 
cannot be the powerset of the free type. In the Z framework, there is a further 
technical complication because constructors are basically relations rather than 
functions. 

6.1.6 Refinements 

Refining a specification consists of systematically transforming abstract con
cepts (sets, relations, non-deterministic constructs, etc.) into features available 
in programming languages: arrays, chained data structures, usual control struc
tures, functions, etc. 

Refinement is more difficult in Z than in other formal methods because there 
is no convenient notation for usual programming constructs such as loops and 
recursive functions. These concepts are not very easy to handle in Z. However, 
it is possible to consider data refinement, that is, to relate an abstract data 
model to a concrete one closer to programming language data structures. For 
example, in order to represent a set of elements of U by an array (like T in 
our table example), we can introduce a function t from I to U, where I is an 
interval of integers. 

6.1.7 Usage 

Z is above all a notation for writing specification documents. Since its very be
ginning, its development was oriented towards including richer mathematical 
notations, e.g. relation combinators. It was not designed with the intention of 
being supported by software tools. One may quite reasonably guess that this 
would, in any case, have been beyond the capacities of technologies available 
in the 1970s. Support tools appeared in the 1990s, mainly for editing and type 
checking. A recent proof assistant for Z is ZjEVES [Saa97]. On the other hand, 
many introductory and more avanced books are available (see the bibliographic 
notes at the end of this chapter) and there is an active user community, espe
cially in Great Britain where a number of industrial projects were developed 
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or re-engineered with Z. Some of these are reported in [CGR93b], [HB95] and 
[HB99]. 

Z is mainly used for specifying data and transformations of data. In prin
ciple, we can expect to go further, thanks to general set-theoretic concepts 
included in Z. For instance, can we study interactions between software com
ponents running in parallel on different machines? Trajectories of such com
ponents can be formalized in Z. However, we are still a long way from the 
mathematics needed for specialized formalisms such as labeled transitions or 
process algebra (see Chapter 8). Moreover, the behavior of such systems is very 
complex and cannot be fully understood without automated support tools. 

6.2 VDM 

6.2.1 Origins 

VDM (Vienna Development Method) was initially a language description 
method inspired by denotational semantics. Briefly, recall that denotational 
semantics interprets programs by mathematical functions (cf. § 2.6). 

We know that a program may not terminate for certain input data. 
In the general case, a program is then modeled as a partial function 

- see the concept of partial recursive function in § 3.3.4 and § 3.7.3. On the 
other hand, total functions are much easier to handle in mathematics. In order 
to recover total functions, basic sets of values (integers, Booleans and so on) 
are augmented by an additional value denoted by 1., which represents the 
undefined. 

1. can be seen as an approximation of all other values in some sense. 
The rough idea is that 1. represents a value we know nothing about. To for
malize the notion of approximation, we consider a relation < such that 1. < v 
for all "ordinary" v and such that two "ordinary" values are not related by <. 
At the moment we have only two levels of approximation: a very bad one (1.) 
and a perfect one (the value itself). But for pairs we have more possibilities: 
either we know nothing «(1.,1.), which can be considered equivalent to 1.), or 
we know one of the two components «(VI, 1.) or (1., V2) ), or we know both of 
them «(VI,V2». We have 1. < (VI'1.) < (VI,V2) and 1. < (1.,V2) < (VI,V2) but 
(VI, 1.) and (1., V2) are incomparable. In the case of functions defined over an 
infinite set such as N, the structure of approximations becomes richer and we 
need concepts of limits coming from topology. 

Spaces endowed with a relation < satisfying adequate properties are 
sometimes called domains. Introduced by Dana Scott in 1969 they playa cen
tral role in denotational semantics and their theory has been studied in depth. 
A pedagogical reference is the book of Stoy [Sto77]. In this book we never use 
the terminology domain in the technical meaning mentioned above, but in the 
ordinary sense of set. 
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The developers of VDM chose to use the usual set-theoretic concept of func
tion rather than the more complex' concept introduced in Scott domains. The 
notation used in the Vienna method was first called Meta-IV, then VDM-SL 
(VDM Specification Language). Nowadays, we often use VDM for both the 
method and the language, and we follow this convention in what follows. 

A consequence of the denotational semantics background of VD M is that the 
concept of (partial) function is more primitive here than the concept of relation. 
If we need a relation from A to B, we can represent it by a function from A x B to 
bool. Z operators for manipulating relations (sequential composition, domain 
or range restriction, etc.) are still present in VDM but apply to functions. 

6.2.2 Typing 

Compound objects of VDM are similar to Z schema. Typing is considered from 
a different perspective, however: in VDM, a piece oflogical information declared 
as the invariant of a compound object is considered as a part of its type, while 
in Z the type would have been the largest set containing the object. It is 
thus possible, in VDM, to construct sets having elements of different kinds as 
members, but type checking is no more decidable: it yields proof obligations, 
that is, assertions that can be automatically stated but that in general can be 
discharged only with human support. 

6.2.3 Operations 

Operations describe changes in the object state. They can be specified in an 
implicit or an explicit manner. The implicit manner consists of providing a 
precondition! and a postcondition on objects manipulated by the operation. 
This is similar to operation descriptions in Z, up to a notational variation: in 
Z the new state gets a decoration (" I") while in VDM it is the previous state 
("-'-"). For example, incrementing x can be specified by x = ;-+ 1. The explicit 
manner for defining operations is closer to refinement than to specification. It 
consists in describing an algorithm by means of usual constructions (sequence, 
selection, loop, etc.). In that case, however, the computation steps should be 
annotated by logical assertions. 

6.2.4 Functions 

In addition to operations, it is possible to define functions in VDM. In contrast 
with VDM operations and with functions we find in imperative programming 
languages, VDM functions do not involve any state change. In fact, we are 
encouraged in VDM to generously use function definitions in specifications. As 
for operations, functions can be defined in an implicit manner, by means of a 

INote that preconditions have a different status in Z and YOM: in VOM they are 
given in the VOM specification, whereas they are calculated in Z. 
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precondition on the arguments, and of a postcondition relating the arguments 
with the result, or in an explicit (algorithmic) manner. Recursive definitions of 
functions are allowed. 

Allowing recursive or even algorithmic definitions of functions at the speci
fication level may seem surprising at first sight. However, a number offunctions 
can hardly be described otherwise: think of the factorial function or calculating 
income tax. 

6.2.5 Three-valued Logic 

In YOM, functions are defined and then used in the specification of operations 
or of other functions, including implicit definitions. In other words, a logical 
assertion (an invariant, a precondition or a postcondition) can contain occur
rences of functions which are defined in another part of the specification. This 
provides interesting opportunities for structuring VOM specifications. At the 
same time, this has significant consequences for the underlying logical system. 
Indeed, functions defined recursively or in an algorithmic way are often partial 
functions. Then the usual framework of two-valued logic turns out to be too 
narrow. 

Let us consider for example an assertion such as:2 

Va,b b>O:::} div(a , b)xb::::; a < div(a,b)xb+b, (6.1) 

telling us that di v performs an Euclidian division. It is quite easy to find an 
explicit definition of di v that does not terminate when b is null. In this case 
di v( a, b) has no value, hence it becomes impossible to give the value true or 
false to the logical expression a ::::; di v( a, b) x b < a + b. However, we feel that 
(6.1) should be given the value true, since the value of b > 0 is precisely false in 
the litigious case: we know that the value of f :::} P is true whichever the value 
true or false of P. 

In order to deal with such situations, VOM makes use of a three-valued 
logic. Besides false and true, we have 1- which denotes the undefined value. 
We recognize here ideas coming from denotational semantics, which are at the 
roots of YOM. Truth tables are adequately extended, for example the value of 
f:::} 1- is true. However, several three-valued logics are possible. Selecting one 
of them was a design decision of YOM, and unusual deduction rules could not 
be avoided (d. § 5.4). 

6.2.6 Usage 

A number of VOM applications can be found in language definitions. Despite 
its name, VOM is more a notation than a method. It is supported by a num
ber of tools. An experimental proof assistant is described in [JJLM91]. Later 
on, protyping and simulation tools were developed. In the family of YOM, we 

20f course, x ~ y < z is an abbreviation for x ~ y /\ Y < z. 
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can cite Raise, which combines the VDM description of data, operations and 
functions, with esp, a process algebra for describing message exchanges and 
synchronization between parallel processes. 

6.3 The B Method 

The B method can be regarded, to some extent, as a descendant of Z: it was 
designed by one of the founders of Z, J-R. Abrial, and it maintains the set
theoretic notations used in Z. One of the big differences is that B provides 
a development process covering specification, refinement, and implementation 
steps. The way data and operations are presented and structured is also quite 
different: it is close to imperative programming languages such as Pascal. More 
precisely, we have the language of guarded commands of Dijkstra (cf. § 4.3.3) 
enriched with data structures expressed in the set-theoretic notations of Z, 
providing a uniform framework for specification and development. The main 
features of Bare: 

- a specification language (called abstract machines); 
- a refinement and implementation technique; 
-- proof obligations associated with each development step; 
- structuring mechanisms for decomposing abstract machines; 
-- tools for supporting and controlling the different tasks. 

The B method has been used in industry for several years, notably for 
railway equipment and signalling [SDM92, BBFM99J. 

6.3.1 Example 

In Figure 6.2 we show a B specification of a variation on the problem of search
ing for an element in a table. As in § 2.4.4.1 (see the third specification on 
page 28) we consider here the case of the search for an integer in an interval. 
The role of U in the previous Z specification is played here by N, denoted3 by 
NAT. The role of Pdefis played by the interval [minD .. maxD[ and the role of 
T by [min .. max[. The predicate P here is called4 Pr and the operation Search 
returns two results, bb and xx. Note that in Z, P was represented by the set 
Ptrue whereas here we take a predicate, seen as a mapping from [min .. max [ to 
]ff, (this set is denoted by BOOL in B). 

Intuitively, we can imagine that the work space of this machine is an array of 
Booleans (Pr) having min and max as bounds, which are themselves between 
minD and maxD. The latter are fixed once and for all, while min and max 

3In B, NAT actually represents a finite subset of N that can be written [min .. max] 
(with min < 0 < max), where min and max are fixed parameters depending on the 
hardware architecture to be used at the implementation level. 

4Lexicographic detail: identifiers must begin with at least two letters. 



106 Understanding Formal Methods 

MACHINE table( minD, maxD) 
CONSTRAINTS 

minD E NAT 
o < minD A 

A maxD E NAT A 
minD $ maxD 

VARIABLES 

min, max, Pr, bb, xx 
INVARIANT 

min E NAT A max E NAT A 
minD $ min A min $ max A max < maxD A 
Pr E min .. max-l ~ BOOL A 
bb E BOOL A xx E NAT 

INITIALIZATION 

OPERATIONS 

1* without interest here * / 

END 

Search ~ 
IF 3tt. tt E min .. max - 1 A Pre tt) = true 
THEN 

ELSE 

END 

bb := true II 
ANY tt 

WHERE tt E 
THEN xx .-.-

END 

bb := false II 

min .. max - 1 A pre tt) = true 
tt 

ANY tt WHERE tt E NAT THEN xX.- tt END 

Figure 6.2: Table search specification in B 

could vary during allocation or disposal operations beyond the scope of this 
chapter. 

Here we chose a fairly low abstraction level for the specification of data 
structures. But nothing is decided about the search algorithm itself. 

6.3.2 Abstract Machines 

In B, a specification is structured into units called abstract machines. They 
encapsulate the state of a subsystem as well as operations modifying it or 
returning a view of it. The idea of encapsulating data and related operations 
together is well known in computer science, it has most notably been formalized 
by abstract data types. The main components of a B abstract machine are: 

- parameters declaration, constants declaration (none in our example) and 
above all variables declaration - they constitute the internal state of the 
machine; 

- the statement of an invariant, a logical assertion relating the variables, pa
rameters and constants just declared; their type is included in the invariant 
(the concept of type in B is the same as in Z); the part of the invariant 
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which relates only parameters and constants is declared separately (in the 
CONSTRAINTS clause) and there is also a specific clause for constants only; 

- the definition of the initial state; 
- operations, expressed with generalized substitutions, which are a generaliza-

tion of guarded commands. 

Proof obligations are automatically generated in order to ensure that the ini
tial state as well as operations respect the invariant. This is in contrast with 
Z where, as a simple consequence of the schema calculus, the invariant is nat
urally included in the postcondition of operations. In some sense B seems less 
declarative.5 However, the new state returned by an operation can be specified 
in a fairly abstract way using logical and set-theoretic notations. Moreover, we 
can say that B achieves a separation of concerns: we have the opportunity to 
establish invariant preservation in abstract terms, before going into low level 
details. It is indeed possible in B to adopt a specification style where the in
variant is automatically preserved. But this amounts to delaying the work until 
later development steps: refinement proof obligations will be more complex. It 
is far better to work on proof obligations as early as possible. They are an 
opportunity to check the consistency of the specification and often to correct 
it, hence the global correctness proof is divided into smaller units. 

We see that design decisions for B proof obligations take the whole devel
opment cycle (from specification to implementation) into account. Generalized 
substitutions have been designed with the same concern in mind. 

6.3.3 Simple Substitutions and Generalized Substitutions 

A simple substitution is simply an assignment x := E. Indeed we know from 
§ 4.3.3 that the weakest precondition for this transformation to establish the 
postcondition Q is [x := E]Q, that is, the formula Q where E is substituted 
for all occurrences6 of x. 

Generalized substitutions are combinations of simple substitutions. Among 
these combinations we have the sequence and the loop, in the language of 
guarded commands; however, these constructs are allowed only in refinement 
stages. At the level of specification the following combinators are available: 

- parallel composition, corresponding to simultaneous substitutions; for exam
ple x := E II y:= F corresponds to x, y := E, F; 

- the selection IF C THEN 51 ELSE 52 END, which has the expected intuitive 
meaning; from a logical perspective, it transforms the predicate Q into C =} 

[51 ]Q 1\ -,C =} [52 ]Q; 

5 A declarative language states what should be done, while a prescriptive language 
states how it is done. One can consider that we have a specification in the first case 
and a program in the second case. This distinction was devised in the 1970s in the 
framework of programming languages, because very high level programming languages 
like Prolog could be presented as executable specification languages. 

6 Actually, only free occurrences, i.e. occurrences which are not in the scope of a 
quantifier, see Chapter 5. 



108 Understanding Formal Methods 

Search deC 

PRE 3tt. tt E min .. max - 1 /\ Pre tt) = true 
THEN 

ANY tt 

END 

END 

WHERE tt E min .. max - 1 /\ pre tt) = true 
THEN xx:= tt 

Figure 6.3: Strengthening a precondition in B 

- unbounded choice ANY v WHERE P(v) THEN 5 END, where 5 depends on 
the dummy variable7 v, sometimes shortened in @v P(v) -+ 5. This substi
tution behaves like 5 where the choice of v is arbitrary, provided P( v) is 
true. Nothing is said about the intended implementation of this statement: a 
pseudo-random choice between the different permitted values of v is only one 
possibility among many others, and in practice it will never be chosen be
cause it is complicated and inefficient! In fact one often refines this construct 
using a loop, as would be the case in the table search example; 

- introduction of a precondition P: PRE P THEN 5 END, sometimes shortened 
to P I 5. This substitution is purposely defined only for states verifying P. Its 
practical use is for stating conditions which guarantee that a given operation 
can be performed successfully. Ensuring that the operation is called when the 
aforementioned precondition is true must be done by its user. For example, 
Figure 6.3 gives a weaker specification of table search, which conforms to the 
suggestion of § 2.3.5 on page 22. 

The construct IF C THEN 51 ELSE 52 END is described using two 
primitive constructs, which are: 

- the guard G -+ 5, which behaves like the substitution 5 from a state 
where the property G is true; 

- the choice between two substitutions 51 0 52. 

Their logical definition is sLnple: 

[G -+ 5] Q def G =} [5]Q 
[51 0 52] Q def [51 ]Q /\ [52 ]Q 

Then we take: 

note that Dijkstra's non-deterministic alternative construct 

(6.2) 

(6.3) 

7The name of this variable is of concern only inside the block ANY ... END under 
consideration. 
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where B2 is not necessarily the negation of B 1 , corresponds here to 

Bl V B2 I Bl -+ Sl 0 B2 -+ S2 

(see equation (4.16) on page 73). 

Unbounded choice ANY ... END is a generalization of 51 0 ... 5n to 
an arbitrary number (it can be infinite) of substitutions. Its formal definition 
is: 

[@v P(v) -+ S] Q ~f Vv P(v) => [5]Q , (6.4) 

which is quite natural if one regards V as an infinite conjunction. 

6.3.4 The B Refinement Process 

At the specification stage, abstract machines use non-deterministic constructs 
and the whole power of set-theoretic notations, while algorithmic constructs 
(sequences, loops) are not allowed. During refinement stages, set-theoretic data 
structures are progressively replaced with data structures closer to program
ming language data structures, non~determinism is eliminated and generalized 
substitutions corrresponding to sequences and loops are introduced. 

REFINEMENT 

REFINES 

VARIABLES 

tablei(minD, maxD) 
table 

mini, maxi, Pri, xxi 
INVARIANT 

mini = min A maxi = max A 
Pri = Pr A xxi = xx A 
mini :5 xxi A xxi:5 maxi A 
xxi = maxi {:::} bb = false 

INITIALIZATION 

OPERATIONS 

1* Without interest here * / 

END 

Search def 

IF 3tt. tt E mini .. maxi - 1 A Pri(tt) = true 
THEN 

ANY tt 

END 
ELSE 

WHERE tt E min1..maxi - 1 A Pri(tt) = true 
THEN xxi := tt 

xxi := maxi 
END 

Figure 6.4: B refinement of table search 
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Data refinement is illustrated in Figure 6.4 for the example of table search. 
This refinement step aims essentially at eliminating bb. In the refining abstract 
machine we declare a new space of variables, whose link with original variables 
is defined by the invariant. In a second stage we could refine the remaining 
non-deterministic choice by a.loop, along the lines indicated on page 3l. 

Refinement steps are under the control of proof obligations ensuring that 
invariants are preserved and that a refining machine conforms to the more ab
stract machine that it refines. Proof obligations are completely defined in the 
underlying theory of B and they can be automatically generated. The support 
tools for B include syntax and type checkers, proof obligation generators, code 
generators and ad hoc automated proof assistants able to deal with proposi
tionallogic, first order logic and a huge number of set-theoretic algebraic rules. 

The target of code generators is a minimal and simple subset of languages 
like C, Modula or Ada. Such subsets can reasonably be considered as secure, 
since only the easiest parts of the compilers are concerned. Indeed, this is made 
possible because high-level features of programming languages can be consid
ered as redundant here: they are the concern of the specification, whereas the B 
development cycle starts from truly abstract specifications. At the implemen
tation stage, only low-level data structures and instructions are needed. 

6.3.5 Modularity 

If we want to develop a whole real-scale system, starting from a huge monolithic 
specification would be unmanageable. In B it is possible - and recommended! 
- to decompose a specification into several machines. The big win is that 
refinement stages are then performed consistently and independently. In par
ticular, proof obligations become smaller, they can be dealt with separately, 
and maintenance is made easier. 

6.4 Notes and Suggestions for Further Reading 

Many textbooks present Z and VDM in a manner that is within the reach of 
everyone, for example [PST91, Wor92 , WL88] for Z and [Jon90] and [JS90] 
for VDM. Mike Spivey's reference book on Z is still very useful, though the 
language has evolved since its publication [Spi89]. The book Understanding Z 
[Spi88] by the same author is not a pedagogical introduction, but gives an early 
definition of the Z semantics. Free types of Z are described in [Spi89], [Art91] 
and more recently in [Art98] and [TVDOO]. 

The reference book on B by J.-R. Abrial [Abr96] is both a description of 
its theoretical foundations and a very detailed definition, illustrated with many 
examples. 

The reader interested in refinement techniques may consult the article by 
Gardiner [GM91] and the book by de Roever [dRE98]. 



7. Set Theory 

Set theory has a strong influence on formal methods. A straightforward reason 
for this is that the specification languages considered in the last chapter rely 
directly upon set theory. More significantly, set theory has strong links with 
logic: 

- as a metalanguage,l it provides a semantics for logic via the concept of a 
model; as an interesting consequence for the use of formal methods, we obtain 
a means of interpreting logical specifications (cf. § 3.3.1 and § 5.6); 

- the axiomatized version(s) of set theory is (are) a first order theory that can 
be studied as a formal system; for instance, one can try to show that it is 
consistent (without contradiction). Even more important for us, formaliza
tion techniques used in the development of a number of important concepts 
from set-theoretic primitive concepts can be adapted to the practice of spec
ification methods. 

We concentrate here on the Zermelo-Fraenkel axiomatization of set theory. 
This will be a good opportunity to present a typical technique for enriching 
a language. Other techniques, e.g. for handling functions, are similar to the 
ones used in Z and in B. We also comment on how we may deal with inductive 
or impredicative definitions (corresponding to so-called recursive definitions of 
programs or data structures). 

7.1 Typical Features 

7.1.1 An Untyped Theory 

A number of set-theoretic operations, such as intersection and union, take ar
guments sets that, intuitively, have elements of the same kind as members. In 
contrast, the Cartesian product can be constructed on sets of different kinds 
and it returns a set having yet another kind. The powerset of a set is not of 
the same kind as the set itself. Distinguishing the kinds - or what we call the 
types - of sets or elements provides an excellent protection mechanism against 
many mistakes and errors. But this would excessively hamper the development 
of set theory. Just think of the way natural numbers are represented in set the
ory (we will revisit it in § 7.3.1). Moreover, what type should be given to the 

lSee page 152. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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empty set? Or to the identity function? The answers to these simple questions 
are not all that simple.2 Thus set theory is essentially an untyped theory. The 
development of the theory illustrates that it is actually harmful to decompose 
the universe into elements on the one side and sets on the other. Any item can 
occur on the left and on the right of the E symbol. Hence, it is simpler to decide 
that all items are sets, jumbled together. 

7.1.2 Functions in Set Theory 

Recall that functions are not a primitive concept in set theory. A function from 
E to F is a particular relation, that is, an element of P(E x F), satisfying a 
number of properties (uniqueness of the result, and with a domain equal to E if 
the function is total). To be rigorous, it raises a notational issue: if f and x are 
two symbols (Le. two sets), f (x) makes sense only if we have proved beforehand 
that f satisfies the necessary properties and that x is in the domain of f. 

The development of set theory involves a mechanism of theory extension, 
that allows one to enrich the language step by step with new function symbols or 
new predicate symbols. There is a similar process well known amongst computer 
scientists, viz. enriching a programming language with user-defined procedures. 

7.1.3 Set-theoretic Operations 

A very convenient feature of set theory is the collection of operations provided 
for constructing complex sets from simple sets. Moreover, union, intersection, 
set difference (symmetric or otherwise), and Cartesian product satisfy many 
interesting algebraic properties: U, nand \ are commutative and associative; 
U and n are idempotent; 0 is an identity element of both U and of \, and an 
absorbing element of n. One can also identify (X x Y) x Z with X x (Y x Z) 
by means of a natural bijection, and X x {0} and {0} x X with X, which 
amounts to saying that x is associative as well as admitting {0} as an identity 
element. 

These identifications can be seen as abuses of notation, but they 
are justified from the viewpoint of category theory: intuitively, a 

product is considered as an object of the theory - a set here - endowed with 
projections allowing one to retrieve the components of a tuple. 

Let PI and P2 denote the two projections in the case of 2-uples (cou
pies), tI, t2 and t3 the three projections in the case of 3-uples (triples); rep
resenting X x Y x Z by (X x Y) x Z amounts to taking tl ~ PI 0 PI, 

t2 ~f P2 0 PI and t3 ~f P2; choosing X x (Y x Z) amounts to taking tl ~f PI, 

t2 ~f PI 0 P2 and t3 d~f P2 0 P2. The chosen representation itself matters little 
because triples are manipulated only through tl, t2 and t3. We now actually 
have a kind of abstract data type. 

2Typing is good because it prevents us from expressing meaningless things. The 
problem is that it could equally well prevent us from expressing perfectly good and 
meaningful things. Designing a good type system is then a significant issue. We revisit 
this question in Chapter 11. 
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But if we want to deal with these operations on the same footing as with 
usual algebraic operations, we come up against an obstacle. Our operations take 
sets as arguments and return a set. The role of the reference set would then be 
played by the set of all sets, an inconsistent notion (see Russell's paradox in 
§ 3.1.3). 

This leads set theorists to distinguish two kinds of collections, sets and 
classes. Thus the universe U of all sets is not a set but a class. Operations 
can then be defined over members of a class such as U. This works, but the 
distinction between class and set can be considered to be somewhat artificial. 

7.2 Zermelo-Fraenkel Axiomatic System 

The are quite a few Zermelo-Fraenkel axioms (ZF in the following). They are 
defined over a very simple language, without symbols for the union, the inter
section, nor the Cartesian product of sets. The latter can be defined by means 
of clever encodings. Apart from equality, the only primitive concept is member
ship. In summary, Zermelo-Fraenkel set theory is a first-order theory defined 
over an equational language having basically only one predicate symbol (E) 
apart from =, and no function symbol. 

All items are taken from the same grouping. If one looks for a 
model of set theory, in the sense of § 5.1.3, this grouping or jumble is 

interpreted as the domain, that is a set, but at the metalanguage level. Items 
in turn are interpreted as sets, as intuitively intended, only at this second level 
of interpretation. This is the so-called standard interpretation, but there is 
nothing to prevent us from imagining other interpretations. We even know, by 
an application of Lowenheim's theorem (§ 5.6.2), that a denumerable model of 
ZF exists. 

We now briefly present the system of Zermelo and Fraenkel, as described 
in [Sho77]. This material can be compared, for example, with the underlying 
theories of Z and B, which are close to, but not exactly, ZF. 

7.2.1 Axioms 

First, recall that from an axiomatic viewpoint, "set" is nothing but a word, just 
like ''point'' or "line" in the axiomatic presentation of geometry. Explaining the 
meaning of manipulated objects is beyond the scope of an axiomatic theory; its 
only aim is to let us know the consequences of formulas taken as axioms. The 
relevance of an axiomatic theory to the real world is a matter of experience 
and not of formal logic. Here, it is crucial to be able to express in a convenient 
way that we can form a set y with the elements x satisfying a given property 
P. This is not always the case, as evidenced by Russell's paradox. The axioms 
aim precisely at defining when this is the case. A formula expressing this fact 
is 
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3yVx (x E Y ¢:> P) 

and we will use the following abbreviation: 

Set{x I p} . 

Here is the list of axioms. 

Extensionality: two sets x and y are equal if they have the same elements: 

VxVy Vz (z Ex¢:> z E y) => x = y . 

An important consequence of this axiom is the following: if there exists a y such 
that "Ix (x E Y ¢:> P), then y is unique. Thus, as SOOn as a property Set{ x I P} 
is proved, a set is defined. We say that this set is defined by comprehension, 
and it is denoted by {x I p}. Most of the remaining axioms determine the 
possible forms of P for which we admit that {x I p} exists. 

Powerset: the set of subsets of x is a set denoted by P(x): 

"Ix Set{y I Vz (z E Y => z E x)} . 

Union: the union of elements of x is a set denoted by U(x) -the notation 

U y would be closer to usual conventions: 
yEx 

"Ix Set{z 13Y(YEX /\ ZEY)} . 

Schema of separation: extracting from a given set x the elements y satisfy
ing a property cp(y) yields a set: 

"Ix (Vy cp(y) => y E x) => Set{y I cp(y)} . 

Schema of replacement: applying an operation F to the elements of a set x 
yields a set: 

"Ix Set{z 13yyEX /\ z=F(y)} . 

In order to define an operation F, one has to extend the language in 
the following way. One must first take a formula ¢( u, v) such that for all y, 
there is a unique z such that ¢(y, z). (Formally, one proves Vy3z ¢(y, z) and 
Vy V zV z' (¢(y, z) /\ ¢(y, z') => z = z'.) Then one introduces a new symbol F 
and adds the axiom Vy ¢(y,F(y)). A formula containing F(u), say P(F(u)), 
is handled as an abbreviation for "Iv ¢(u, v) => P(v). 

The two last axioms are schemas: any instance of the formula cp (respec
tively, of the operation F) provides a corresponding separation (respectively, 
replacement) axiom. The separation schema can be deduced from the replace
ment schema but is very important in its own right. 
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Infinity: there exists a set x which has the empty set as a member and such 
that for all y which are members of x, there is another member z of x containing 
the members of y and y itselp 

3x (0 EX) /\ ('t/y y Ex=> y U {y} EX) 

This statement is easier to understand if 0 is seen as a representation of 0 
(zero) and y U {y} as a representation ofthe successor of y. We will come back 
to this later. 

Regularity (or foundation): a non-empty set x contains an element y which 
is disjoint from x: 

't/x (3y y E x) => (3y y E x /\ 't/z z E Y => ...,(z EX») . 

This is equivalent (given previous axioms) to stating that the relation E 
is well founded. This prevents the construction of infinite chains Xo ... x n .•. 

with Xi+! E Xi for all i. In particular there is no set x such that x E x. But it 
would be mistaken to think that this axiom aims at avoiding paradoxes: later 
in this chapter we will mention another axiomatization of set theory without 
the regularity axiom, and which is just as consistent as ZF. 

The system composed of the previous axioms is called ZF. It allows one 
to recover usual concepts of set theory. In mathematics, a further axiom, the 
axiom of choice, due to Zermelo, is needed. The ZF system together with the 
axiom of choice is called ZFC. We state here an informal version of this axiom, 
which first necessitates the introduction of the concept of a function. 

Axiom of choice: for all families x of non-empty sets, there exists a total 
function from x to U(x) mapping every element y of x to an element of y. 
More simply, given a (finite or infinite) family of sets, this axiom allows one 
to choose an element in each of them. This axiom played a key role in our 
justification of the principle of well-founded induction in § 3.5.3. 

7.2.2 Reconstruction of Usual Set-theoretic Concepts 

We see that the empty set, singletons, pairs, intersection, and Cartesian product 
are not primitive concepts of ZF. Even binary union is not primitive - we 
have "only" the generalized union. It can of course be recovered, as can the 
other concepts. Recall that the Cartesian product is needed in order to define 
relations and functions. 

One proceeds step-by-step in a systematic manner: one shows the existence 
and the uniqueness of an appropriate set, then one introduces a corresponding 
symbol (this is another application of language extension, previously described 
in the replacement schema). Uniqueness is shown using the axiom of extension
ality. For existence, one almost always uses the schema of separation, which 
allows us to define a set by comprehension provided we have already found one 

3The following formalization uses the abbreviations 0 and U described below. 
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in which it is included. This is the key for closing the door on Russell's paradox: 
we come back to this in § 7.3.3. 

Let us illustrate the process of finding the intersection of x and y. We can 
separate (select) the elements of x which happen to be members of y, because 
we have: 

'v'Z (z E x A Z E y) =? Z Ex. 

The schema of separation allows us to infer: 

Set{ Z I z E x A z E y} . 

Then we are entitled to define: 

xny ~f {zIZExAZEY} 

The difference can be defined in the same way, but the union cannot. Here are 
the main steps, without going into the details: 

- The empty set 0 is constructed through the separation of elements satisfying 
f in an arbitrary existing set; then one can sequentially form P(0) and 
P{P(0)) which is a 2-element set; 

- given x and y, one can then form the pair {x, y} using the schema of replace
ment on P{P(0)) where the operation F satisfies F(0) = x and F{u) = y 
if -.(u = 0); 

- the union of x and y is defined by x U y = U{ {x, y}); it is only at this stage 
that we have Set {z I Z E x V z E y}, 
with x U y = {z I z E x V z E y} ; 

- other set operations (intersection, difference, etc.) are defined directly by 
separation; 

- the concept of an ordered pair is represented by an encoding: 

(x,y) = {{x}, {x,y}} ; 

the Cartesian product a x b is obtained by separating elements of the form 
(x, y) in P(P(a U b)), with x E a and y E b. 

7.2.3 The Original System of Zermelo 

The first system proposed by Zermelo included all previous axioms, with one 
notable exception: the schema of replacement. The construction of {x,y} was 
directly postulated by the axiom of the pair. 

Pair: the pair made of two sets x and y is a set {x, y}: 

'v'x'v'y Set{z I z=x V z=y} . 

But a number of set-theoretic developments (e.g. about ordinal and cardinal 
numbers) could not be recovered in the original system of Zermelo. 
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7.3 Induction 

7 .3.1 Reconstr~ction of Arithmetic 

Peano arithmetic can be encoded in ZF. The number 0 is represented by 0, the 
successor operation is represented by 8(x) = xU {x}. Then one can prove Peano 
axioms. The axiom of regularity can be used to show that 8(x) = 8(y) => x = y 
for arbitrary x and y (not only for sets representing natural numbers). 

The case of the schema of induction is very interesting. Let us first define 
N. To this effect we consider the predicate supnat defined as follows: 

supnat(e) ~f 0 E e A "Ix x E e => 8(x) E e . 

That is, we have supnat(e) if and only if e contains 0, 8(0), ... j intuitively, this 
means that e is a superset of N. The axiom of infinity precisely states that 
such an e existsj let us call it N/• In order to define N, we still have to separate 
the appropriate elements of N/. This amounts to finding a predicate nat which 
characterizes natural integers. We observe that the set N we want will be the 
smallest (in the sense of set inclusion) e such that supnat(e). The predicate 
nat turns out to be "be a member of all e such that supnat(e)": 

nat(n) ~ "Ie supnat(e) => nEe . 

Taking x = N' in the schema of separation, we can define: 

N ~f {n I nat(n)} . 

The left member of the schema of induction is similar to the definition of 
supnat: 

P(O) A ['v'x P(x) => P(8(x))] 

Separating in N the elements x such that P(x)AXE N, we get a set e satisfying 
supnat(e), that is, which both includes N and is included in N, providing a 
justification for proofs by induction. In some respect, the definition of N via 
supnat contains the schema of induction, while the ultimate justification comes 
from the schema of separation. 

In what follows, we use the notations 1, 2, 3, etc. for 8(0),8(8(0)),8(8(8(0))), 
etc. 

Remarks on Typing. Because of the absence of typing, one can write formu
las such as 2 = (0,0) or 3 = 1 U (0,1) without blinking an eye ... they are even 
theorems! It is not difficult to find variants of the previous encodings4 that do 
not satisfy these equations (but satisfy other meaningless ones). 

4To be more precise, we can work with variants of the encoding of ordered pairs, 
of 0, of S, and in general of constructors. Note, however, that the axiom of infinity is 
formulated with a specific encoding of integers in mind. 
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7.3.2 Other Inductive Definitions 

We can attempt to reuse the same process for defining ''recursive'' data struc
tures of computer science - here we prefer to use the term "inductive,,:5 lists, 
trees, context-free languages, etc. 

Let us illustrate the idea with integer binary trees. We consider a version 
of binary trees where only leaves are labelled with integers. Here is the corre
sponding inductive definition: 

A = {n} I (A, A) . 

Informally, 

- if n is an integer, {n} is a tree; 
- if al and a2 are two trees, (al' a2) is a tree; 
- all trees can be constructed by application of the two previous clauses. 

We represent the two first clauses by a predicate suptree(e), claiming that the 
set e contains all trees: 

suptree(e) def ['In n EN=> {n} E e] 
1\ [ValVa2 (al Eel\a2Ee) => (al,a2)Ee] . 

With the goal of formalizing the third clause, let us introduce the predicate 
saying "to be in all the sets containing all trees": 

tree(A) ~f 'Ie suptree(e) => A E e , 

and we would like to define: 

A ~f {a I tree(a)} . 

Then we come up against an obstacle: the previous version of the axiom of 
infinity at our disposal does not directly provide a set A' that contains all trees. 
In fact, such a set can certainly be constructed, by completing the union of 
P(N), P(N) x P(N), (P(N) x P(N») x P(N), etc. Constructing A' turns out to 
be complex, probably much more complex than A. On the other hand, tree, 
the characteristic predicate of A, could be defined without significant problems. 
This may be an argument in favor of working with predicates rather than with 
sets or models. We consider below another representation of trees. 

The previous problem is not raised if we consider the inductive definition of 
a subset of N (for example {2n I nEN}), or the inductive definition of a function 
from N to N, because it can be separated from N x N. Let us take the example 
of the sequence of Fibonacci, seen as a set of ordered pairs (n, fibo(n» with 
n E N. All supersets e of this set satisfy supfibo(e) with: 

5Recall that the meaning of ''recursive'' in computer science differs from its meaning 
in logic. 
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supfibo(e) def (0, I) E e 
" (I, I) E e 
" rvn'tlx'tly «n,x) E e " (n + I,y) E e) 

=> (n + 2, x + y) E e] 

By the axiom of separation we can define: 

fibo ~f {c I 'tie supfibo(e) => c E e} 

7.3.3 The Axiom of Separation 

Observe in previous examples that for a set E to admit an inductive definition, 
we make use of a quantification on a collection of sets of which E is a member. 
Such a formulation is said to be impredicative. One may see that a kind of 
vicious circle exists, and one must be very careful to ensure that no paradox is 
generated. However, this construction process turns out to be very useful, so 
useful indeed, that it is not clear we could do without it (see, for example, the 
introduction to [Lei91]). 

Formally, an impredicative definition follows the schema: 

E ~f {x I 'tie <p(e) => 't/J(x, e)} , where <p(E) is true. 

Intuitively, if t/J(x, e) is x E e, E is the smallest set satisfying <po In the previous 
examples, the role of <p was played by supnat or supfibo. 

We can define a finite set in an impredicative way. Here is a trivial example: 

{xl'tle(IEe" 3Ee)=>xEe} , 

which is a pedantic definition of {I, 3}. 
The application condition of the axiom of separation plays a key role for 

avoiding paradoxes. An impredicative definition like the one given above for E 
is admitted only if a set F containing all e such that <p( e) has been exhibited 
beforehand. Otherwise paradoxes like Russell's can be reproduced, taking t for 
<p(e) and e f/. e => x E e for t/J(x, e). Similarly, there is no set of all sets in ZFC. 
If such a set U could exist, we could take e E U for <p(e) and t/J(x, e) as before. 

However, the application condition of the axiom of separation implies that, 
except in the special case of natural numbers, much additional work is needed 
in the construction of inductive data structures. 

7.3.4 Separation of a Fixed Point 

Fixed points are a traditional device in computer science for explaining in
ductive definitions. Let us illustrate the idea in the case of N. Intuitively, the 
inductive definition n = 0 I S(n) can be represented by: 

N = {OJ U S(N) , (7.1) 



120 Understanding Formal Methods 

where S(X) is the set resulting from the application of S to all elements of X. 
Of course replacing = with ~f in (7.1) would make no sense, since the object 
to be defined occurs on the right-hand side. Hence (7.1) must be regarded as 
an equation of the form x = f(x) where x is the unknown. In this situation x 
is called a fixed point of f (see § 3.6). In our example N is the smallest solution 
for: 

X = F(X) , (7.2) 

with F(X) ~f {O} U S(X) 
In order to state and solve this equation, we need a reference set R where 

X varies and we have to check that F is monotone, that is 

X C Y =? F(X) C F(Y) . 

The technique introduced in § 3.6 consists of showing that the set 
of post-fixed points of F (the X of R satisfying F(X) C X) is non

empty, then that the intersection of all post-fixed points is the smallest fixed 
point of F, which is the solution of (7.2) we are looking for. The reference 
set we can take here is P(N'), where, as before, N' is provided by the axiom 
of infinity. This axiom actually stipulates that N' is a post-fixed point, which 
ensures that the set of post-fixed points is non-empty. The set N we look for 
is then the smallest X of P(N') such that F(X) C X. Though it does not 
explicitly appear, such a definition is in fact impredicative, because we have to 
state the following when details are worked out (using the axiom of separation): 

Ens{ X I X E P(N') /\ F(X) c X /\ 

V'Y (Y E P(N') /\ F(Y) c Y) =? X C Y} 

This set is actually a singleton, which is precisely defined to be {N}. The axiom 
of separation is used here in a somewhat more involved way than before, because 
it acts on P(N') instead of N'. 

7.3.5 Ordinals 

The construction of ordinal sets was sketched in § 3.5. They playa key role in set 
theory and it was absolutely necessary that the axiomatic version of set theory 
should be able to recover them. Let us just add here that the replacement 
schema turns out to be essential in this respect (whereas it is scarcely used 
in regular mathematics, at least not directly). Let us also mention that the 
axiom of infinity stated above is rich enough: combining N, the schema of 
replacement and the axiom of union give all the necessary ingredients needed 
for constructing ordered sets much "larger" than N. 
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7.4 Sets, Abstract Data Types and Polymorphism 

7.4.1 Trees, Again 

A model of trees more economical than the one given in § 7.3.2 can be con
structed. Instead of an infinite union of Cartesian products, we use, intu
itively, an address space that assigns the integer I (written with binary dig
its) to the root, the integer 10 to the first left subtree, the integer 11 to the 
first right subtree, and so on. We define the ordering relation -< over N by 
\:In (n -< 2n) " (n -< 2n + 1). A branch B is a subset of N that contains 1 and 
that also contains, for all x of B, a unique y satisfying x -< y (for example 
a branch can start with 1, 2, 5, 10, 20). A set of leaf addresses is a set L of 
integers that contains a unique element in every branch. In order to construct 
a tree of integers from a set of leaf addresses L, we map each member of L to 
an integer (called its label). The set 1m of branches and the set IL of L have to 
be provided by an appropriate use of the axiom of separation in P(P(N). The 
set of trees is then IL -+ N, the set of total functions from IL to N. 

7.4.2 Algebraic Approach 

The previous model of trees is quite similar to an encoding that 
would be used in a software implementation. But one needs some 

convincing that it corresponds to the expected concept of tree. Of course, no 
formal proof can be given for such a subjective proposition. But, admittedly, 
our first (attempted) model based on suptree is much more natural. 

We consider an abstract data type6 tree. This type has two con
struction operations leaf and bin; leaf constructs an elementary tree which 
is just a leaf labelled by an integer, bin constructs a new tree from two existing 
trees. This yields the signatures: 

leaf: N -+ tree 
bin: tree x tree -+ tree . 

In addition, we have axioms stating that all trees are produced by repeated 
application of leaf and bin, and that two trees are equal if and only if they are 
constructed by application of the same constructors (on the same arguments). 
Here is one of these axioms: 

\:ImVn leaf(m) = leaf(n) <=> m = n . 

Clearly, the representation we gave in § 7.3.2 is a model of that abstract data 
type, where leaf and bin are respectively interpreted by the functions n t-+ {n} 
and (al,a2) t-+ (al,a2). 

6In the remainder of this section we employ the terminology introduced in § 10.3.1. 
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In contrast, the second representation requires more work. The con
structor leaf is simply interpreted by the function n t-+ {(I, n)}. In 

order to interpret bin, we need two functions 9 and d from N to N, that map 
the addresses of a tree to addresses of a tree having the same shape, which is 
the left (or right) subtree of a new tree. We know that every integer can be 
written in a unique way, either 2n or 2n + 1 depending on its parity. We can 
then inductively define 9 and d by 

{ 
g(l) = 2 

g(2n) = 2g(n) 

g(2n + 1) = 2g(n) + 1 

and { 
d(l) = 3 

d(2n) = 2d(n) 

d(2n + 1) = 2d(n) + 1 ; 

bin is then interpreted by the function from P(N x N) x P(N x N) to P(N x N) 
that, given two trees al and a2 returns the tree 

We still have to show that, on the one hand, we recover the same interpretation 
as before (in terms of Ja and L) and, on the other hand, the axioms of leaf 
and bin are satisfied. This is left as an exercise for the reader. 

7.4.3 Polymorphism (or Genericity) 

The concept of address we use is generic, in the sense that we say nothing about 
the kind of leaves (more precisely: leaf labels). A soon as L is constructed, it 
can be used for building trees that are labelled by elements of any given set 
X, including a set of trees. For instance, the set of trees of trees of integers is 
L -+ (L -+ N). 

The importance of genericity - also called parametric polymorphism -
has been acknowledged for a long time. To define a generic concept of tree, one 
would like to consider a function tree that maps every set X to L -+ X. But 
tree would then be a member of U -+ U, where U is the class of all sets. Then 
it is not a set. We previously had a similar remark about the operations n, U, 
etc. One could look for a more astute process allowing one to interpret types 
by sets, including polymorphic types. This indeed seemed almost possible to a 
number of researchers, but then J. Reynolds demonstrated that the answer is 
negative [Rey85]. We go back to this point in Chapter 11. 

7.4.4 The Abstract Type of Set Operations 

Just as for trees, one can define an abstract type for sets. This is a well-known 
example, generally described using two basic constructors: the construction of 
the empty set and the insertion of an element into a set. Two axioms are intro
duced in order to stipulate that inserting an element that is already contained 
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in the set has no effect, and the insertion order of elements is irrelevant.7 The 
membership predicate and operations such as U and n are then specified using 
additional axioms - intuitively, they are written with a ''recursive'' exploration 
of their arguments in mind. One can then easily prove the algebraic properties 
one expects on these operations (associativity, etc.). 

The same ideas arise when programming with sets. However, let us point 
out that only finite sets are dealt with in this way. Moreover, it is usually 
accepted that elements of such sets are typed and have the same type. Then a 
notion of polymorphism is needed if we want to handle Cartesian products or 
powersets in a natural manner. 

7.5 Properties of ZF and ZFC 

From a technical viewpoint ZFC is without doubt a great success, because it 
provides all of the kinds of sets, numbers and structures needed in mathematics. 
Clearly, limitations coming from the incompleteness theorems of Godel cannot 
be avoided. Thus, the consistency of ZF cannot be proven. But there are other 
results, called relative consistency results. In particular, the axiom of choice, 
which is very non-constructive, was initially the cause of many disputes. In 
1938, Godel showed that if ZF is consistent, then ZFCis consistent as well. In 
1963, Cohen proved that the negation of the axiom of choice does not introduce 
contradictions in ZF as well. This amounts to saying that the axiom of choice, 
or its negation, cannot be deduced from axioms of ZF. 

Another important conjecture about the cardinality of lR, called the con
tinuum hypothesis (see page 57), was also proved to be independent from ZF 
at the same time. Hence one might think of set theory as somewhat arbitrary. 
In contrast with N, set theory does not have a well-understood concept of a 
"standard model". For instance, the syntactic model of set theory is certainly 
not the intended one, because it is denumerable. 

7.6 Summary 

What is the impact of set theory on formal specification and programming tech
niques? The most obvious is the universal use of the language of sets. Informal 
reasoning is sometimes efficiently guided by Euler-Venn's diagrams.8 There are 
several opinions regarding set theory itself. Advocates of Z may highlight that 
ZF has been thoroughly tested as a foundation for mathematics, and hence is 
a firm basis for designing a specification language. Other researchers prefer to 
avoid the systematic use of sets, because unexpected complications spoil the 
initial simplicity of basic concepts (some of them were illustrated above), or 
because of the intrinsic lack of typing in this theory. 

7We proceeded this way in § 10.5 for representing a table. 
8The idea of representing what we nowadays call sets by circles goes back to Euler. 
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Axiomatic set theory is sufficiently powerful to allow one to represent any 
idea that is needed, for example the data structures of computer science. How
ever, in many cases we end up with quite an arbitrary encoding; then axiomatic 
set theory may seem closer to an assembly language than to a high level lan
guage. 

7.7 Notes and Suggestions for Further Reading 

So-called ''naive'' set theory is developed in the book of Halmos [HaI60]. Another 
well-known reference is Enderton [End77]. The axioms of Zermelo-Fraenkel are 
presented and discussed in a chapter of the Handbook of Logic of Mathematical 
Logic [Bar77] written by Shoenfield [Sho77]. 

Further developments are described in Devlin [Dev93], specifically the arith
metic of ordinals and cardinals. At the end of the book there is also a presenta
tion of non-well-founded sets, a variant of ZF without the axiom of regularity. 
Non-well-founded set theory is used in computer science as a basis for bisim
ulation and co-induction, which are reasoning techniques relevant to infinite 
processes and circular data structures. On this topic one may consult the very 
concise and readable article by Milner and Tofte [MT91]. 



8. Behavioral Specifications 

The table example that we used in previous chapters can be qualified as func
tional: looking from the outside, we can view it as a function that returns an 
answer when it is called. We don't have any concerns or get distracted by its 
internal computation and internal workings. In contrast, we can hardly under
stand systems which constantly react to their environments if we don't study 
the series of actions they perform. This is the case for communication pro
tocols, operating systems or command-and-control equipment. For protocols 
for instance, we have to consider synchronization, to prevent deadlocks, unde
sired arrival of messages, etc. The complexity of such protocols is by and large, 
concentrated in these aspects. 

Appropriate techniques consist of modeling such systems by, essentially, a 
graph whose vertices and edges respectively represent possible states and tran
sitions between states, and then characterizing expected behaviors by safety 
and liveness properties that are expressed over this graph - this is the realm 
of temporal logic - and finally, verifying that these properties are satisfied. 

The following presentation is centered on the general formalism of (labeled 
or otherwise) transition systems, which will be the semantic pivot between 
languages such as Unity, CCS or TLA and different variants of temporal logic, 
including the J.L-calculus. At the end of the chapter we mention appropriate 
verification techniques, specifically model checking. 

8.1 Unity 

Unity [CM89) was first designed in order to elaborate programs that could take 
advantage of parallel computations that are available on non-von Neuman ma
chines. Such opportunities vary to a considerable extent from one architecture 
to the other, and so it is better to make no assumptions about control. A Unity 
program is essentially defined by: 

- a state space; 
- an initial state, or a set of initial states; 
- a set of transitions between states. 

Transitions are defined by simultaneous assignments, sometimes with an addi
tional condition which is true by default. Assignments are generally separated 
by the symbol ~. In the original definition of Unity, the state is given by means 
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of declarations similar to those in Pascal, but this is not essential: we could 
consider variations including data types such as lists, or using more abstract 
constructs, e.g. set operators or higher-order types. Here we use the term field 
for components of the state rather than variable, in order to avoid any confu
sion with the logical concept of a variable. 

8.1.1 Execution of a Unity program 

Executing a Unity program consists of choosing in an undetermined way! one 
of the assignments, then, if the corresponding condition is true, applying it to 
the current state and repeating the same cycle again and again. The main idea 
is that each assignment may contribute to the final result and eventually has 
the opportunity to be applied. Unity stands for Unbounded Nondeterministic 
Iterative Transformations. The freedom underlying the execution of Unity pro
grams gives them a specification status, all the more so since we will not refrain 
from using arbitrary mathematical means for defining the space state. We will, 
however, continue to call them programs. 

Let us observe that a Unity program could easily be represented by a B 
machine, each assignment being encoded by an operation of the form: IF condi
tion THEN multiple substitution ELSE skip. As in B, the weakest precondition 
calculus introduced in § 4.3 plays an important technical role. The big differ
ence is that in B operations are macroscopic and are executed on external calls, 
whereas in Unity assignments are rudimentary and they execute spontaneously 
and perpetually. 

Program T 

end 

constant p, q : integer 
declare x, y : integer; t, r : boolean 
initially x=p /\ y=q /\ t=false 
assign 

r, t := P(x), true if x f= Y /\ --,t 
y, t := x, false if r /\ t 
x, t := x + 1, false if --,r /\ t 

Figure 8.1: Table search in Unity 

8.1.2 The Table Example 

Recovering strict control over the evaluation order is not very difficult: we just 
have to take a field as the program counter. We proceed in this way with t 
in Figure 8.1, where the table search program already presented on page 31 
is written in Unity. The field t can even be given a logical interpretation: "r 

lWe will see later, however, that this choice must respect a fairness condition. 
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contains the result ofthe evaluation of P(x)". When x = y the execution reaches 
a stable state: further assignments leave the state unchanged. 

But this approach is far from optimal in the spirit of Unity. Figure 8.2 
proposes a solution with much more opportunities to take advantage of paral
lelism. The idea is to have a control flow (or thread) for every possible value of 
the index. These threads are modeled by the array t. As soon as the result is 
found, the field f is set to true, with the intention of stopping other executing 
calculations - a more correct phrasing would be: in order to make the state 
stable. 

ProgramP 

end 

constant p, q : integer 
declare x, n : integer; b, f : boolean; 

r : array of boolean; t : array of 0 .. 2; 
initially n, f = p, false A 'Vi: p :5 i < q =} t[i] =0 
assign 
(~'Vi:p:5i<q:: 

r[il, t[i] := P(i), 1 if t[i] = 0 A -.f 
x,J, b, t[i] := i, true, true, 2 if r[i] A t[i] = 1 A -of 
n, t[i] := n+ 1, 2 if -or[i] A t[i] = 1 A -of 

f, b:= true, false if n=q 

Figure 8.2: Parallel table search in Unity 

A good method for designing such programs and reasoning about them 
consists of considering a state that changes in such a way that it progressively 
satisfies the desired properties, whatever happens. From a methodological per
spective, one distinguishes safety properties, which guarantee that every reach
able state is acceptable (in other words, nothing bad can happen) from liveness 
properties, which state that a desired state is eventually reached (something 
good will happen). 

In the example in Figure 8.2, safety properties are similar to the invariants 
h, 12 and h given on page 31: we introduce the subset C of integers i in [p, q[ 
yielding a negative answer (the value of r[i] is false and the value of t[i] is 
2). The invariant says that the cardinality of C is n - p. The main liveness 
property we expect here is f = true. This is also called a progress property. 
However, we must not forget that, at a given time, the chosen assignment may 
well leave the state unchanged. Assume in our example that p < q; an execution 
continuously choosing the last assignment (1, b := ... if n = q) would never 
progress. In order to avoid such a situation, Unity imposes a fairness condition: 
each assignment is chosen infinitely many times during an execution. 

Other categories of properties have been identified for qualifying system 
behaviors, such as to be deadlock free, or reachability. The latter expresses 
that the system always has the chance of reaching a given situation, for instance 
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Program Hl 

end 

constant ~ : integer 
declare h, dl , Vl, V2 : integer; Pl, P2 : boolean 
initially h=O 1\ dl=~ 1\ pl=false 1\ P2=false 
assign 

h := II + 1 if II < dl 
V2,P2 := h, true 
dl,Pl := max(dl , Vl + ~), false if Pl 
dl := max(dl,vl +~) if Pl 
Pl := false 

Figure 8.3: A synchronization protocol in Unity 

to return to the initial state. Note that being deadlock free does not make much 
sense in Unity, since executions are infinite by construction. 

8.1.3 A Protocol Example 

Let us consider another program that doesn't aim at computing a result, but 
at providing a service. Figure 8.3 represents a small clock synchronization pro
toco1.2 Two stations endowed with a local clock ii, i E {I,2} send their own 
current time through an unreliable medium (messages can be lost, duplicated 
and their order is not preserved) from time to time. The protocol ensures that 
the distance between the values of il and i2 is never greater than the strictly 
positive constant ~. Figure 8.3 contains the assignments of the program run
ning in station 1. The medium is represented here by two Booleans Pi, i E {I, 2} 
telling us whether or not a message for station i is present and by the integer 
Vi which holds the value of the message if there is one. The capacity of the 
medium we are considering is then just one message in each direction. Assign
ments represent, respectively, incrementing the local clock, sending the current 
time, receiving the time from the distant clock, duplicating, and losing the 
arriving message. We get the complete system by a parallel composition of 
program PI with program P2 (written PdP2), where P2 is identical to PI up 
to an exchange of indices 1 and 2. To put it another way, the state of PI ~P2 is 
made up of the fields of PI and of the integers i2 and d2 ; its assignments are 
the assignments of PI and the symmetrical assignments we get by exchanging 
1 and 2; finally its set of initial states is the conjunction of the two clauses 
introduced by the keyword initially. 

If we take a version of Unity where bags are allowed, we can easily model 
a medium which does not preserve message order (Figure 8.4). This program 
can be composed with the program in Figure 8.5 (and its symmetrical counter
parts): we get a medium with message losses and duplications. We expect that 
the protocol satisfies the following properties: 

2The author of this protocol is Gerard Roucairol. 
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Program HMI 

end 

constant ~ : integer 
declare h, d1 : integer; Cl, C2 : bag of integer 
initially h=O 1\ dl=~ 1\ cl=0 1\ c2=0 
assign 

h := h + 1 if h < dl 
~ C2 := C2 U {II} 
~'v'Vl dl,cl:=max(dl,vl+~),Cl-{vl} if vlEcl 

Figure 8.4: Synchronization protocol using an unbounded channel 

Programel 

end 

declare Cl : bag of integer 
initially Cl = 0 
assign 
~ 'v'Vl CI:= CI U {vI} if VI E Cl 
~ 'v'Vl Cl:= Cl - {vI} if VI E Cl 

Figure 8.5: Unbounded channel with losses and duplications 

- safety: Ih -l21 ~ ~ is always true; 
- progress: clocks increase to arbitrary large values. 

In this case, progress does not express that executions get closer to a desired 
situation, but that there are no deadlocks: no state is stable (~ is non-null). 
We can also verify a reach ability property: from any state (derived from the 
initial state) one can reach a state where h = l2. An interesting consequence 
is that we can hope to augment the previous protocol with additional fields 
and transitions that would model the arrival of an external request and then 
constrain assignment choices in such a way that II and l2 would converge to 
the same value. This is left as an exercise for the reader. 

We will see in § 8.5 how to formalize all these properties in temporal logic. 
We first present an elementary but very general model for describing behaviors. 

8.2 Transition Systems 

The systems we model are always presented, to a greater or lesser degree, in 
the form of a state which changes under the effects of various actions. The 
state can be thought of at different abstraction levels. It can be the colour (or 
combination of colours) of a traffic light; the memory space of a real machine; 
the memory spaces of several machines, with the contents of communication 
channels of the network that links them together; the tuple of values taken by 
the fields declared in a program - which may be written in Unity - or as a B 
specification, an algebraic term, etc. 
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State changes can be continuous, for analog systems, or discrete, for the sys
tems we consider here: we call them transitions. Most methods adopt a purely 
observational standpoint, that is, no importance is attached to the internal or 
external cause that determines the choice between transitions. However, tran
sitions are sometimes associated with events that we want to remember, e.g. a 
printing request or a message. Then we give them a name, also called a label 
or an action. We use the term "Kripke model" when transitions are not labeled 
- we can equivalently consider that all transitions have the same label - and 
"labeled transition system" or simply ''transition system" in the general case. 

8.2.1 Definitions and Notations 

A Kripke model is an ordered pair (5, n) where 5 is a (finite or infinite) set, 
called the set of states and n is a binary relation on 5, called the transition 
relation. 

A transition system (or labeled transition system) Tis a triple of the form 
(5, A, (na)aEA) where 5 is a (finite or infinite) set of states, A is a (finite or 
infinite) set, called the set of actions and each na is a binary relation on 5. 
Equivalently, the family (na)aEA can be presented as a subset n of Ax 5 x 5. 
The reader may like to check that we recover the concept of a Kripke model if 
A is a singleton set. 

We also use the term automaton or state machine for a transition system, 
especially when 5 and A are finite. 

For the transition relation of a Kripke model /C one often uses an infix 
notation such as ~ or more simply 4 when there is no ambiguity about /C. 

1C 
Similarly the transition relation labeled by a of a transition system T is denoted 
by the infix symbol ~ or ~ when the context is clear. Thus s ~ t ~ u 

r 
simply expresses that execution goes from state s to state t using transition a, 
then to state u using transition b. 

8.2.2 Examples 

When the number of states of the system is small, we conveniently represent it 
in a graphical form. Figure 8.6 represents a transition system for a simplified 
drink vending machine. 

Figure 8.6: A very simple drink vending machine 
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The standard behavior consists of going from state S (start) to state A 
(again) when a one euro coin is inserted into the machine (label 1E), then to 
state R (ready) when a 20 cents coin is inserted (label 20c), then back to the 
start state when the "accept" button is pressed (label ace) - and a drink is 
delivered. The customer can also, from state R, push the reset button - then 
the inserted coins are returned to him/her. 

Figure 8.7: A filtering drink vending machine 

The vending machine modeled in Figure 8.7 has an additional feature: 
bad 20 cents coins are rejected. A transition 20c can then lead to state F 
(failure), where the customer has no other choice but to reset. Formally, 
this system is defined by the state set S = {S, A, R, F}, the action set A = 
{1E, 20c, ace, reset}, and transition relations ~ = {(S, A) }, 20c) = {(A, R), 

(A, F)}, ~ = {(R, S)} and reset) = HR, S}, (F, S)}. 

reset 

Figure 8.8: A more complete vending machine 

The previous model can be augmented by further stipulating that one can 
push the reset button in every state. This is easy to state in a formal way, by 
writing reset)= {(s,S) Is E S}. Note in Figure 8.8 that the graphical repre-
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sentation becomes fairly complicated. The reader is invited to invent variants 
of the above system, where, among possible suggestions, one can insert coins 
in an arbitrary order, or push the accept button in any state (of course, the 
machine should only perform a state change from state R). 

In the model described above, labels happen to correspond to actions initi
ated by the external environment. This is not necessary. Actually, if our machine 
delivers a drink as soon as one euro and 20 cents are inserted, without waiting 
for a confirmation, the label ace is interpreted by a spontaneous action. But 
this does not matter to the transition system: as already indicated, the latter 
just describes possible sequences of actions without a priori interpretation of 
their meaning. 

8.2.3 Behavior of a Transition System 

Given a transition system T, a trajectory on T represents a possible behavior 
of T. One can imagine that T defines a state space and motion rules; as in 
mechanics, a trajectory is a function of time that returns the state of the system 
at each instant. Since our transitions are discrete, time will be represented by 
N. Formally, a trajectory on T is a pair of two sequences (Sn)nEN and (an)nEN 

where: 

1. For all integers n, Sn is a state and an is an action. 
2. For all integers n, Sn ~ Snt-l. 

The component (an)nEN is called the trace. In the case of Kripke models, 
it is of course superfluous. In the literature trajectories are also referred to 
as scenarios, executions or paths. We agree that the prefix of a trajectory 
(Sn)nEN, (an)nEN) will be represented in the form So ~ 81 ~ S2· .. 

A trajectory example for the transition system of Figure 8.7 starts with 

S~A~F~S~A~R~S. 

The systems modeled in Figures 8.6 and 8.7 have the same set of 
I~ traces, but have different behaviors: in the former, ace is always 
allowed after 20c whereas this is not the case ofthe latter. Traces simply do not 
provide the relevant pieces of information that would enable us to distinguish 
between them. 

When the system includes deadlocks (also called blocking states, i.e. states 8 

such that for any action a, {s' E S I 8 ~ 8'} = 0), the definition of trajectories 

must be made more general. Trajectories are maximal sequences satisfying the 
above conditions: either they are infinite, or their last state is a blocking state. 

8.2.4 Synchronized Product of Transition Systems 

Formalizing more complicated examples using flat transition systems quickly 
turns out to be quite laborious. It is better to specify the production of a 
transition system by indirect means, notably: 
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- the composition of (smaller) systems, as will be considered here; 
- the use of higher level concepts or languages, for example Unity or CCS; we go 

back to this approach in § 8.2.6 and in § 8.3; then transition systems provide 
an operational semantics for those languages. 

Consider n transition systems that we put together: 11 = (81 , AI, ---*), 72 = 
Ti 

(82, A 2, ---*) ... Tn = (8n , An, --+). A complete state ofthe system is obtained 
72 Tn 

by the synchronized product [AN82], which contains a component ranging over 
81 , a component ranging over 82 ... a component ranging over 8n . The state 
space of the synchronized product of 11, 72 ... Tn is then the Cartesian product 
81 x 82 ", X 8n . 

Saying that the whole system goes from state (SI' S2, ... sn) to state (s~, s~, 
... s~) amounts to saying that each component goes from state Si to state s~ 
using an action taken in --+. This corresponds to the fact that a transition is 

Ti 
passed simultaneously in each subsystem, what we call a synchronization. In 
general we want to restrict the set of possible synchronizations. Typically, an 
action send a of a system will only be synchronized with an action receive a of 
another system. The action set of the synchronized product will then be given 
by a subset Y of Al x A 2 ... X An, whose elements are called synchronization 
vectors. 

In the general case, we write the synchronized product in the form (11 II 
72 ... " Tn; Y). It corresponds to the transition system whose state set is 81 x 
82 ", X 8n , whose action set is Y and where transition relations are defined by: 

( ) (at, . .. a n ) (' ')'ff ai I £ II" [ 1 SI,oo,Sn ) Sl""Sn 1 Si--+Si ora zml,n. 
(Ti···IITn;Y) Ti 

8.2.5 Stuttering Transitions 

In order to represent so-called asynchronous systems that advance in an in
dependent manner, it is convenient to assume that each of them possesses a 
waiting action e such that executing e leaves the state unchanged. Leslie Lam
port uses the term stuttering transitions: 

~ = {(s, s) I s E 8d. 

For example, a synchronization vector (al' e, ... e) allows 11 to execute action 
al whereas other systems do nothing. A synchronization vector (al' a2, e, ... e) 
allows 11 and 72 to synchronize without being disturbed. 

Note that introducing stuttering transitions in each state from the outset 
is good from the modularity viewpoint. A system specified in this way can be 
embedded in an environment while keeping its own behavior. However, this 
approach leads one to make a fairness hypothesis on allowed trajectories, in 
order to disallow trajectories where a system remains indefinitely in the same 
state even though a change is possible. 
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8.2.6 Transition Systems for Unity 

The declare clause of a Unity program U defines its state set Su (the fields 
declared are projections of Su in their respective domain; for example in Fig
ure 8.4, II is a projection of Su into N). The initially clause defines a subset 
I of Suo In order to construct the associated transition system, we give a name 
aI, a2 ... to every assignment introduced after the assign clause. Recall that 
each of them is in the form s := fi(s) if Ci(S) and reads: ''if s verifies condition 
Ci, then the next state is fi ( s) else the next state is still s". Then we define 

~ = {(s, fi(s)} Is E Su 1\ Ci(S)} U {(s, s)) Is E Su 1\ "'Ci(S)}. 
The semantics of the initially clause is given by an action i, a pre

initial state * which is not in S with -4 = {(*, s) I s E I}. Finally we 

consider Au = {i, a!, a2, ... }, the system transition associated with U is then 
Tn = (Su, Au, (..!.t)aEAu)· 

One can follow a slightly different point of view where, when the 
condition Ci evaluates to false, the corresponding label is replaced 

with the stuttering action e, (see § 8.2.5). In this version, 

~ = {(s, Ii(s») Is E Su 1\ Ci(S)} and Au = {i, e, aI, a2, ... }. 

8.3 CCS, a Calculus of Communicating Systems 

In the Unity model, entities cooperate by sharing a common memory. In con
trast, approaches based on process algebras put the emphasis on communica
tion. CCS (Calculus of Communicating Systems), due to Robin Milner, is one 
of the most elegant [Mil89]. We are given a set of actions A = {r, a, ii, b, b, ... }. 
Processes are constructed as follows: 0 is the process that can do nothing (it is 
in a deadlock state and cannot communicate); if P and Q are processes and if 
a is an action, then a.P, P I Q, P+Q and P\L are processes. ".", "I" and "+" 
are respectively the prefix operator, the parallel composition operator and the 
choice operator. 

Intuitively, r is the silent action; if a is an action different from r, a can 
synchronize with ii (and reciprocally, considering that & = a). The process a.P 
performs the action a and then behaves like P. Thus the process a.b.(a.O+c.b.O) 
corresponds to the transition system: 

a 

C 

One also can write mutually recursive process definitions in the form PI ~f 
E1 , P2 ~f E2 , ••• where El , E2 , ••• represent process expressions in which Pl , 

P2 , ••• can occur. Thus the process P ~f a.b.(a.P + c.b.O) corresponds to the 
transition system 
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c .0 b .0 
and the systems described in Figures 8.6 and 8.7 can be expressed in CCS 
respectively by: 

S ~f lE.20c.(acc.S + reset.8) and by 

S ~f lE.(20c.(acc.S + reset.8) + 20c.reset.S) . 

Formally, the state set of the transition system defined by CCS processes 
PI, P2 , ••• is made up of algebraic subexpressions of PI, P2 , ••• , its action set 
is A and we get its transition relations by application of the following rules: 

- prefix: 
a.P~P 

P~P' 
- choice: 

P+Q~P' 
and 

Q~Q' 

P+Q~Q' 
- parallel composition without communication : 

P~P' Q~Q' 
and 

P~P' Q~Q' 
- communication: 

PIQ~P'IQ' 

A~E' 
- definition: 

P~P' 
for every definition P ~ A. 

Note that the parallel composition operator is asynchronous: each component 
evolves regardless of the other so long as they are not involved in a common 
action. Stuttering transitions indicated in § 8.2.5 are no more essential in this 
approach, where modularity is dealt with in a different way (using explicit com
munication). In the transition systems considered in previous sections, states 
were explicitly defined and were considered as always being observable through 
the concept of trajectory. Properties of behaviors considered in § 8.5 are ex
pressed over trajectories and over states. In CCS only transitions are considered 
as observable; a CCS term (process) can be seen as representing an implicit 
state, but only its capacity to propose transitions and to continue is important. 

CCS also includes the restriction operator "\": if P is a process and 
L is a set of actions different from T, then P\L is the process that 

behaves like P but where actions of L are disallowed; P can progress on a 
branch starting with an action a of L only if this action can be synchronized 
with the complementary action a of a parallel branch of P. 

Choice generalizes to an infinite number of processes. H (P"')"'EN and 
(a"')"'EN are respectively a family of processes and of actions and if Q is a 
process, the process ((E"'ENa",.P",) I as.Q)\{a", I x E N} evolves necessarily to 
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Ps I Q: this specifies that the second component communicates the value 5 to 
the first. 

A language quite close to CCS called CSP (Communicating Sequential Pro
cesses) was proposed by C.A.R. Hoare [HoaS5]. The design of LOTOS, a stan
dardized language for telecommunication protocols, was inspired by CCS and 
CSP [isob]. However, SOL turned out to be more successful from an industrial 
perspective", partly because it is founded on more familiar concepts (automata 
communicating via asynchronous messages transmitted on queued channels) 
and partly because it benefits from well-developed tool support. 

8.4 The Synchronous Approach on Reactive Systems 

When a system is composed of several subsystems evolving in an asynchronous 
manner, possible interleavings of events yield a combinatory explosion of the 
number of situations to be taken into account. Thus understanding phenomena 
becomes more complicated, as well as modeling tasks and, of course, verifi
cation. However, under a number of conditions, one can follow the so-called 
synchronous approach, which is well illustrated by the Esterellanguage [BG92]. 

The main idea is to consider infinitely fast systems, so that outputs are syn
chronous with the inputs that cause them. This hypothesis is quite audacious, 
but it can be interpreted in two ways: 

- if one considers a reactive system, that is, a system reacting to stimuli from 
its environment, it amounts to assuming that the reaction time of the system 
is smaller than the duration separating two stimuli; it is then essential to be 
able to bound the reaction time, and control structures of Esterel have been 
designed accordingly (it is an imperative language with sequences, loops and 
interrupt mechanisms); 

- if one considers subsystems of a synchronous system which has been decom
posed in a modular way, it means that the response time of a subsystem with 
respect to a stimulus provided by another subsystem is null or can safely be 
considered as null; the big difference with the previous case is that modules 
and interactions between them are known - sophisticated compilation tech
niques can be used - whereas the system may have little or no control over 
its environment. 

Another important synchronous language is Lustre [CPHP87]. It is a data
flow language: each synchronization point is represented by the sequence of 
values successively present at that point and the system is defined by equations 
relating such sequences. For instance, in the simple case of an or logical gate, 
we can state the equation Sn = en V In in order to express that at each time 
n, the output Sn is the disjunction of inputs en and In (this is the idea; the 
syntax of Lustre avoids the use of indices). Note that here again, outputs are 
synchronous with inputs. The case of a looping circuit (e.g. a latch) is more 
interesting: the output at time n also depends on the output at time n -1, so 
we have an equation in the form Sn = ... Sn-l.·. 
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The synchronous approach is particularly suited to embedded applications 
subject to hard and non-trivial temporal constraints. 

8.5 Temporal Logic 

Intuitively, temporal logic handles propositions whose truth value evolves over 
the course of time. Using it for qualifying program behaviors goes back at least 
to Pnueli [Pnu77]. The idea is quite natural: the state of a system changes 
during the execution of a program; as a consequence, properties of the state 
change as well. This is easy to represent in regular logic: if visited states are 
successively So, Sl, ••• a proposition p which is successively false, true, ... is 

. represented by a predicate p over N verifying p(O) = false, p(l) = true ... 
However, the additional argument introduced everywhere turns out to be cum
bersome. Moreover it is not sufficient, because the integer 0, 1, ... makes sense 
only with respect to a given sequence of states. Temporal logic encapsulates 
the maneuvers we need thanks to a small number of operators. 

Temporal logic is about discrete time. Durations measured with real 
numbers are beyond its scope. 

8.5.1 Temporal Logic and Regular Logic 

Most presentations of temporal logic are based on model theory3 (see § 3.3.1): 
the meaning of temporal logic formulas is directly defined on models. However, 
the concept of model used here is somewhat different from the concept used 
in § 5.1.3 and in § 5.6.1. More precisely, we are given a transition system and 
each state is mapped to a model in the classical sense. Thus, a proposition or a 
formula P may be true in some states and false in other states. A formal way to 
do that consists of introducing a set of elementary propositions P = {P, Q, ... } 
and in mapping each state S to the subset of P of propositions which are true 
at s. Equivalently, we can see P, Q, ... as denoting state predicates. We take 
here the latter standpoint. We will also need trajectory predicates <p, 1/;, ... 
(We can even consider that P, <p, ... are formulas constructed in a first-order 
or a higher-order language, rather than just a propositional language. ) 

If we look at syntax, temporal logic formulas combine such predicates as 
propositions. For example, P => AF8Q expresses that if P is true in the current 
state, then Q is eventually true on every trajectory starting from the current 
state. Note that state s does not occur in the above formula and that we do not 
form P(s). This is done only at the level of semantics, recalling that the truth 
of ''propositions'' is relative to a state: it makes it explicit that predicates are 
hidden behind a propositional notation (more generally, that n+l-ary predicates 
are hidden behind n-ary predicate notation). 

3 A notable exception is the temporal logic of Unity, which is axiomatically defined 
in [CM89j. See also § 8.5.5. 



138 Understanding Formal Methods 

In order to simplify the exposition, we limit ourselves to Kripke models 
without blocking states: a trajectory is then a sequence of states (Sn)nEN such 
that for all n, Sn ~ Snt-l. In the following, we fix a given Kripke model /C: 

all states and trajectories are implicitly about /C. Moreover, S and u always 
represent a state and a trajectory, respectively. 

The semantics of the state predicate P (respectively the trajectory predicate 
cp) is denoted by /C, S II- P or by abuse of notation, since /C is fixed, S II- P 
(respectively ull- cp). 

8.5.1.1 Elementary Formulas. We are given atomic formulas Pj their truth 
value P(s) depends a priori on the state s. We do not say more about the 
language defining such formulas. What matters is that our ability to determine 
P(s) when s is known. We have, not surprisingly: 

- sll- P ~f P(s) for P atomic. 

For example, in the initial state Sinit of the transition system corresponding to 
the protocol described in § 8.1.3, we have h = 0 and 12 = 0, which allows us to 
state Sinit II- III -121 ~ 6.. 

The simplest trajectory predicates are constructed by application of the 
start operator a on a state predicate. In the following u(i) refers to the ith 
element of u. 

- ull- aP ~f u(O) II- P : P is true at the beginning of trajectory u. 

Coming back to the example of § 8.1.3, we have u II- a(lll -121 ~ 6.) for all 
trajectories u beginning with Sinit. 

8.5.1.2 Logical Connectors. Temporal logical connectors /I., V, etc., are not 
applied to propositions, but to state predicates (such as P and Q), or to tra
jectory predicates (such as cp and t/J). Their semantics are defined using corre
sponding connectors of regular logic, and we proceed similarly for quantifiers: 

-sII-P/l.Q ~f sII-P /I. sll-Q (similarly for V, etc.), 
- s II- Vx P ~f Vx s II- P (similarly for 3), 
- ull- cp /I. t/J ~f ull- cp /I. ull- t/J (similarly for V, etc.), 
- u II- Vx cp ~f Vx u II- cp (similarly for 3). 

The meaning of "/I.", "V", etc., is not the same on the left and on 
the right of" ~". On the right, connectors link propositions whereas 

they link predicates on the left: in the latter case we have (monadic) second
order logic as seen in § 5.5. Trajectory quantifiers introduced in § 8.5.2.2 for 
translating branching operators are also second-order. 

8.5.2 CTL* 

Besides" /I.", "V", etc. we have specific operators. They can be divided in two 
groups in the temporal logic we consider now, called CTL *. 
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8.5.2.1 Temporal Operators. The first group includes temporal operators 
X (next), F (future or "eventually"), G (globally), W (weak until) and U (until) 
which build a trajectory predicate from one or two trajectory predicates. In 
order to define them we need the suffix of a obtained by removing the k first 
elements of a: ak ~f (a(k+n))nEN' 

- a II- Xcp ~f a1 II- cp : cp will be true on the next step of a. 
- a II- Fcp ~ 3n an II- cp : cp will eventually be true on a. 
- a II- Gcp ~ Vn an II- cp : cp will always be true on a. 
- a II- cpW1jJ ~f Vn (Vi -:;. n a i II- -,1jJ) => an II- cp : 

cp is true on a while 1jJ is not true. 
-all-cpU1jJ ~ 3n (an 11-1jJ) 1\ (Vi<n aill-cp) : 

1jJ will eventually be true on a and until then cp will be satisfied. 

Operators Wand U are strictly more general than F and G, for example Gcp is 
equivalent to cpWf. Moreover, cpU1jJ is equivalent to cpW1jJ 1\ F1jJ. 

Let us point out that temporal operators are applied to trajectory predi
cates and not to state predicates. It is therefore possible to combine them, for 
example in GFcp (cp will be infinitely often true) or in FGcp (eventually, cp will be 
continuously true). However, one often needs to apply them to state predicates 
as well. To this end we use4 the start operator 8. 

8.5.2.2 Branching Operators. Operators of the second group, E (exists) 
and A (all), build a state predicate by quantifying a trajectory property over 
trajectories starting from the considered state: 

- s II- Ecp ~ 3a a(O) = s 1\ a II- cp : there exists a trajectory starting from s 
which verifies cp; 

- s II- Acp ~ Va a(O) = s => a II- cp : every trajectory starting from s verifies 
cpo 

8.5.2.3 True Formulas Everywhere. In order to say that a state predicate 
P is true in all states of the system, we employ the notation VP. Symbol V 
can be seen as an operator which builds a proposition from a state predicate. 
It is not part of CTL *: recall that logical connectors of CTL * do not link 
propositions. 

8.5.2.4 Examples. Invariance properties are expressed by formulas of the 
form AG8P, which is true in state s if and only if: Va a(O)=s => Vn P(a(n)). 
Thus, in our first Unity program in Figure 8.1, the formula stating that x is less 
than y forever is AG8(x < y). However, x < y is true only for states that can 
be reached from an initial state. Initial states are characterized by a predicate 
I, which is the conjunction of formulas declared after the initially clause. 
Then we should consider the formula I=> AG8(x < y). In order to state that 
this formula is true in all states, we write "'1(1 => AG8(x<y)). 

4Experienced users will prefer a lightened notation where {} is omitted, consider
ing that we have implicit conversions in that case. Indeed, the {} operator is absent 
from most presentations. It is made explicit here for a better understanding of the 
underlying mathematical model. 
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AG AF 

EG EF 

Figure 8.9: The operators of CTL 

Similarly, the safety property we expect from the synchronization protocol 
described in § 8.1.3 is '+/(1 =? AG8(llt -121 ~ ~». 

Liveness properties are expressed by operator F, generally just after A. Thus, 
in the system given in Figure 8.7, we h~tve AF8( s = S), and in the program given 
in Figure 8.2, we have '+/(1 =? AF8(J = true». 

The progress property on clocks of the protocol given in § 8.1.3 is more 
complicated. For example, I =? AF8(l1 ~ 1010°) states only that It will be 
very large. In order to get arbitrarily large, the natural statement is: "In E 
nat I=? AF8(l1 ~ n). This formula is allowed in a version of CTL * which 
includes arithmetic. In the usual version, based on propositional logic, we have 
to encode progress in a different way, from the idea: "11 will always become 
larger". Assume we have a state predicate incr at our disposal; we arrange 
things in a way such that this predicate is true if and only if during the last fired 
transition, It was incremented. To this effect, one can insert appropriate fields 
in the state and update th~m adequately, without disturbing the rest of the 
program. (This simple exercise is left to the reader.) Now the progress property 
says that along every trajectory, incr is true infinitely often: V(1 =? AG F8incr). 

Reachability properties are obtained by combining E with F: if one controls 
execution - the choice among competing transitions at each step - a state sat
isfying the desired property will be reached. Let us consider again the synchro
nization protocol of § 8.1.3: the reachability of a state where the two local clocks 
are equal is expressed by EF8(It = 12)' The statement V(I =? AG8EF8(It = 12» 
tells us that this equality is reachable from every state of every trajectory 
starting from the initial state. 
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8.5.3 CTL 

CTL (computation tree logic) is the fragment of CTL * obtained when every oc
currence of a temporal operator (X, F, G, W or U) is immediately preceded by 
a branching operator (A or E). All allowed compound operators (AX, EF, etc.) 
build state predicates. They are then necessarily applied to sub-formulas sys
tematically headed by the start operator 8. In practice this operator is implicit. 
Thus, one can say that in CTL formulas are obtained by repeated application of 
AX, EF, etc. on state formulas. This simplification makes automated verificatidn 
via model checking much easier [BBF+01]. 

Safety, liveness and reachability properties like the ones described in § 8.5.2.4 
are of this kind, but not the progress property I => AG F8incr. Fairness prop
erties, in the form AGF8P are excluded as well. In general one cannot express 
properties about events which are along the same trajectory. 

Typical combinations AG 8P, AF8P, EG 8P and EF8P are illustrated on 
diagrams in Figure 8.9, where the tree-like character of CTL properties is easy 
to see. A filled circle represents a state where P is true. 

8.5.4 LTL and PLTL 

L TL (linear temporal logic ) is the fragment of CTL * where only trajectory pred
icates are considered, that is, predicates built using temporal operators. The 
idea is that formulas obtained in this way should be verified on all trajectories. 
Formally, it amounts to putting a unique (and, in practice, implicit) universal 
quantification A at the beginning of the formula. Thus L TL does not provide 
a means for considering the existence of different possible behaviors starting 
from a given state. This is why this logic is called linear. For instance, the 
reach ability property expressed by AG8EFcp has no equivalent formulation in 
L TL. More generally, this logic does not allow one to distinguish between two 
transition systems having the same trajectories. 

Automated verification research is concentrated on PLTL (propositional 
LTL), which is the fragment of LTL where non-temporal connectors are those 
of propositional calculus (first-order quantifiers are forbidden). 

Let us mention in passing a traditional notation coming from the modal 
logic 54, which uses 0 for G (forever) and <> for F (eventually). This notation 
is used in TLA, as we will see in § 8.6. 

8.5.5 The Temporal Logic of Unity 

The very design of Unity involves two ingredients: the programming language 
presented in § 8.1 and a linear temporal logic endowed with the following partic
ulars: its operators take state predicates as arguments and they return a propo
sition: they are then weaker than LTL operators (which build a trajectory 
predicate from trajectory predicates); in particular they cannot be embedded. 
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In contrast, propositions obtained in this way can be combined with logic con
nectors /\, V, etc. The latter can then have "classical" occurrences (as in § 5.1) 
as well as ''temporal'' occurrences (as in § 8.5.1.2) in the same formula. 

The two basic operators of Unity are co and leadsto (denoted here by ~). 
The proposition P co Q (for P constrains Q) is defined by VI(P => AX8Q): Q 
comes immediately after a state verifying P. The original version of Unity used 
a kind of weak until: P unless Q, which is defined by (P /\ --.Q) co (P V Q) 
and turns out to be equivalent to VlAG(8P W 8Q). The proposition P ~ Q 
expresses that every trajectory where P is initially true eventually reaches a 
state verifying Q; it is equivalent to VlAG(8P => F8Q). 

For instance, a way to formalize the progress property of It in the synchro
nization protocol of § 8.1.3 is: 

Vn E nat (It =n) ~ (It =n + 1) (8.1) 

The logic of Unity is originally defined in an axiomatic way by deduction 
rules. Other rules can be derived, such as the following. It is the set of such 
rules that makes Unity of practical interest as a verification technique. 

P~QVB B~R 

P'",QVR 

8.5.6 Hennessy-Milner Modalities 

It is sometimes useful to state properties which refer to transition labels.5 It is 
even essential if we work with a language like ((S. To this end, one can use the 
modalities [0:] and (0:) where 0: is a label, as in Hennessy-Milner logic [HM85]. 
They apply to a state predicate P and give new state predicates [o:]P and (o:)P. 
The latter is true in every state s from which a state satisfying P can be reached 
through a transition labeled by 0:: (o:)P(s) if and only if 3s' s ~ s' /\ P(s'). 

Equally, [o:]P is true in every state s from which every transition labeled 
by 0: leads to a state satisfying P: [o:]P(s) if and only if Vs' s ~ s' => P(s'). 

For example, in the system given in Figure 8.7 page 131 we have: 

- R If- (acc)t /\ (reset)t: from the state R one has the option of getting a drink 
and the option of asking for reimbursement; 

- A If- [20c](reset)t: from the state A, after paying 20 cents, one can still ask 
for a reimbursement; 

- A If- (20c)«acc)t/\ (reset)t): from the state A one can pay 20 cents and then 
choose between getting a drink or asking for a reimbursement; 

- A If- (20c) (--.(acc)t /\ (reset)t): from the state A one can pay 20 cents and 
then be in position to ask for a reimbursement without having the option of 
getting a drink. 

5In § 8.5.6 and also in § 8.5.7, the model, that properties are about, is a transition 
system rather than a Kripke system. 
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Given that only processed actions are taken into account, one might 
~ think that Hennessy-Milner logic is limited to expressing properties 
of traces, as LTL is limited to properties of trajectories. This would be a mistake. 
The last property stated above is not true of the first vending machine described 
in Figure 8.6 whereas both systems have the same traces, as seen previously. 
In fact modalities [a] and (a) are close to branchings expressed by AX and EX. 

It is easy to extend the previous modalities by replacing a by a set of actions: 
s ~ s' can then be considered as an abbreviation for 3a E K s ~ s'. In this 

context, we agree that "-" denotes the set of all actions of the system. Thus 
[-]P is true in any state from which all transitions lead to a state satisfying 
P. In our example, we have A II- [-](lE)t. 

8.5.7 Mu-calculus 

The properties just mentioned would also be satisfied by a vending machine 
that stops working after delivering its first drink or paying money back. The p,
calculus based on Hennessy-Milner logic allows one to specify complex iterative 
behaviors thanks to the introduction of least fixed points p,x.cI>(X) and of 
greatest fixed points vX.cI>(X), where 4>(X) represents a state predicate in 
which the state predicate variable X can occur. 

For example, let us consider the formula P ~f vX.(reset) /\ [-][-][-]X. 
In a first approximation it can read: P is true if "reset can be fired and if, 
after firing three transitions, reset can again be fired and if, after firing three 
transitions again, reset can again be fired, and so on. Here, P describes a 
cyclical behavior with period 3. In the system of Figure 8.7, P is true in states 
P and F. 

More precisely, P is the greatest solution of the fixed-point equation X = 
(reset)/\[-][-][-]X, that is, the greatest predicate X satisfying X =>(reset)/\ 
[-] [-] [-]X. According to § 3.6, this solution is obtained by successive iterations 
Po = t, H = (reset) /\ [-][-][-]Po, P2 = (reset) /\ [-][-][-]PI , etc. but we 
have already P2 -¢::} Pl. To see that, let IZI denote the set of states satisfying 
Z, we have IPol = {S, A, R, F}, !PI I = {R, F} and IP2 1 = {R, F}. 

This definition by fixed points makes use of the theorem of Knaster-Tarski 
which asks for a monotony condition. In the p,-calculus, the latter is ensured 
using a syntactic device: fixed-point variables (like X above) must occur only 
under an even number of negations. 

Terms in the form vX.f(X) express properties about full trajectories and 
then are related to safety. Dually, least fixed points p,X.f(X) are related to 
liveness properties. 

Fixed points provide a convenient means for defining the semantics of CTL. 
For example E(8P U 8Q) is true in state s if Q is true in s, or if P is true 
and there exists a next state in which E(8P U 8Q) is true. More precisely, 
IE(8P U 8Q)1 is the smallest set of states X containing IQI and containing states 
s such that P( s) and s --t s' with s' EX. This idea is represented in a synthetic 
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way in the formula p.X.Q V (P 1\ (- }X), and is the basis of the first verification 
algorithms for CTL by model checking. 

Much more complex properties can be formulated by alternating p.s 
and vs. For instance vX.(p.Y.PV(-}Y) 1\ (-}X represents the CTL 

formula EG8EFaP (there exists a trajectory along which one always has the 
option, branching off if necessary, of reaching a state satisfying P), whereas 
vX.p.Y.(P V(-}Y 1\ (-}X) represents the CTL* formula EGFaP (there exists 
a trajectory along which P is infinitely often true), which is beyond what CTL 
and L TL can express. The first formula can be analyzed as follows: p.Y.PV (-) Y , 
which is equivalent to EFaP, is embedded in vX.Q 1\ (-}X, which is equivalent 
to EG8Q. The second formula is more subtle: it contains a ''true'' alternation of 
fixed-point operators - the two variables X and Yare within the scope of the 
second fixed-point operator(p.). Still more complex (and delicate) properties 
can be stated, using additional fixed-point operators alternations, so that we 
can go beyond the expressive power of CTL *. The interested reader may consult 
the literature cited at the end of this chapter. 

8.6 TLA 

With TLA (temporal logic of actions), Leslie Lamport proposed to specify both 
the expected properties of the behavior of a system and the system itself, all 
within the framework of a linear temporal logic. To this end, temporal operators 
are applied to transitions. The latter are described by a binary relation between 
the current state and the next state using the same convention as in Z: for 
example, incrementing II is described by a relation Al which can be defined by 
l~ = II + lor by l~ -II = 1. Such a relation in TLA is called an action. A system 
that perpetually increments II is specified as follows: Al d~f O(l~ -II = 1). To 
specify the initial state, we just need a state formula, for example [nit1 ~ it = O. 
The conjunction [nit 1 1\ OA1 makes up our first TLA system. 

From a mathematical perspective, one can consider that a TLA formula OA 
defines a Kripke model (8, R), by stating a constraint on 8 and on R. As a 
first approximation, 8 is defined by the vocabulary employed in A, which is 
just it in our example.6 Each word of the vocabulary denotes a field of 8, that 
we translate to a projection as in § 8.2.6 for Unity. In the case of AI, at the 
moment we have 8 = N while II boils down to the identity function. 7 The 
formula A then defines the transition relation R. This yields in example AI: 

R1 = {(s,s') E 8 x 8 Ilt(s) -It(s') = 1} 

= {(O,l), (1,2), (2,3), ... }. 

61~ must be considered as a term obtained by application of the postfix operator 
I to h; this operator is similar to X introduced in § 8.5.2, but it is applied to a term 
instead of a formula. 

7Let us mention that according to Lamport, the domain of fields should not be 
specified. This point is not essential here. 
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However, as a TLA specification is the conjunction of several formulas hav
ing, in general, different vocabularies, but which can overlap - as in Unity, 
cooperation is modeled by field sharing - one agrees that S is only partially 
specified by the vocabulary of A. In our example we would have S = ... x Nx ... 
and 11 would be the appropriate projection. The transition relation R is de
fined as before by formula A, but with the extended interpretation of S. Thus, 
Rl becomes, assuming that it is the first projection and that we have another 
Boolean field: 

Rl = {((O,f), (l,f)}, ((O,f), (1, v}}, ((O,v), (l,f)}, ((O,v), (l,v)}, 

((l,f), (2,f)}, ((l,f), (2,v)}, ((l,v), (2,f)}, ((l,v), (2,v)}, 

((2,f), (3,f)}, ((2,f), (3,v)}, ((2,v), (3,f}), ((2,v), (3,v}), 

... } 

Now, if we augment the previous specification with a second formula A2 def 

(11 ~ 1 A b~ = f) V (11 > 1 A b~ = v), the conjunction Al AA2 yields the transition 
relation: 

Rl n R2 = {((O, -), (1, f)}, ((1, -), (2, f)}, ((2, -), (3, v)}, ... } 

where the joker "-" represents the two values f and v. The important point 
to remember is that the transition relation we get by composition is no longer 
the Cartesian product of transition relations, but their intersection. 

~ It is possible to present the composition using a more general con-
'8 struct called the fibered product. The product and the intersection 
are two special cases of fibered products. We will not expand this remark here. 

_~ The terminology of TLA is different from that employed for transition 
L..:::::@ systems in § 8.2.1: in the former case an action is a subset of S x S, 

in the latter an action is a label (associated to a subset of S x S). 

As with the product, composition by conjunction entails a: synchronization 
of transitions of all components. If we want Al to evolve as well as another 
system that does not mention it, the remedy is the same as in § 8.2.5: offering 
a choice between modification and stuttering. In order to simplify the writing, 
in TLA we have the notation [Rl(z) for R V (Zl = z). One would then write: 
O[l~ -11 = 11(h). 

One of the main points of TLA is that behaviors are specified by stuttering 
invariant formulas: formulas such that, if they are satisfied by a trajectory a, 
they are also satisfied by any trajectory we get by inserting or removing state 
repetitions in a. For this, formulas are essentially in the form O[Rl(z). 

Let us illustrate the idea on Roucairol's protocol written in Unity in Fig
ure 8.4. The first component performs three actions at will: 

-N1 ~ 11 <d1 A l~ -11 =1 

-E1 d4,f c~ = C2 U {h} 
-R1 def 

incrementation, 

sending, 

receiving, not detailed here. 
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Note that the firing condition of NI is represented by a conjunction with h < d l . 

One would define actions N2, E2 and R2 in a symmetrical manner. The desired 
behavior q, is then specified as follows (be warned that actions relative to 
channel Ci are put together; their behavior could be augmented by losses and 
duplications) : 

CI ~f RI V E2 C2 def R2 VEl 

HMI ~ NI VCI vC2 HM2 def N2 V C2 V CI 
q, ~f D[HM d(h,d"q,C2) A D[HM 2)(12,d2,C2,Cl) 

We still have to ensure progress and fairness of the behavior, us
ing a conjunction with a suitable formula, and without introducing 

any parasitic safety property. To this end one uses particular formulas noted 
WF f (A) or SF f (A). They are defined by means of <> and 0, and they express 
that action A (HMi in our example) is fairly fired and modifies fields listed in 
f. They represent stuttering invariant properties. 

Reasoning is performed in TLA using about fifteen deduction rules. Some 
of them are as simple as D;~2Q' but rules on fairness properties are more 
complex. The reader may consult [Lam94) and [Aba90). 

8.7 Verification Tools 

Previous sections presented different approaches for accurately specifying sys
tems composed of several entities evolving at the same time, as well as the 
properties we expect them to satisfy. 

8.7.1 Deductive Approach 

For verifying these systems, one can proceed by decomposition and formal de
ductions, notably in the framework of Unity or TLA. The user then has to 
properly organize his or her understanding of the phenomena under considera
tion and to master formal reasoning to a good extent. Proof environments can 
then provide valuable assistance. A good specialized tool is STeP [BBC+95]. 
Libraries on top of general proof assistants such as LP, Isabelle and (oq, are 
also available or in development, see for example the work of Cregut and Heyd 
[HC96). The strong point of this approach is that the user may use powerful 
mathematical devices for structuring specifications and proofs, and for explain
ing when and why the system works. 

8.7.2 Verification by Model Checking 

Considering that the number of possible scenarios for a system composed of 
several entangled subsystems increases very quickly, including for small sys
tems, a different approach was invented in the 1980s and transpired to be quite 
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efficient and effective: building the Kripke model of the whole system (labels 
are generally ignored), that is, the graph of all global states and possible tran
sitions between them, then computing the truth value of expected propositions 
on each state - hence the name model checking. This is possible provided that 
the graph is finite (hence extendable data structures like unbounded queues or 
trees are not allowed), and that properties are expressed in a propositional 
temporal logic. 

Without going into detail, the verification of a CTL formula is based on 
fixed-point computations (see § 8.5.7). It is linear in the size of the graph and 
in the size of the formula. However, the number of states is itself essentially 
exponential: introducing a one byte variable in the two protocol entities is 
enough to make the number of global states explode by 32,000. This approach 
has actually proven to be really successful since the introduction of techniques 
for representing graphs and formulas in a compact way where common parts 
are shared, in particular thanks to the use of BDDs (binary decision diagrams). 

The automated verification of a PLTL formula <P is more complex be
cause it is expressed about a path instead of a state. One translates 

its negation -,<p into an observer automaton and then computes the synchro
nized product of the latter with the system to be verified. The property is 
satisfied if and only if the language recognized by the product is empty. The 
verification remains linear in the size of the graph but becomes exponential in 
the worst case in the size of the formula. 

Moreover, note that in a number of environments, the property to be 
verified has to be directly expressed in the form of an automaton, without using 
temporal logic. A similar idea is used in proofs by bisimulation, though in a 
technically very different way. The basic principle there is to check that a given 
automaton (e.g. a CCS process) has the same observable behavior (in terms of 
labels) as a second automaton, the latter being considered as an abstract view 
of the former. 

From the user perspective, model checking can relieve him or her of an 
exhaustive amount of reasoning on a huge number of specialized situations. 
Another valuable aspect of this approach is that if a property is not satis
fied, model checking algorithms produce a counter-example scenario. The main 
difficulties are in the modeling steps of the system and of expected proper
ties. Automated verification is made possible by adequate limitations in the 
languages (propositional logic, bounded data structures). Remaining means of 
expression have to be used very cleverly. 

8.8 Notes and Suggestions for Further Reading 

The general formalism of transition systems is described in [Arn94]. The lan
guages Unity and TLA are respectively defined in [CM89] and [Lam94]. The 
process algebras CCS and CSP are dealt with in [Mil89] and [Hoa85], respec
tively. 
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The synchronous approach is described in [Hal93). Interested readers may 
also consult papers on Esterel [BG92), Lustre [CPHP87) and Signal [BLJ91). 

Excellent syntheses on temporal logic can be found in [Eme90) and [Sti92); 
however, Unity and TLA are not covered. Let us also mention that some tem
poral logics include modalities about the past, they are for instance exploited 
in Lustre for safety properties. The reference manual for the STeP environment 
is [BBC+95). The ",-calculus is studied in [Bra92) and in [ANOI). 

Reference books on verification techniques through model checking are also 
available. McMillan's book is still very valuable [McM93), while [CGP99) is 
centered on underlying theory and implementation technologies. [BBF+Ol) is 
mOre synthetic and provides useful practical advice, as well as an overview of 
the main software tools available. Two of the most prominent are SMV [Berct), 
which is based on CTL, and SPIN, based on LTL [HoI97). Original papers on 
model checking are [QS82) and [CES83). The relative merits of branching as 
opposed to linear time temporal logics have been a matter of debate since the 
early 1980s. For a recent paper on this issue, the reader is referred to [VarOl). 



9. Deduction Systems 

In the propositional case, a formula P has only a finite number of interpreta
tions: there are exactly 2n of them, where n is the number of atomic propositions 
used in P. The truth table method makes it easy to determine whether P is 
satisfied, is a tautology, or is a logical consequence of a finite set of propositions. 
This is a semantic technique: it is based on a study of models of P. 

In contrast, the topic of proof theory is to know the consequences of a set 
of axioms by purely syntactic means. The central concept is then the deductive 
consequence relation, denoted by 1-. This relation is a priori different from 
the semantic relation 1=. It is defined by so-called logical axioms (for example, 
(P 1\ Q) ~ P) and rules called inference rules or deduction rules. Recall that 
in model theory, the symbol 1= can also be used to state that a formula P is 
valid (1= P). In a similar way, f- P denotes that P is a theorem. 

We will need to express syntactical manipulations on the deductive 
consequence relation itself. To this effect we will introduce ordered 

pairs r I- ~ called sequents. Then we will have proof trees made of sequents 
and having a sequent as their conclusion. This yields a more general concept 
of a theorem and leads us to use different symbols for stating theorems and 
for representing deductive consequences, so that we could write f- r I- ~. 

According to [GaI93], the symbol I- comes from Girard. 

Logical axioms are always true. They should not be confused with axioms 
which are proper to a given theory and define the latter. A well-known exam
ple are Peano axioms, which define arithmetic. Such axioms are called proper 
axioms, or non-logical axioms. 

There are three main approaches for defining 1-: Hilbert's approaches, which 
uses many axioms and very few inference rules and two approaches due to 
Gentzen (natural deduction and sequent calculus) which have the converse 
features: few axioms and many deduction rules. We start with these three 
methods. 

We will also sketch two other techniques for calculating consequences. The 
first was developed by Dijkstra and Scholten in the framework of their cal
culational approach to programming. The second is rewriting systems, which 
provide efficient tools for equational reasoning - prosaically: replacing equals 
with equals. 

The chapter ends with the relationship between truth and provability. One 
would expect that provable formulas are true and conversely. This is correct 
for first-order logic, but arithmetic makes the situation more complicated. The 
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main results come from works originally motivated by the foundations of math
ematics, considered as the typical place for studying formal reasoning. The 
practice of formal methods is mainly concerned by intrinsic limitations related 
to fully automatic proof search techniques. 

9.1 Hilbert Systems 

The impact of Hilbert systems seems less important than the other approaches 
for computer science. Therefore we limit ourselves to propositional logic. 

The notation I- P states that the proposition (or the formula) P is proved. 
In particular, axioms will be noted in this way. 

In the framework of propositional logic, a Hilbert system has only one de
duction rule, called modus ponens. It can read, P and Q being arbitrary propo
sitions: if P => Q is proved and if P is proved, then Q is a theorem as well: 

P=>Q P 
Q 

First-order logic includes a second inference rule, the generalization rule which 
reads: if P is a theorem, then VxP is a theorem as well. For example, from 
x>O => 2.x>0 we deduce Vx x>O => 2.x>0: 

P 
Vxp· 

The construction of proofs is quite simple. The intuitive idea is to present 
a proof in the form of a tree1 where nodes are labeled by an instance of an 
inference rule and where leaves are labeled by an axiom. The proved theorem 
is on the root. The precise definition of a proof is as follows: 

- if I- A is an axiom, 

-ax 
A 

is a proof with conclusion Aj A ax may be regarded as a rule without 
premisej 

- if VI and V 2 are two proofs with respective conclusions C1 and C1 => C2 , 

then the tree 

V2 

C1 => C2 C1 
-----:::---- mp 

C2 

with root modus ponens, where P and Q are respectively instantiated by C1 

and C2 , with immediate left subtree V 2 , and with immediate right subtree 
VI, is a proof with conclusion C2 . 

IThe concept of a tree can itself be formalized, see page 83. 
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A formula P is a theorem if there exists a proof tree with conclusion P. 
Note that we will sometimes indicate explicitly, on proof trees, the name of the 
rules we use near the corresponding fraction lines. 

The main part of information is actually contained in the axioms. These 
axioms, on which we agree independently from any theory (in the sense defined 
in § 5.6.1), are called logical axioms. They are chosen in a way such that all 
valid formulas can be deduced. Many axiom systems satisfy this condition. All 
these systems are equivalent (that is, the axioms of one system are theorems 
of any other axiom system). For illustration purposes, here are some axioms of 
a well-known system due to Hilbert and Ackermann [HA28]: 

I- P~ (Q~P) , 
I- (P ~ (P ~ Q)) ~ (P ~ Q) , 
I- (P ~ Q) ~ ((Q ~ R) ~ (P ~ R)) 

This system includes twelve additional axioms about 1\, V, {::} and -, connectors 
[GG90, p. 112]. They are actually axiom schemas: real axioms are obtained if 
we substitute any proposition of the considered language for the symbols P, 
Q, R. For example, from the schema I- P ~ (Q ~ P), we get, in a language 
including the proposition symbol P: 

I-PI\P~(-'P~PI\P) . 

Now we can provide a proof of P ~ P, using the two first axioms: 

...,----:----,--,-----,,----.,. ax --,---...,.- ax 
(p ~ (p ~ p)) ~ (P ~ p) P ~ (p ~ p) 
~-~-~~-~-~----~~-~mp 

P~P 

The presentation of this tree can be simplified, because we know that the 
formulas displayed at the level of leaves are necessarily axioms and that modus 
ponens is used in all other places: 

(p ~ (p ~ p)) ~ (p ~ p) p ~ (p ~ p) 
p~p 

We will see below more varied proof trees, where it is better to keep explicitly 
the name of the rules which are used. 

It is regrettable that Hilbertian axiomatic systems are somewhat contrived. 
Axioms are sometimes complicated. It is a shame that the proof of P ~ P is 
not trivial. It is hard to claim that this formalization of logic represents usual 
logical reasoning. The situation gets even worse in Hilbert systems invented 
with the purpose of minimalizing the number of axioms. In practice, no proof 
assistant is based on this approach. 

In mathematics (group theory, topology, geometry, etc.) a system of (proper) 
axioms plays an important role; for a given theory; there is few room for al
ternative systems. In contrast, logic already offers a large number of possible 
systems, this is already the case for propositional logic. This actually suggests 
that no one tautology is more fundamental than the others. 
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However Hilbert systems are quite convenient for the mathematical study of 
logic, in order to know whether every provable proposition is true and conversely 
- these properties are respectively called soundness and completeness. In this 
respect a particular relation turns out to be important: the deducibility relation. 

The axioms of a theory (in the sense given in § 5.6.1) are called proper 
axioms, or non-logical axioms. Let r be a set of closed formulas. A closed 
formula P is a deductive consequence of r (we also simply say that P is 
deducible from r), which we note r I- P, if P can be proved using modus 
ponens - and the generalization rule in the case of first-order logic - from 
logical axioms and formulas of r. 

Let r be an axiom system allowing one to prove P => Qj if we insert the 
hypothesis P in r, we observe (thanks to modus ponens) that r, P I- Q. The 
converse property seems natural and can actually be proved, but more work is 
required. 

Theorem 9.1 (deduction) 
If r, P I- Q then r I- P => Q. 

This theorem is proved by induction on (the length of) the proof 
trees corresponding to r, PI- Q, by inspecting the different possible 

cases. Warning: it is important to distinguish the proof of the previous theorem 
and the objects it talks about, which are themselves proofs and theorems. There 
are two language levels, and the first is the metalanguage of the second. 

The metalanguage is the language we use for defining, commenting 
or explaining another language. It is a natural language in most cases, such 
as English. In the present case the metalanguage involves basic mathematical 
concepts in order to explain the syntax of logic as well as concepts related to 
deduction. In this respect, Theorem 9.1 is a metatheorem. 

We will see that natural deduction and sequent calculus take the opposite 
view with relation to Hilbert systems: the meaning of implication will be based 
on the two last (and symmetric) properties formalized by modus ponens and 
the deduction theorem. Other connectors will also be systematically treated in 
a symmetric way. 

9.2 Natural Deduction 

With natural deduction, Gentzen introduced a formalization more faithful to 
regular reasoning. 

9.2.1 Informal Presentation 

Let us start with a simple example. We want to show that the square of an 
even number is even, given that the product of an even number by an arbitrary 
number is even. The formula to be proved is: 
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[VX even(x) => Vy even(x.y)] => [Va even(a) => even(a.a)] . (9.1) 

This example has no mathematical interest, but it allows us to illustrate the 
meaning of quantifiers and implication. As in usual reasoning, our first step is 
to prove that, from the hypotheses "Ix even(x) => Vy even(x.y) and even(a), 
we can deduce even(a.a). 

We then assume "Ix even(x) => Vy even(x.y) and we consider for x an 
arbitrary a. We then have even(a) => Vy even(a.y). Let us now assume that a 
is even. We can deduce that for all y, a.y is even, then that a.a is even. Hence 
we have even(a) => even(a.a), for any a. We deduce Va even(a) => even(a.a). 
This formula was proved under the hypothesis "Ix even(x) => Vy even(x.y), 
hence we conclude (9.1). 

Let us split up this reasoning into its components. First we prove that, from 
the hypotheses: 

"Ix even(x) => Vy even(x.y) 

even(a) 

we can deduce: 

even(a.a) . 

and 

Let us take an arbitrary a for x in (9.2). We have then: 

even(a) => Vy even(a.y) . 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

Let us now consider the hypothesis (9.3): a is even. From (9.5) and (9.3) we 
get that a.y is even for all y: 

Vy even( a.y) , (9.6) 

then (9.4) if we take a for y. This conclusion depends on the hypothesis (9.3), 
so we have: 

even{a) => even(a.a) , (9.7) 

and this for an arbitrary a, that is for an a on which we don't have any hy
pothesis. We deduce: 

Va even(a) => even(a.a) , (9.8) 

which was proved under the hypothesis (9.2), hence (9.1). 
The inferences used in the previous example have one of the following 

shapes: 

- if from P we can prove Q, we have a proof of P => Q, more precisely a proof 
of P => Q without the hypothesis P; to put it otherwise: in order to prove 
P => Q it is enough to prove Q under the hypothesis P; thus we got (9.6) 
from (9.3), hence (9.7); 
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- if we proved P => Q on the one hand and proved P on the other, then we 
have a proof of Q; for instance we deduced (9.6) from (9.5) and (9.3); 

- if we proved P (P may contain free occurrences of x) without any hypothesis 
on the variable x then we have a proof of VxP; in our example, see how we 
deduced (9.8) from (9.7); however, we could not deduce Va even(a.a) from 
(9.4), because a hypothesis on a was still present! 

- if we proved VxP then we have a proof of [x := t]P where t is an arbitrary 
term; for example, we deduced (9.4) from (9.6). 

We observe that each connector * is defined by an introduction rule and an 
elimination rule. An introduction rule determines how we can get a formula 
having * as its main connector, while an elimination rule shows how, from such 
a formula, we can get one of its immediate subformulas. This corresponds to 
a general thought line: in the framework of natural deduction, the behavior of 
each connector is defined by introduction and elimination rules. Here are the 
rules for conjunction and disjunction: 

- if we proved P and we proved Q, then we have a proof of P I\. Q; 
- if we proved PI\. Q, then we have a proof of P (similarly, we also have a proof 

of Q); 
- if we proved P (similarly, if we proved Q), then I have a proof of P V Q; 
- if we proved P V Q, and if in each case we can prove R, then we have a proof 

of R. 

Natural deduction includes no logical axiom; but one manipulates deduc
tions under hypotheses. The typical way to discharge these hypotheses is to 
use introduction rules for =>. A proof is a special case of deduction in which 
no hypothesis is left; finally, as in Hilbert systems, a theorem is a formula for 
which there exists a proof. 

The example of even numbers illustrated this process. One of the simplest 
examples is the proof of P => P. First we put the hypothesis P, and we have 
a trivial deduction of P under this hypothesis. Using the introduction rule for 
=>, we immediately get a deduction of P => P without hypothesis. 

9.2.2 Formal Rules 

The formalization of natural deduction inference rules takes the shape of frac
tions, as in Hilbert systems. Each rule is identified by a name such as I\.i 
(introduction of 1\.), I\.el or l\.e2 (respectively left and right elimination of 1\.). 
The rules of the system NJ of Gentzen are given in Figure 9.l. We comment 
on them now. 

In a proof, hypotheses are identified by a number between parentheses. 
When a hypothesis is discharged, its number is recalled on the corresponding 
inference rule (introduction of =>, elimination of V or of 3). When one of these 
three rules is applied, it is possible to discharge one, several (see the example of 
Figure 9.2) or zero occurrences of the same hypothesis; all occurrences marked 
by the appropriate number are discharged. A given formula may be used several 



(n) ---.. 
P 

_Q_=>.. 
P=>Q ~(n) 

P --\:I; 
\:IxP ~ 

~\/,. 
PVQ Zl 

~\/,. 
PVQ n 

[x:= tjP 3. 
3x P z 
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~P-=>,,---==Q--P- :::}e 

Q 

~..1e 
P 

\:IxP \:Ie 
[x :=tjP 

(m) (n) ---.. ---.. 
P Q 

PVQ R R 
---'''-------- Ve(m,n) 

R 

(n) ---.. 
P 

3xP Q 
Q 

Figure 9.1: The system NJ of Gentzen 

times as a hypothesis and then have several occurrences. These occurrences may 
be marked by the same number or by different numbers. In the latter case, they 
will be discharged on different logical steps. 

In order to apply the rule Vi, it is necessary that no hypothesis where x is 
free is left, as we have seen above: such a hypothesis would constrain x, while 
we want x to be arbitrary! By a similar reasoning, a side condition for applying 
the rule 3e is that in all hypotheses except P, x cannot occur free. 

The symbol ..1 denotes here the absurd, like f in § 5.1.2, and not the unde
fined value we introduced on page 88 for 3-valued logics. Of course, there is no 
introduction rule for ..l. In order to use this constant, we can consider it as a 
hypothesis. For example, Figure 9.3 contains a proof of P => ((P =>..1) => ..i). 

The negation -,P is not a primitive concept in natural deduction, it is 
considered as an abbreviation for P => ..l. For example, we have a proof of 
P => -,-,p in Figure 9.3. Similarly, P -¢::> Q is considered as an abbreviation for 
(P => Q) 1\ (Q => P). 
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(1) ,...,...... 
P 

(1) (1) 
...-"--.. ...-"--.. 

P A Q Ae2 P A Q Ael 

--'!Q'----------p- A · 
QAP Z 

--""'---- =>,. 
P A Q ~ Q A P Z(l) 

Figure 9.2: Commutativity of conjunction 

1.. 

(2) 
...--"--.. 
P~1.. =>e 

(1) (2) ,...,...... ,...,...... 
P -,p 

1.. 
=>e 

-----=>,. 
(P ~ 1..) ~ 1.. Z(2) 

~i(l) 
P~ ((P~ 1..) ~ 1..) 

----=>,. 
(-,P) ~ 1.. Z(2) 
"'----'--- =>,. 
P ~ -,-,p Z(l) 

Figure 9.3: Introduction of a double negation 

(1) 
" 

Vx even(x) ~ Vy even(x.y)' Ve 

even(a) ~ Vy even(a.y) 

(2) ----even(a) =>e 

Vy even(a.y) Ve 

even(a.a) 
------'~-"---- ~i(2) 

even(a) ~ even(a.a) V: 
Z 

Va even(a) ~ even(a.a) 
-----------'--'-----'~-"-------- ~i(l) 

[Vx even(x) ~ Vy even(x.y)] ~ [Va even(a) ~ even(a.a)] 

Figure 9.4: Example of even numbers 

9.2.2.1 Formalized Examples. Figure 9.2 presents a half of the proof of 
commutativity of A, while Figure 9.3 etablishes P ~ -,-,p' The example of 
even numbers is formalized in Figure 9.4. 

These proof trees can be read in two ways. The easiest is from the top to the 
bottom. Reading a proof in this direction corresponds to the way semi-formal 
proofs are usually presented. The explanation given above for even numbers is 
an example of this kind. The reader has just to check that all steps are correct. 
Figure 9.2 could then read: assume P A Q; using Ae twice, we deduce Q on the 
one hand and P on the other, hence Q A P by Ai; we conclude P A Q :::} Q A P 
by ~i. 

In contrast, when we want to construct a proof tree, it is generally easier to 
start from its root. One is then constantly guided by the shape of the current 
goal. Thus, in order to prove P A Q ~ Q A P we have to prove Q A P, that 
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is, Q and P separately, from the hypothesis P 1\ Q. We will see below (§ 9.2.5) 
how this strategy is supported by software tools. 

Let us revisit the total correctness of the linear search algorithm, which was 
proved on page 25. One of the properties of the loop variant was based on the 
fact that x ::; N was a loop invariant: 

"We still have to show that the property v ~ 0 ( ... ) x ::; N [is left 
invariant]. At the beginning of an iteration step, we have necessarily 
--,P(x) which yields x =I N, since N satisfies peN); hence x ::; N boils 
down to x < N; after the assignment x:=x+l, this yields x ::; N as 
expected, since N and x are integers." 

The property to be proved can be formulated as follows 

peN) 1\ --,P(x) 1\ x::;N ~ x+1::;N . (9.9) 

It is necessary to make precise the theory we work with. An option would be to 
consider a theory of relative integers, but in order to avoid the introduction of 
additional material, let us keep Peano arithmetic. Thus we just need a constant 
N, a predicate symbol P and we assume P(N). The expression x + 1 is represented 
by Sex); as in § 5.3.2.2, x::; y is defined as x < S(y). Our goal is then to prove, 
under the hypothesis peN): 

--,p(x) I\x<S(N) ~ S(x)<S(N). (9.10) 

We will use the following axiom for equality: 

x=N ~ [peN) ~ P(x)] . (9.11) 

On this example we will construct the proof tree in the bottom-up direction. 
If we look at the shape of the goal (9.10), a natural strategy is to attempt 
to prove Sex) < SeN) under the additional hypothesis --'P(x) 1\ x < SeN). The 
current goal boils down to x < N if we admit that we have the following lemma: 

VxVyx<y~S(x)<S(y) . (9.12) 

This lemma is available on any decent proof tool, however a formal proof is 
given below. At this stage we have the following partial tree: 

(1) .. 
:"P(x) 1\ x<S(N) 

: } to be provided 

x<N 

VxVy x<y ~ sex) <S(y) 'Ie 

Vy x<y ~ Sex) <S(y) 'Ie 

x<N~S(x)<S(N) 
------~~~~-------------------~ 

Sex) < SeN) 
------'-~--'-'---- ~i(l) 
--,p(x) 1\ x < SeN) ~ sex) < SeN) 

We still have to show x<N under the hypotheses peN) and --,p(x) 1\ x<S(N). 
As the goal is atomic, we now proceed from the top to the bottom: let us split 
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the second hypothesis into -'P(x) and x<S(N). Both of them are atomic as well, 
but a Peano axiom (see § 5.3.2.1 on page 85) happens to state that x < S(N) 
implies x < N V x = N. Eliminating V allows us to consider the two cases x < Nand 
x = N separately. The branch to be constructed then has the following shape: 

(2) (3) .--... .--... 
x<N x=N 

x<S(N) 
=>e< 

x<N x<NVx=N x<N 
Ve(2,3) 

x<N 

Proving x < N from x < N is trivial. We are left with proving x < N from x = N ... 
and the additional hypotheses -'P(x) and P(N), which yield the absurd thanks 
to the equality axiom: 

-'P(x) 

(3) .--... 
_x =_N _P(~N~) =>e= 

P(x) =>e 
1.. --1..e 

x<N 

The notation =>e= is an abbreviation for two consecutive eliminations of::} from 
the equality axiom (9.11). We proceed in a similar manner for the comparison 
axiom. Note that constructing a proof using additional axioms does not raise 
any special difficulty. This amounts to working under the hypothesis that these 
axioms are satisfied. The proof of x < N is then: 

(1) 
" r , 

(3) .--... 
_x =_N _P(~N~) =>e= (1) 

" 
-,p(x) " x<S(N) A 

"e1 , , 
-,p(X) _-,P-,(,-X<...) _"_X_<_S-,"(N~) 

"e2 
_X_<_S....:(,-N!-) _ =>e< ~ -1..-1..e 

P(x) =>e 

x<NVx=N x<N x<N 
------------------ Ve(2,3) 

x<N 

9.2.2.2 An Arithmetical Example. In order to illustrate how we can for
malize reasoning by induction, let us prove the property (9.12) we used earlier: 

VxVy X<y::} S(X) <S(y) . (9.12) 

This formula is proved by induction on y. It means that we prove: 

Vy x<y::} S(x) <S(y) (9.13) 

using the axiom of induction (5.7) on page 86 that we recall here: 
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(x<O:::}S(x)<S(O)) A 

(Vy (x<y:::} S(x) <S(y)) :::} [x<S(y):::}S(x)<S(S(y))]) (9.14) 
:::} Vy x<y:::} S(x) <S(y) . 

We get (9.12) from (9.13) by applying the rule 'vi. All hypotheses on x must be 
removed. The formula (9.13) is a trivial consequence of (9.14) as soon as: 

x<O:::} S(x) <S(O) and 

Vy (x<y:::} S(x) <S(y)) :::} [x<S(y):::} S(x) <S(S(y))] 
(9.15) 

(9.16) 

are proved. We entrust the reader with the task of checking it by means of a 
sufficiently wide sheet of paper (hint: use =>e, Ael and Ae2). 

We will need Peano axioms concerning <. They were given on page 85, but 
we recall them here: 

Vx ""(x<O) , 
VxVy x<S(y) {::::} x<y V x=y . 

It is easy to prove (9.15) by reducing it to the absurd and using (9.17). 

Vx ""(x<O) Ve ,J!2... 
""(x<O) x<O 
~-~-----=>e 

..1 ..le 
_ _ S(~xt-) <_S...!.(O....:..)_ 

:::}i(l) 
x < o:::} S(x) < S(O) 

(9.17) 

(9.18) 

Proving (9.16) boils down to proving S(x) < S(S(y)) from x < y:::} S(x) < S(y) 
- this is the induction hypothesis - and from x < S(y): 

(2) 

;;<y:::} s(x) <s(yf 

(3) ..---..,. 
x<S(y) 

} to be provided 

_ _ --'s (,-,x )_<_S-,-(S-",(y.!...!..) ) __ 
:::}i(3) 

_ _______ x_<_S~(y=)_:::}~S(~x~)<_S~(S~(~y)~) ______ __ 
:::}i(2) 

(x<y:::} S(x) <S(y» :::} [x<S(y):::}S(x)<S(S(y))] 'ri' 

Vy(x<y=>S(x)<S(y» => [x<S(y)=>S(x)<S(S(y»] ~ 

The second comparison axiom (9.18) tells us that, in order to prove S(x) < 
S(S(y)), it is enough to prove: 

S(x) <S(y) V S(x)=S(y) . (9.19) 

On the other hand, the same axiom yields x < y V x = y from x < S(y), which 
allows us to reason on two cases. When x < y the induction hypothesis allows us 
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to conclude S(x) <S(y). In the second case (x=y) an equality axiom provides 
S(x) =S(y). In order to simplify the tree we replace (9.19) with S(x)::; S(y) on 
two occurrences. This is a harmless presentation trick. 

(3) ,.....--..... 
x<S(y) 

(2) (4) (5) , " ,.............. .............. 
x<y => S(x) <S(y) x<y......... x=y 

...... c:; ---=-- =>e= 
S(x) <S(y) v, S(x)=S(y) \/. 

=>e< il VZ2 
x<y V x=y S(x) <S(y) S(x) <S(y) 
-.....::...---=--------'--'-'=-~---------'--'-'=-="'- Ve(4,5) 

S(x) <S(y) V S(x)=S(y) 
---'--'--""""-'---:....:..--=..:..=>e< 

S(x) < S(S(y)) 

9.2.2.3 Some Remarks About Axioms. In Hilbert systems, the meaning 
of logical connectors is encoded in ad hoc axioms, so that one could get the 
impression that logic is just a somewhat arbitrary game of symbols [GLT89]. In 
contrast, natural deduction embeds the meaning of logical connectors in infer
ence rules corresponding to regular reasoning. This makes the latter approach 
much more satisfactory. 

The symmetry introduction-elimination we have for each connector is rem
iniscent of the relation constructor-destructor of algebraic abstract data types. 
It turns out to be very important in the development of the theory, especially 
for its relationship with type systems and A-calculus. We will revisit it in Chap
ter 11. 

Finally, let us remark that though NJ does not include any axiom on logi
cal connectors, nothing prevents us from introducing axioms about non-logical 
symbols. In our examples axioms about equality and arithmetic are employed. 

9.2.3 Toward Classical Logic 

Something is missing in the system NJ: one cannot prove all tautologies in it! 
To this effect it is necessary to add the law of excluded middle, or, equivalently, 
an elimination rule for double negations: 

---EM 
PV-oP 

-o-oP 
-- -o-oe 

P 

The system we get is called NK, it is complete (cf. § 9.8) for first order classical 
logic. In fact, the system NJ represents exactly intuitionistic logic, a logic we 
already talked about on page 42. 

Adding a law such as EM is entirely compatible with usual reasoning. Com
bined with Ve, one gets the form "if P entails Q and -op entails Q as well, 
then Q is proved". But EM (as well as -o-oe) breaks the symmetry and the cohe
sion of the system, and then complicates the study of NK. Therefore, Gentzen 
introduced another system which is perfectly symmetrical and is much more 
satisfactory for classical logic: the sequent calculus. 
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However, it is important not to confuse this calculus with natuml deduction 
presented with sequents. This way of presenting natural deduction is sometimes 
the most convenient. In passing, note that a formalism inspired from natural 
deduction, which aims at defining the semantics of programming languages, 
and is therefore called natural semantics [Kah87], is usually presented with 
sequents. 

9.2.4 Natural Deduction Presented by Sequents 

A sequent is an ordered pair composed of a finite sequence of formulas r and 
of a formula P, noted r I- P. Such a sequent represents the judgement IIp is 
derivable under the hypotheses of r". 

r I- P can be seen as a deduction tree of the previous presentation, where we 
keep only the leaves (non-discharged hypotheses) and the root (the conclusion). 
Everything goes on as if one takes a snapshot of the simplified deduction tree 
at each step, and then displays these snapshots along a tree. 

The sequence of formulas f may include different occurrences of a hypothesis 
H, so that H can be discharged at different stages. Two contexts r 1 and r 2 

which are identical up to the order of formulas they contain can be considered 
as equivalent. In other word, contexts can be considered as multisets rather 
than sequences. 

Examples. The simplest proof one can construct in natural deduction is the 
derivation of P under the hypothesis P. With sequents, we get the judgement 
PI- P, which is an axiom in this presentation. More generally, axioms are all 
sequents having the shape r I- P where P is a member of f. (In the frame
work of NK, one has to add the excluded middle or the elimination of double 
negations.) Inference rules indicate how we go from a sequent to the next. For 
instance, Figure 9.5 gives the rules about conjunction and implication. Observe 
that every formula in the context r corresponds to a bundle of hypotheses to 
be discharged simultaneously; we no longer need to use a mark which links a 
bundle to the step where it is discharged; this is the main advantage of this 
presentation of natural deduction. The two styles can be compared in Figure 
9.6. 

r .... p r .... Q". 
r .... PAQ ~ 

r,p .... Q =>.. 
r .... p=?Q ~ 

r .... p"Q" 
el r .... p 

r .... p"Q" e2 
r .... Q 

r .... p=?Q r .... p 
----=----~ r .... Q 

Figure 9.5: Rules of NJ presented with sequents 
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(1) 
~ 

PAQ Ae2 
Q 

(1) 
~ 

PAQ Ael 

P A. 
QAP t 

-----'"----- =>.. 
P A Q => Q A P t(l) 

PAQt-PAQA 
el 

PAQt-P A. 
t 

PAQt-QAP =>.. 
t-PAQ=>QAP t 

Figure 9.6: Commutativity of conjunction (2 styles) 

9.2.5 Natural Deduction in Practice 

Searching a formal proof is much easier in natural deduction than in a Hilbert 
system. Most deduction steps are guided by the structure of the formula to be 
proved. But the size of formal proofs remains large. Moreover, when we write 
everything explicitly, we see that a given subformula has to be written several 
or many times. Using such techniques by hand quickly becomes tedious - then 
error prone! - for realistic proofs. 

However, natural deduction is well suited to interactive automated proof 
assistants. For example, it is used in HOl and Coq. At each stage, the current 
sequent is displayed, then the user calls a deduction rule and a new sequent 
or set of sequents is displayed. In practice, it is generally better to specify a 
combination of deduction rules by means of a language of tactics. 

Let us see how the example of Figure 9.6 is proved with Coq. We introduce 
the goal 

PAQ => QAP . 

As this goal has the shape A => B, we naturally try the rule =>i' This is imple
mented by the tactic called Intro. A new hypothesis P A Q will be generated 
and we can provide its name, say h1, as a parameter of Intro. The system then 
displays the sequent h1:P A Q ... Q A P. In order to prove the conjunction Q A P 
we try the rule Ai, which is called Split. Two subgoals are generated, the first 
displayed by Coq is h1:P A Q ... Q. We then want to use the hypothesis h1 by 
eliminating its main connector. To this effect we use the tactic Elim, with h1 
as a (mandatory) parameter. The second subgoal is solved in the same way. 

Several steps can be put together into a sequence of tactics, which is written 
in our example: 

Intro h1; Split; Elim h1. 

Note that fully automatic tactics can also be used for such simple formulas. 

Each basic tactic represents a deduction rule, but in the general case, 
~ a tactic just states instructions aiming at carrying on the construc
tion of the proof tree. In some cases, an automated tactic can elaborate a full 
branch. Thus the real proof we obtain is not the visible script of tactics (which 
is also the thing one edits and keeps in a file), but the internal proof tree, that 
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is built by the system.2 This object is checked by a very small kernel, which 
has only one task: inspecting whether, or not, rules are correctly applied. This 
technology allows one to design and implement proof assistants which are both 
reliable and open. We go back to this point in § 12.5. 

Note in passing that the size of scripts is generally smaller than the size of 
the corresponding proof trees. To give a rough idea, here is a detailed script 
(shorter ones can be found, but they use advanced features) for the proof given 
above for (9.10), under the assumption P(N). 

""P(x) A x<S(N) => S(x)<S(N) 

Intro h1; Apply succ_monot. 
Elim h1; Intros h1l h1r; 
Caseax_comp2 with h1r introducing h2 h3. 

Trivial. 
Elim h1l; Rewrite h3; Assumption. 

(9.10) 

The first line introduces ...,P(x) A x<S(N) as a hypothesis named h1 and then 
applies a lemma named succ_monot, which states that the successor function 
is monotonic (9.12). This yields the new subgoal x<N. In the second line, h1 is 
split into ""P(x) and x<S(N), respectively called hll and h1r. Then we reason 
on the two cases we get when we apply ax_comp2 (the second comparison 
axiom (9.18» to h1r. The fourth line corresponds to the trivial case x<N (h2 
is automatically used behind the scene). The last line proceeds by elimination 
of the conclusion of hll which is .1; we are left with the subgoal P(x) which 
boils down to the hypothesis P(N), thanks to the equality h3. 

9.3 The Sequent Calculus 

In natural deduction, the concept of a theorem becomes of secondary impor
tance with relation to the deducibility relation. This is still more true with 
sequent calculus. The main difference between the intuitionistic sequent calcu
lus (called LJ by Gentzen) and natural deduction (NJ) is the replacement of 
elimination rules, governing how the main connector of the conclusion can be 
eliminated, with left introduction rules, governing what can be deduced from a 
compound hypothesis, given what is deduced from its components. On the other 
hand, classical logic (LK) is no longer obtained by the introduction of an ad 
hoc axiom, but by using an entirely symmetric concept of a sequent. A classical 
sequent is a couple of two finite sequences of formulas r and ~, noted r I- ~. 

As we did before, we agree that sequences which are the same up to a permu
tation are considered as identical. Intuitively, the sequent r I- ~ can read: ''the 
conjunction of hypotheses contained in r entails the disjunction of formulas 
contained in ~". For example, A, B I- C, D is similar to A A B => C V D. 

2By the way, it is possible to print the tree in natural language (TBK92]. 
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It is more natural to start the study of sequent calculus with the classical 
system LK. We get the intuitionistic calculus LJ from LK by confining deriva
tions within the space of intuitionistic sequents, which are sequents where the 
right part has at most one formula. 

Another difference between natural deduction and sequent calculus stands 
in the status of negation, which is no longer an abbreviation built upon::::} and 
.1, but a plain connector: it is even the vault key of the symmetry of the system. 
Indeed, a formula can pass from one sequent side to the other by means of a 
negation: see the introduction rules for.., in Figure 9.9. 

9.3.1 The Rules of the Sequent Calculus 

The rules of LK can be divided into three groups: a group of structural rules 
(Figure 9.7), a group on identity (Figure 9.8) and a group of logical rules 
(Figure 9.9). These rules can all be read top down (if the premises are good,3 
so is the conclusion), or bottom up (searching to prove the conclusion reduces 
to searching a proof of the premises). 

The structural rules tell us something about the structure of sequents and 
not about the structure of formulas. They define how the stock of hypothe
ses and conclusions is handled. Although no logical connector is involved in 
these rules, essential properties of the logic they formalize are determined by 
them [GLT89]. Thinning (or weakening) rules allow us to introduce "useless" 
formulas and to consider as axioms only sequents in the form P I- P. Contrac
tion rules, when read bottom up, allow us to repeat a formula that may be used 
in several ways. They correspond to the building of packets of hypotheses in 
natural deduction (when occurrences of several hypotheses are gathered, that 
is, identified by the same number in our first presentation in § 9.2.2). 

rl-6. 
affl 

rl-6. 
affr 

P, r I- 6. r I- 6.,Q 

p,p,r I- 6. rl-6.QQ 
ctrl ' , ctrr 

p,rl-6. r I- 6.,Q 

Figure 9.7: Structural rules of LK 

The identity group consists of two rules: the axiom A I- A, where we can 
without loss of generality restrict ourselves to the cases where A is atomic, and 
the cut rule which formalizes the usual concept of a lemma. Everybody can 
intuitively convince themselves that the cut rule is sound when ~ is empty: P 

3Understand: provable or valid; the first alternative remains valuable in the case 
of LJ. 
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plays the role of a lemma derived from r, the "consequence" 6.' can then be 
deduced from rand r'. The general case where 6. is non-empty boils down to 
this special case if one considers that formulas of 6. can be freely transferred 
to the left-hand side, then put back to the right-hand side. 

--ax 
AI-A 

r I- 6, P P r' I- 6' , cut 
r,r' I- 6,6' 

Figure 9.8: Identity group of LK 

The price to pay for each double transfer is a double negation (see 
the logical rules) which costs nothing in classical logic. The problem 

is not raised in intuitionistic logic since 6. is necessarily empty. Moreover the 
previous reasoning can be made symmetrical for LK: let us make r' empty in 
a similar way, PI- 6.' expresses that 6.' refutes P (this is, as we could say, an 
anti-lemma) and r I- P expresses that P refutes r. Let us also remark that, 
if we regard rand 6.' as formulas, the cut rule states that I- is a transitive 
relation. 

Most logical rules (1\, VDll VD2' =>, "land 3r of Figure 9.9) are con
structed by analogy with intuitionistic natural deduction. Rules Vl and 3l are 
constructed by duality with I\r and ,*. As a result, we get a kind of left/right 
symmetry for each connector on the one hand, and a duality between 1\ (re
spectively V) and V (respectively 3) on the other. 

At first sight, one may wonder that =>l distinguishes two contexts r I- 6. 
and r' I- 6.', and then does not seem to be reducible to a combination of Vl and 
'l. It is actually possible to identify r' = rand 6.' = 6. in LK; this variant is 
discussed below (Figure 9.11). The version presented here is compatible with 
the intuitionistic case: as in all rules where 6. comes with an additional formula, 
it is enough to impose that 6. is empty. 6.' consists of at most one formula. 

The self-duality of negation expressed in 'l and 'r provides an interpre
tation of sequents in terms of refutation and of proof. Proving a sequent is, 
depending on one's preference, to refute a formula on the left-hand side or, to 
prove a formula on the right-hand side, in the context made of the remainder 
of the sequent. In other words, if we have a sequent P, r I- 6., Q, we can equally 
well say that we prove Q in the context P, r I- 6., or that we refute P in the 
context r I- 6., Q. 

9.3.2 Examples 

In order to illustrate a number of the previous rules, we give in Figure 9.10 the 
proof of the excluded middle law (note the use of a contraction on the right), 
and the example of even numbers already presented in natural deduction. 
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p,rt-~ A 

PAQ,rt-~ it 
Q,r t-~ A 

PAQ,rt-~ l2 

P, r t- ~ Q, r t- ~ V 
pVQ,r t- ~ l 

r t- ~,P Q,r' t- ~' 

p=>Q,r,r't-~,~' =>z 

[x:= tjP,r t- ~ 'vi 
vxp,r t- ~ 

p,rt-~ 3 
3xp,rt-~ l* 

r t- ~, P r t- ~, Q Ar 

r t- ~,PAQ 

r t- ~,P \I 

vrl 
r t- ~,PVQ 

r t- ~,Q \I 

vr2 
r t- ~,PVQ 

P, r t- ~, Q =>r 
r t- ~,P=> Q 

r t- ~, P '9i-* 
r t-~, \h:;P 

r t- ~, [x := tjP 3r 
r t- ~,3xP 

Rules'9i- and 3l must respect the restriction already discussed in NJ: x 
cannot possess free occurrences in the context (that is, in r or in ~). 

Figure g.g: Logical rules of LK 

9.3.3 Cut Elimination 

The major theorem of sequent calculus is: 

Theorem 9.2 (Gentzen's Hauptsatz) 
Every provable sequent can be proved without the cut rule. 

The proof of Gentzen is constructive: it provides an algorithm for eliminating 
cuts. This theorem is interesting because cut-free proofs enjoy properties which 
are not satisfied in the general case. One of the most important is the subfor
mula property: all formulas which occur in a cut-free proof are subformulas 
of the formula (or of the sequent) to be proved. This is clear because no rule 
but the cut rule has a formula (P) in its premises which does not occur in its 
conclusion (r, r' I- ~, ~'). 

As the cut rule is redundant, what is the point of introducing it? Indeed: 

- the cut rule is useful in practice because, combined with contractions, it 
allows one to factorize inferences; note that contractions are used in an es
sential way when a given quantified formula is instantiated on several places 
of the same proof; 

- the cut rule turns out to be very convenient in the development of the the
ory. For example, one may want to inverse logical rules. Consider /\r: if 
r I- ~, P /\ Q is derivable, we would like to infer that r t- ~, P is deriv
able (and similarly for r I- ~, Q). Indeed, we can easily derive the sequent 



--ax 
PI-P 

""r 
I-P,""P 

-~~-=--Vr2 
I- ...,PV P,...,P 

Vrl 
I- ...,PV P,...,PV P ---=-.....!...-=--=-- Ctrr 

I- ...,PV P 
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--------ax 
_______ ax even(a.a) I- even(a.a) 'vi 
even(a) I- even(a) Vy even(a.y) I- even(a.a) ~ 

even(a) => Vy even(a.y),even(a) I- even(a.a) 'vi 
Vx even(x) => Vy even(x.y), even(a) I- even(a.a) ~ 

Vx even(x) => Vy even(x.y) I- even(a) => even(a.a) '* 
Vx even(x) => Vy even(x.y) I- Va even(a) => even(a.a) ~ 

I- (VX even(x) => Vy even(x.y)] => (Va even(a) => even(a.a)] 

Figure 9.10: Proof examples using LK 

P A Q I- P, then we get the desired result using a cut on P A Q: 

p ... p 

r ... 6., P A Q P A Q ... P All 
-----.:..---=-----~-- cut 

r I- 6.,P 

- one may also consider proofs making use of proper axioms. For example, the 
two first axioms of Peano can be represented by the sequents: 

0= Sex) ... , 
Sex) = S(y) ... x = y . 

Gentzen's theorem is generalized as follows: all cuts can be eliminated except 
the ones where a proper axiom is used. 

The dynamics of the cut elimination process is fairly complex. The idea of 
the algorithm is to make cuts going upwards to the leaves of the derivation 
tree. Each lemma in the form \/xP is potentially usable in an infinite number 
of instances, so it is a priori not obvious that the process terminates. 

True eliminations occur in the case of a cut with an axiom. Propa
gating a cut coming from logical inferences may have the effect that 

the number of cuts increases, but as a compensation, new cuts are about sub
formulas. Here is an example in order to illustrate this phenomenon. 



168 Understanding Formal Methods 

r,A .... B 
---'---=>,. 
r .... A::}B 

B .... B r' .... A 
r' , A ::} B .... B ::} l 

----------------------~---------cut 

r,r' .... B 

On the next step, the cut on A ::} B is replaced with two "smaller" cuts, one 
on A and the other on B: 

r' .... A r,A .... B 
-----------'----- cut 

r,r' .... B B .... B 
~-------------------------cut 

r,r' .... B 

The second cut is on an axiom, it is immediately eliminated: 

r' .... A r,A .... B 
---------'----- cut 

r,r' .... B 

The most dangerous cuts are the ones which occur immediately after 
a contraction, because propagating them entails a duplication with

out a straightforward counterpart. During cut elimination, the proof size may 
4h 

increase in a hyperexponential way (it may be 44 . , where h is the height of 
the initial proof and where the iteration number of exponentials depends on the 
size of cut formulas). This measures the complexity of the elimination process: 
the algorithm is not supposed to be actually performed on real proofs. 

This positive result of Gentzen is very important. Among a number of ap
plications in computer science, it will be seen in Chapter 11 that it lies at 
the root of recent developments of computational paradigms within a logical 
framework. 

9.4 Applications to Automated Theorem Proving 

The deduction systems presented above formalize the concept of a proof: they 
first aim at recognizing a proof. On the other hand, constructing a proof tree 
is much less simple, at least when we go beyond propositional calculus. 

Recall that a closed formula P is not necessarily always true or always 
false: its truth value generally depends on its atomic components. 

Two well-known techniques implemented in automated proof search tools 
called "tableaux" and resolution, are traditionally presented from a model
theoretic perspective. The sequent calculus provides another viewpoint based 
on proof theory. 

The first method works on arbitrary formulas. We present here the propo
sitional version. Given a proposition P, we will see, thanks to a systematic 
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decomposition procedure of P, how a counter-example for P or a proof of P 
can be constructed. 

When P is no longer a proposition, but a closed first-order formula, we face 
an additional difficulty: intuitively, we have to construct witnessing values for 
individual variables. There are systematic search procedures that eventually 
yield a proof of P if there is one, while the search for a counter-example does 
not terminate in the general case: the problem is then only semi-decidable. This 
will be summarized below (§ 9.8.1). 

We will not indicate how to adapt the method of semantical tableaux to 
first-order logic. However, this will be done for the resolution principle, which 
works with a restricted set offormulas (restrictions are about the use of connec
tors) but has as its main interest the computation of witnessing values thanks 
to the unification algorithm. 

9.4.1 Sequents and Semantical Tableaux 

In order to mechanize the search for a proof of a given sequent, it is necessary 
that the process of applying rules (with a bottom-up reading) terminates. 

Logical rules of LK possess a remarkable property: they decompose each 
formula into its components, so that the number of used logical connectors 
decreases. As cut rules are not mandatory, only contraction rules are still prob
lematic. However we can still avoid them in classical propositional logic, thanks 
to the variants of "[, Vr and ~[ given in Figure 9.11. 

p,Q,r I- A 1\ 

pI\Q,rl-A z 
r I- A,P,Q Vr 

r I- A,PVQ 
rl-A,p Q,rl-A 

P => Q, r I- A =>Z 

Figure 9.11: A variant of LK 

These rules are equivalent to the rules of Figure 9.9 (one pass from a version 
to the other using weakenings and contractions), but the new ones have an 
advantage for automated proof search: if the conclusion is provable, the premise 
(or the premises) is (are) provable as well. Such rules are said to be revertible 
or invertible: intuitively, no piece of information is lost when we go from the 
conclusion to premises. Then we can forget contraction rules without loss of 
completeness. Remaining rules provide an algorithm for verifying tautologies 
which is quite simple to implement. 

Weakening rules are tried as a last resort: when we get a sequent r I- ~ only 
made up of atomic propositions, two cases are possible: either r and ~ have a 
common formula A; in this case r I- ~ is derivable from the axiom A I- A using 
weakening rules (in practice we don't need to perform these steps, computing 
the intersection is sufficient); or r and ~ are disjoint, then there is no way 
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to prove r I- ~; as this sequent is needed in order to derive the sequent S we 
search a proof for, (because of reversibility of the rules we use) we conclude 
that S is not provable. 

The same algorithm can be presented - under a different form - from a 
model-theoretic perspective, so that we are led to the method of semantical 
tableaux. First the concept of a tautology is extended in the obvious way to 
sequents, with the analogy between the sequent AI, ... , Am I- BI , ... , Bn and 
the formula (AI 1\ ... 1\ Am) ::} (BI V ... V Bn) in mind: a sequent r I- ~ is 
tautological if every interpretation where all propositions of r are true satisfies 
at least one proposition of ~. 

Reciprocally, a counter-example to the latter sequent is provided by any 
interpretation where all propositions of r are given the truth value true and all 
propositions of ~ are given the truth value false. The rules of the last variant of 
LK considered above are such that the conclusion admits a counter-example if 
and only if one of the premises admits this counter-example, which is another 
way of stating that the rules are sound and invertible. When we reach a sequent 
made up only of atomic propositions, we have two cases: 

- the two sides of the sequent possess a common proposition A; it is then 
obvious that the sequent is not semantically refutable, since A cannot si
multaneously take the values true and false; 

- the two sides are disjoint, so we immediately get a counter-example. 

Thus it can be shown that a formula F is a tautology if and only if no branch 
of the search tree starting from F reaches a counter-example. 

Though this presentation rests on providing truth values to propositions, 
the semantical tableaux method is very different from the truth table method. 
The latter becomes less efficient as the number of atomic propositions becomes 
larger. Actually, only the former method can be generalized to infinite sets of 
propositions and to first-order logic. An example of an automated tool based 
on semantical tableaux is 3PP [HBG94]. 

9.4.2 From the Cut Rule to Resolution 

Since the 1960s, a number of researchers, following Gilmore, Davis and Putnam, 
and Robinson set out to look for a feasible semi-decision procedure, based on 
the work done by Jacques Herbrand in the 1930s. The programming language 
Prolog is generally presented as an application of the resolution principle due 
to Robinson [Rob65]. 

9.4.2.1 Resolution in the Framework of Propositional Logic. The res
olution principle is easy to present from sequent calculus. Let us start with the 
propositional case. It is well known that, using De Morgan laws and replacing 
P::} Q with -,p V Q, every proposition can be put in the form of a conjunction 
of clauses, where a clause is a disjunction of literals, and a literal is either an 
atomic proposition, or the negation of an atomic proposition: 

-,AI V ... V -'Am V BI V ... V Bn . 
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In order to prove a proposition P from a conjunction of clauses C1 ••• Ck , we 
first put P in clausal form PI /\ ... /\ P, in turn. Our problem then boils down 
to separately proving each clause Pj from C1 ••• Ck. Thus we can without loss 
of generality restrict ourselves to reason with clauses only. 

Which inference rules can we use on clauses? It happens that only one is 
enough: the resolution rule that, from two clauses r V Rand -,R V r', denoting 
respectively 

-,A1 V ... V ... V -,Am V Bl V ... V R V ... V Bn and 
-,A~ V ... V -,R V ... V -,A~ V B~ V ... V ... V B~ 

allows us to deduce the clause r V r' (the disjunction of all literals of rand 
r'). As usual, this can be stated by means of a fraction: 

rv R -,Rvr' 
rvr' 

The soundness of this rule is easy to explain if we agree that the clause 

represents the sequent 

AI, ... , Am I- B 1 , ••• , Bn 

the resolution principle simply corresponds to the cut rule. 

We can also understand why the resolution rule is sufficient, thanks 
to Gentzen's Hauptsatz. If we translate clauses into the language of 

sequents, we need a priori structural rules, the identity group and logical rules 
of LK. However, the latter are of no use here since our sequents are without a 
logical connector! 

The theorem of cut elimination seems to indicate that the resolution 
rule is useless as well, but beware: here we want to prove a sequent correspond
ing to a clause Pj from the sequents corresponding to clauses C1 ••• Ck, so 
that the latter are interpreted as proper axioms. We know that, in contrast to 
cuts with logical axioms A I- A, cuts with proper axioms cannot be eliminated. 
However, the resolution rule can safely be restricted to the cases where at least 
one of the premises is among C1 •.• Ck. 

These ideas are explained in more detail in [GLT89]. The reader can 
also find there a justification for the removal of contraction and weakening rules 
in the case of Prolog. In the purely logical fragment of Prolog, a program is a 
set of (first-order) clauses which have at most one positive literal. They are 
called Horn clauses, and they correspond exactly to intuitionistic sequents. 

9.4.2.2 Resolution in the Framework of First-order Logic. In order to 
illustrate the resolution principle when we have first-order variables, consider 
the two formulas saying that every human being is mortal and that Socrates is 
a human being: 
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'Ix human(x) => mortal(x) , 
human(Socrates) . 

We can put the first formula in clausal form 

..... human(x) V mortal(x) 

where it is implicit that x is universally quantified. In the special case where x 
is Socrates, this yields: 

..... human(Socrates) V mortal(Socrates) 

The resolution rule for propositions can then be applied: 

human(Socrates) ..... human(Socrates) V mortal(Socrates) 
mortal(Socrates) 

In fact, the full resolution rule performs the substitution and the simplification 
in one step: 

human(Socrates) ..... human(x) V mortal(x) 
mortal(Socrates) 

In the general case we have to find a substitution for both premises so that, after 
performing the substitution, they contain two opposite literals. For example, 
in the following deduction, we substitute 0 for n in the first premise, S(m) for 
x and S(p) for y in the second: 

..... (m+n=p) V S(m)+n=S(p) ..... (x+O=y) V x=y 
..... (m+O=p) V S(m)=S(p) 

The procedure for computing the smallest unifier of two terms or of two 
atomic formulas, which is the most general composition of substitutions making 
these terms (or these formulas) identical, is called unification. (There is actually 
an equivalence class of unifiers identical up to a renaming of variables.) In the 
previous example, the smallest unifier we chose is 

[n := 0] 0 [x := S(m)] 0 [y := S(P)] . 

Unification algorithms examine simultaneously the two terms to be unified, 
according to their syntactical structure, while adding substitutions when, at the 
same location, one term has a variable v and the other has either a variable, or 
a term that does not contain v; however, if we have something impossible, e.g. 
two different constants at the same location, the algorithm stops and returns 
a failure. 

Explaining resolution using sequents is just as easy when we consider pred
icates instead of propositions. We consider sequents without quantifier but 
containing free occurrences of variables. A substitution step uses the rule: 
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[x := tlr t- [x := tl6. ' 
which is easy to derive from the rules of LK. By repeating such substitutions 
and then applying a cut rule we get the resolution rule: 

r t- 6., R -.R' ,r' t- 6.' 
ar, ar' t- a6., a6.' 

where a is the most general unifier of Rand R'. 
The previous examples of deductions read more easily with sequents: 

t- human(Socrates) human(x) t- mortal(x) 
t- mortal(Socrates) 

m+n=p t- S(m)+n=S(p) x+O=y t- x=y 
m+O=p t- S(m) =S(p) 

In the following, clauses are noted in the form of sequents. 

9.4.2.3 Skolemization. As we consider only quantifier-free sequents, this 
amounts to agreeing that variables are universally quantified on the whole 
formula we would get, after all literals are placed on the right-hand side of 
the sequent. For example, the sequent A(x) t- B(x) should be understood as 
equivalent to "Ix A(x)::::} B(x). 

At first sight, the expressive power of first-order logic is weakened by this 
limitation: using both quantifiers should be allowed at any place in a formula. 
However, it is possible to put any formula in prenex form 

QIXI ... Qnxn M , 

where Qi represents V or 3, and where M, called the matrix, contains no 
quantifier. 

Existential quantifiers can also be removed by introducing new function 
symbols, called Skolem functions. For example, in the formula 

3xVy3zP(x,y,z) , 

x depends on nothing while z depends on y; introducing the constant a and 
the unary function j we get: 

VyP(a,y,j(y» . 

This process of eliminating existential quantifiers is called skolemization, and 
leads to the Skolem normal form. What really justifies this transform is the 
following theorem. 

Theorem 9.3 
Let {Fl , ... Fn} be a set of formulas and let SI, ... Sn be their respective 
Skolem normal forms, {Fl' ... Fn} is inconsistent4 if and only if {SI, ... Sn} is 
inconsistent. 

4 A set of formulas is defined to be inconsistent if we can infer the absurd, which is 
formalized here by the empty sequent. We come back to this concept later (§ 9.8.2). 
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In practice, this means that, in order to prove that P is a consequence of 
the clauses C l , ... Ck, we will reason by reduction to the absurd: proving that 
-,p is impossible. To this effect we put -,p in skolemized clausal form Pl , ... Pl. 
Then we try to deduce the empty clause from C l , ... Cn, Pl , ... PI. This search 
is made much easier thanks to the preliminary process of removing connectors 
and quantifiers. 

For example, we want to prove that there exists a mortal being knowing 
that Socrates is a human being and that every human is mortal. These two 
hypotheses are modeled by the sequents 

I- human(Socrates) and human(x) I- mortal(x) 

Now, skolemizing 3xmortal(x) would lead us to dead end: mortal(a), where 
a is a new constant, cannot be deduced from the two previous sequents. In 
contrast, if we consider the negation -,3x mortal(x), corresponding to the se
quent mortal(x) 1-, we can deduce the empty sequent from the three previous 
sequents. Note that we use here a top down strategy for constructing the proof 
tree, with the idea of confronting axioms with the sequent to be refuted (ini
tially mortal(x) 1-) in mind. 

human(x) I- mortal(x) mortal(x) I-
I- human(Socrates) human(x) I-

I-

Let us illustrate the use of skolemization, with a proof that, if there exists 
a common lower bound to all elements: 

3z'V'x z::; x (9.20) 

then every element has a lower bound: 

'V'x 3y y::; x . (9.21) 

We put (9.20) in normal form. We introduce a Skolem constant m for z: 

(9.22) 

Then we consider the normal form of the negation of (9.21), which leads us to 
introducing a Skolem constant - say n - for x this time (we implicitly exploit 
the dual identities -,\fu P ¢::} 3u -,p and -,3u P ¢::} 'V'u -,P): 

(9.23) 

The proof itself has only one resolution step, using the unifier [y := ml 0 [x := 

nl: 

I-
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9.4.2.4 Uses of the Resolution Principle. The resolution rule is just one 
part of a full proof search procedure. At each step, we still need to choose a pair 
of clauses on which the rule should be applied. A number of different strategies 
are possible, some of them are guaranteed to find a derivation of the empty 
clause if there is one, in theory. For an exposition of the most important, the 
reader may consult the book of Chang and Lee [CL 73]. The resolution principle 
is actually used in proof tools for first order logic, e.g. Otter [McC94]. 

9.4.3 Proofs in Temporal Logic 

Temporal logic was presented in § 8.5. Proofs for linear temporal 
logic can be formalized using an axiomatic approach (Figure 9.12) 

or a sequent calculus based approach (Figure 9.13). These systems are sound 
and complete (cf. § 9.8) for Kripke semantics on the considered fragments (they 
do not include U for instance). 

o(A => B) => (oA => DB) 
OA=>A 
oA=> OOA 
OA ~ ....,o....,A 

Figure 9.12: Axioms of temporal logic (system 84) 

r,A I-~ 
r,oA I- ~ 

or I- A,O~ 

or I- oA,O~ 

r I- A,~ 

r I- OA,~ 

or,A I- O~ 

or,OA I- O~ 

Figure 9.13: Rules of sequent calculus for system 84 

9.5 Beyond First-order Logic 

The deduction systems introduced in the previous sections can be extended to 
second-order and higher-order logic. We will revisit this point in Chapter 11 
with the presentation of system F. 
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9.6 Dijkstra-Scholten's System 

In the previous deduction systems, particularly the systems of Gentzen, logical 
equivalence is not handled directly: it has to be first translated by a double 
implication. In contrast, the connector of equivalence plays a pivotal role in 
the calculus of Dijkstra and his followers, which was designed for favoring the 
conciseness of proofs. We limit ourselves to the propositional fragment in what 
follows. 

9.6.1 An Algebraic Approach 

Deductions are regarded as rewriting of logical expressions. One goes from one 
line to the next by replacing a subexpression with an equal subexpression. "De
duction rules" are then considered as logical identities which have an algebraic 
flavor, such as (a + b)2 = a2 + 2ab + b2. 

The first logical connector one starts with is equivalence <=>. One postulates 
the following properties of this operation: 

- it is associative: (A <=> B) <=> C = A<=> (B <=> C)j 
- it is commutative: A <=> B = B <=> Aj 
- it admits t as an identity element: A <=> t = Aj 
- it is the (Leibniz) equality on Boolean values: A <=> B is another way to 

write A = B when A and B are logical expressions. 

Disjunction is then introduced with similar postulates: commutativity, asso
ciativity, idempotentness (A V A = A), distributivity over equivalence. Syntac
tically, V (as /\ and :::}) takes precedence with relation to <=>. The implication 
A :::} B and the conjunction A /\ B are respectively defined by: 

and 

The expression A <=> B <=> A V B has to be regarded as a whole, 
~ and certainly not as the conjunction of A<=> Band B <=> A V B. It 
can be compared with an algebraic expression such as p + q + p.q . 

The last operator to be introduced in this approach is negation, which is 
respectively related to equivalence and to disjunction by the following postu
lates:5 

..,(A <=> B) <=> ..,A <=> B and ..,AvA 

The constant f is defined as the negation of t: 

f ~f ..,t . 

5If we think of the relation between NJ and NK, it is interesting to note that 
-,-,A {:::} A can be derived from the first postulate (first prove A {:::} -,B {:::} -,A {:::} 
B), whereas it is not the case of the law of excluded middle. 
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9.6.2 Displaying the Calculations 

Proving a formula X amounts to making it equal to t using a sequence of 
rewriting steps. Calculations are displayed in the following way, in order to 
provide the justification of each step and make reading easier: 

X 

= {evidence for X = Y (or for X {::} Y)} 

Y 

= {evidence for Y = Z (or for Y {::} Z)} 

Z 
etc. 

Evidences are more or less explicit, depending on the context. In the examples 
given below they are quite detailed. First we give a proof of A V t which makes 
use of the equality (X {::} X) = t . 

Avt 
= {(X {::} X) = t , with X := A} 

A V (A {::} A) 

= {distributivity of V over {::} } 

(A V A) {::} (A V A) 

= {(X {::} X) = t , with X := A VA} 

t 

When the formula X to be proved has the shape R {::} S, it is simpler to 
rewrite R to S (the fact that t is an identity element for {::} ensures that the two 
processes are equivalent). We will proceed below in this way, for proving that 
A {::} B is equivalent to (A => B) 1\ (B => A) . From a more general perspective, 
as soon as properties of implication are proved, for example transitivity, one is 
allowed to use steps such as 

X 

=> {evidence for X => Y} 
y 

in order to prove that the first line entails the last, or 
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x 
{evidence for Z =* (X {::} Y)} 

Y 

t 

in order to prove that Z entails the first line. 
This way of displaying calculations is also used in the framework of imper

ative program calculation [Coh90, Kal90] (as introduced in Chapter 4) and of 
functional programming [Bir95]. 

9.6.3 The Role of Equivalence 

The fact that {::} is an equality plays a very important role: 

- as soon as A {::} B is at our disposal, occurrences of A can be replaced with 
B in an expression (law of Leibniz); 

- all previous identities can be written with {::} instead of =; 
- as {::} is associative and commutative, many identities can be read in several 

ways. 

This leads one to manipulate multiples equivalences without parentheses: 
X {::} Y {::} Z ... {::} T . In a sequence such as the latter, one can delete two 
occurrences of the same formula: X {::} X is t, which is the identity of {::}. 

One of the most noticeable multiple identities is certainly the golden rule, 
which is, among other things, a definition of A: 

This rule admits six permutations, and each permutation can be parenthesized 
in five ways; considering that Rand S play symmetrical roles, we still have 
eleven different uses of the golden rule. 

The previous ideas are illustrated in Figure 9.14, where it is proved that 
double implication (Le. traditional equivalence) is identical to the notion of an 
equivalence which is axiomatized here.6 Note that this theorem needs a fairly 
longer proof in other frameworks: 

- the proof that double implication is associative is an interesting bench
mark for automated tautology verification systems; this is one case where 
the method of truth tables is more efficient than the method of semantical 
tableaux; 

- proving that double implication is a Leibniz equality requires an induction 
on the structure of formulas. 

6It is quite instructive to prove the same theorem by progressively identifying 
A ¢::> B ¢::> ((A =? B) A (B =? A» to t, and using the right instance of X =? Y ¢::> 

X ¢::> X VY. 
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(A => B) A (B => A) 
= { definition of =>; commutativity of V } 

(A V B {:::} B) A (A V B {:::} A) 
= { golden rule; associativity of {:::} } 

A V B {:::} B {:::} A V B {:::} A {:::} (A V B {:::} B) V (A V B {:::} A) 
= { A V B {:::} A V B is an identity element; commutativity of {:::} } 

A {:::} B {:::} (A V B {:::} B) V (A V B {:::} A) 
{ distributivity of V over {:::}: factorisation of A VB} 

A {:::} B {:::} A V B {:::} B V A 
= { commutativity of V } 

A {:::} B . 

Figure 9.14: Double implication in Dijkstra's system 

This shows that the axioms for equivalence we have seen here contain a lot 
of information. In practice, they turn out to be sufficient more often than one 
would expect; it is worth translating an equivalence into a double implication 
only as a last resort. 

9.6.4 Comparison with Other Systems 

The approach presented here is clearly an axiomatic one. This said, deduc
tions are not of the same kind as in Hilbert systems: here we have equational 
reasoning, modus ponens is not primitive and is even avoided. 

A closer look shows that axioms are chosen in the spirit of an algebraic 
theory. Each primitive operation ({:::}, V and -,) comes with its own algebraic 
properties or with algebraic properties related to other operations. So it may 
be better to consider this calculus as an algebra rather than a logic. In other 
words, it is a structure defined by non-logical axioms (see page 149). This is 
consistent with the fact that this approach has nothing to do with foundational 
issues, in contrast with formal logic as designed at the beginning of the 20th 
century [DS90j. 

The set B of Booleans endowed with conjunction, disjunction and 
negation admits a number of laws already mentioned on page 47: 

idempotence, commutativity, associativity, distributivity. It then makes up 
what is called a Boolean algebra. There is a similar algebra in set theory 
with the operations union, intersection and complementation. 

Those algebras can also be presented from the concept of a Boolean 
ring. A unitary ring is a commutative group endowed with a distributive law 
having an identity element, for example (Z, +, .). A Boolean ring is a unitary 
ring where every element is idempotent for the second law. The powerset of a 
set endowed with symmetrical difference \ and intersection makes up a Boolean 
ring, as well as (B, EEl, A), where EEl is defined by AEElB ~f -,(A {:::} B). One can 
also interpret B by {O, I}, EEl by the addition modulo 2 and A by the product. 

An important property of Boolean rings is that every expression can 
be reduced into a form which is unique up to permutations, called its Stone 
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normal form. A number of derivations perfomed in the system presented here 
amount to computing a Stone normal form 7 in the dual Boolean ring (1m, <=> , V). 

At the same time, <=> plays the role of an equality and then makes it possible 
to perform rewriting steps. We revisit this original view on deduction below. 

To conclude this comparison with the previous systems, note that a number 
of passages in [DS90, vG90a, Coh90, Kal90] explicitly consider logic as an 
arbitrary symbol game. This is regrettable, because the systems of Gentzen go 
beyond this standpoint, which was previously defended by Hilbert. The purely 
formalist approach to logic was not that much of a success, it was even to 
some extent refuted by the failure of Hilbert's program [NNGG89, Gir87b]: see 
below the incompleteness theorems of G6del. However, let us mention the work 
of A.J.M. van Gasteren [vG90a], which shows that a careful examination ofthe 
formal shape of expressions can provide valuable heuristics for solving some 
problems. 

9.6.5 Choosing Between Predicates and Sets 

Most logical connectors correspond to an operation over sets: V corresponds 
to U, 1\ corresponds to n, --, corresponds to complementation in a reference 
set (which has to be fixed in advance). We don't have a regular notation for 
the set operations corresponding to <=> and => (recall that A C B is not a 
set but a logical expression), but let us introduce one for the set operation 
corresponding to <=>, say 0, so that we get two similar theories. The set A 0 B 
is the complement of symmetrical difference A \ B in the reference set. 

The algebraic properties of <=>, V and /\ can immediately be transposed 
to 0, U and n. The choice between formalizing a given problem using logical 
operations, or using set operations, may then seem nothing more than a matter 
of taste. 

However, the identity between <=> and Boolean equality has additional spe-
cific advantages. Thus, every theorem in the form X<=> Y <=> Z ... represents 
several identities at once, allowing one to replace X with Y <=> Z . .. , or Y with 
X <=> Z . .. , or X <=> Y with Z . .. , and so on whereas A 0 B 0 C ... represents 
only one set. In particular, the golden rule 

X I\Y<=>X<=>Y<=>XVY 

contains in a compact way at least five common identities on set, related to 
intersection, union and symmetrical difference: 

A = 
A\B = 

B \ (A n B) \ (A U B) 
(A n B) \ (A U B) 

(AnB) 
(AUB) 

A \ (AUB) = 

A \ B \ (AU B) 
A \B \ (AnB) 

B \ (An B). 

This remark, together with the fact that set theory is sometimes more com
plicated than expected, leads Dijkstra to consider that predicate calculus is 

7This remark was communicated to the author by Gerard Huet. 
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more convenient than set constructions. For example, in his approach to for
mal specification, the space state of a program is described by a logical formula 
rather than a set expression, as would be the case in Z or in B. 

9.6.6 Uses of Dijkstra-Scholten's System 

This system is well suited to pencil and paper manipulations. Dijkstra's school 
attaches importance to the quality of proofs presentation. Though entirely for
mal, proofs are always concise and easy to check, even in a number of non-trivial 
programmation problems. Many calculational steps use the associativity and 
the commutativity of A, V, <=>, notably when we have chains of equivalences. 
A skilled eye should be able to recognize an interesting pattern in a chain -
note that automated reasoning in the presence of associative and commutative 
operations is not that easy. 

Doing formal proofs in this framework turns out to be an art, with its own 
guiding heuristics [DS90, vG90a, Coh90, Kal90). The proofs we get using this 
approach are quite different from the ones provided by traditional proof theory: 
the latter are easily checked by a program, but non-trivial ones soon become too 
large for human eyes to spot. So one may consider that the approach to formal 
proofs presented in this section provides more convincing arguments; however, 
automated help is needed for realistic scale problems, and techniques based on 
sequent calculus or on natural deductions seem more apropriate [Rus93). 

9.7 A Word About Rewriting Systems 

A well-known technique has been developed for automating equational reason
ing: rewriting systems. We will provide an example on page 200. 

The general situation is as follows. We are given a finite number of equalities 
Si = T i , from which we want to prove a goal A = B. If the terms A or B contain 
an instance of Si (or of Ti), we can replace it with the corresponding instance 
of Ti (or of Si). For example, if we take x + x = 2 * x for granted, we can replace 
the goal 

(a + b) * (a + b) = a * a + 2 * a * b + b * b 

with 

Equational reasoning consists of iterating such substitutions, until we get an 
equation where the two sides are syntactically identical. However, in the frame
work of automated proof search, we have to avoid cyclic sequences of trans
formations, where A = B would be replaced with Al = B I , ... and finally 
An = Bn would be transformed into A = B again. Such a cycle is very easy 
to get: just use an equality in one direction and then in the reverse direction. 
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We also have to avoid a potentially infinite sequence of transformations, which 
may happen e.g. with equations such as x = e * x {an arbitrary term t may 
then be replaced with e * t, then with e * (e * t), etc.). 

A central idea is then to restrict the use of equations given as axioms: they 
have to be oriented, that is, we have to choose one direction, either from the left 
to the right, or conversely. This choice yields a rewriting rule. But of course, 
one then runs the risk of becoming unable to prove a number of theorems: 
indeed, in many reasonings one uses a given equality in one direction at one 
stage, and in the reverse direction at a later stage. 

In order to recover a rewriting system having the same consequences as the 
original equations, new rules stemming from the axioms have to be added. 
This process, called completion, was introduced by Knuth and Bendix in 
1970 [KB70]. 

Let us explain this somewhat more formally. We look for a set of rules 
Gi -+ Di such that: 

1. Gi = Di is a consequence of the equations given as axiom. 
2. Given an arbitrary term to, every sequence to, h ... tn . .. (where tk+l 

stems from tk by application of a rule G i -+ D i ) eventually reaches a 
unique term which depends on to only, called its normal form. 

3. Two terms which are equal modulo the axioms possess the same normal 
form. 

Then, in order to know whether A = B is a consequence of the axioms, we 
just have to compute the normal forms of A and B and then to compare the 
results. 

Bringing this basic idea into actual play, however, raises non-trivial issues. 
Important research developments came out, as well as interesting support soft
ware systems such as REVE [FG84, Les86], RRL [KZ95] and LP [GG89, GG91] 
for completion and rewriting, and Spike [BR95, Bou94, BKR92] for inductive 
proof of equations. More recent (and efficient) systems are Maude [CDE+99] 
and Elan [BKK+98]. 

In passing let us point out the importance of termination: the normalization 
process should be guaranteed to terminate, and this is an essentially delicate 
problem. Theoretical and practical tools were developed in the framework of 
rewriting systems for proving that a relation is noetherian (see the definition on 
page 52). This is a technical matter, where ordinals naturally have an important 
place. 

Rewriting systems are strongly related to algebraic specification techniques, 
since specifications are written using equations in this framework. We go back 
to it in Chapter 10. 

9.8 Results on Completeness and Decidability 

If we want to prove theorems in a mechanical way, propositional, first-order 
and second order logic don't offer the same possibilities. In fact this even de-
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pends on the theory we consider. We give here a brief account of some of the 
main known results. For a number of them (particularly for incompleteness the
orems), only an approximate statement is given, because a precise statement 
would necessitate too many technical preliminaries. A state-of-the-art survey is 
available in [Rab77] (and [Gri91], in French). Apart from the basics on model 
theory and proof theory already presented, we rely on the concepts related to 
calculability introduced in Chapter 3. 

Completeness was also introduced and illustrated in Chapter 3. Its intuitive 
meaning is that everything which is true is provable. But this may be under
stood in two ways, since, given a set of formulas r, one may consider truth 
either in a class of models of r, or in one special (intended) model of r. 

9.S.1 Properties of Logics 

We first define a number of properties about logics. Our framework is classical 
first-order or higher-order logic. We agree that every first-order language defines 
a logic - within which several theories can be described. Some results depend 
on the number and on the arity of the symbols defining the language considered. 
In what follows P and r represent respectively a closed formula and a set of 
closed formulas. 

A logic is sound if the deductive consequence relation implies the semantic 
consequence relation, i.e. if r I- P entails r 1= P. A logic is complete if the 
semantic consequence relation implies the deductive consequence relation, i.e. 
if r 1= P entails r I- P. A logic is decidable if there exists an algorithm that 
finds whether an arbitrary formula admits, or does not admit a proof, using 
a finite number of steps; a logic is semi-decidable if there exists an algorithm 
that finds a proof of any theorem, using a finite number of steps (it may be 
the case that the algorithm does not terminate if the input formula is not a 
theorem); in the other cases the logic is said to be undecidable. We have the 
following results. 

Theorem 9.4 
Propositional logic and predicate logics of arbitrary high order are sound. 

This is simply because logical axioms are valid and deduction rules propagate 
validity. 

Theorem 9.5 (Schroder) 
Propositional logic is decidable. 

Theorem 9.6 (Post) 
Propositional logic is complete. 

Theorem 9.7 (completeness, Godel) 
Given any first-order language, the corresponding first-order logic is complete. 

To put it otherwise, if a formula cp is true in all models of a family of formulas, 
then cp has a formal proof. 
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Theorem 9.8 
Second-order logics are incomplete (even weak monadic logic). 

This theorem is a consequence of the incompleteness of arithmetic (see below) 
and of the fact that arithmetical truth can be characterized by a finite number 
of second-order axioms. 

Theorem 9.9 (Church) 
First-order logic is semi-decidable. More precisely, if the language of a first
order logic contains at least one function symbol or binary predicate symbol, 
the validity of an arbitrary formula cannot be mechanically decided. 

One generally considers recursively axiomatizable theories, and a consequence is 
that their theorems make up a recursively enumerable set. When the conditions 
of Church's theorem are satisfied, which is the most frequent case, we get semi
decidables theories. Thus, theorems of predicate calculus can be recursively 
enumerated (since first-order logic is complete), but not the other formulas. 

In order to get positive decidability results beyond first-order, one has to 
consider very restricted languages. However, the following result remains true 
for second-order monadic logic. 

Theorem 9.10 
Equational logic with an arbitrary number of unary relation symbols and at 
most one unary function symbol is decidable. 

9.8.2 Properties of Theories 

Now we define properties about theories. The concept of completeness we use 
here for theories is a syntactical concept: a theory T is (syntactically) complete 
if for every closed formula P one has either T ~ P, or T ~ ..,P. It is clear that 
two models of a complete theory cannot be distinguished, since any closed 
formula has the same truth value in each of them. In this respect one can say 
that a complete theory characterizes a unique model. 

The simplest example of an incomplete theory is the empty theory: if A is 
a unary predicate symbol, neither ~ Vx A(x) nor its negation is a theorem; 
even more simply, if B is a proposition symbol, neither ~ B nor ~ ..,B is a 
theorem. A more interesting example is group theory, which states nothing 
about Vxy (xy = yx), since there exist commutative groups as well as non
commutative groups. Hence group theory is not complete, and there is no cause 
for alarm here. 

In contrast, a number of theories are designed with a precise intended model 
in mind. This is typically the case with natural integers endowed with usual 
arithmetical operations. In such a case, one is interested in the consequences 
which are true in one model (the so-called standard model), and not in every 
model of the axioms. Let us recall the axioms for addition. 

Vx 
VxVy 

x+O=x 
x+S(y)=S(x+y) 
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One would expect that \Ix 0 + x = x, which is true in fIl, is a consequence of 
the previous axioms. Actually we also need the induction schema: there exist 
models of the two previous axioms where \Ix 0 + x = x is not satisfied. 

Note that if a system of axioms is incomplete one may try to complete it 
by introducing additional axioms. 

A theory T is inconsistent if one of the three following equivalent conditions 
is verified: 

- T I- f, 
- there exist a formula P such that T I- P and T I- -.P, 
- for all P, one has T I- P. 

In the opposite case T is said to be consistent; note that, this is the first 
property about a theory one would expect. The complementarity between com
pleteness and consistency should be noted. To coin a phrase, we could say that 
a complete and consistent theory tells the truth and nothing but the truth. 

A decidable theory is defined in the same way as a decidable logic. 

Theorem 9.11 
A first-order theory is consistent if and only if it has a model. 

This theorem is actually another formulation of the completeness theorem for 
first-order logic. 

Theorem 9.12 (Herbrand) 
A set T of first-order clauses is inconsistent if and only if there exists a finite 
set of closed instances of clauses of T which is inconsistent as well. 

Thanks to this theorem, the search for a proof in predicate calculus can be 
reduced to the search for a proof in propositional calculus. It plays an essential 
role in the semi-decision procedures based on the resolution principle, as already 
mentioned in § 9.4.2. 

Theorem 9.13 (Turing) 
A recursively and complete axiomatizable theory is decidable. 

Theorem 9.14 
The arithmetic of Peano is undecidable, as well as any consistent theory that 
contains it. 

For any consistent extension of PA (Peano's arithmetic), it is even possible to 
exhibit a closed formula, which is neither provable nor refutable, and which is, 
however, true in the intended model (Rosser). Then there is no first-order char
acterization of the standard model of arithmetic. This is an essential limitation 
which cannot be repaired by adding appropriate axioms. 

Beware: a formula which is true in all models of PA is provable by 
~ means of axioms of PA: this is the meaning of the completeness the
orem (9.7). The first incompleteness theorem of G6del states that the standard 
model of PA contains at least one formula which is true but cannot be proved 



186 Understanding Formal Methods 

using the axioms of PA. Note that we have already seen that there exist non
standard models of PA (see § 5.3.2.3). The original proof of G6del shows how 
to construct such a formula, inspired by the paradox of the liar:8 using tricky 
codings he was able to encode arithmetic formulas, then arithmetic proofs, by 
integers, so that he could write a formula stating its own unprovability. Less 
artificial theorems have been discovered recently [PH77, KP82j. 

Here is an example of a statement which is true but beyond the proof power 
of PA, taken from [KP82j. Let us choose an arbitrary natural number n, for 
example 266, and a basis b, for example 2, so we write: 266 = 28 + 23 + 21. 
Exponents are then represented in the same basis, and so on. In our example 
this yields 266 = 222+1 + 22+1 + 21. Now consider the following process: we add 
1 to b in this representation, we subtract 1 to the new value, then again with 
the new values of band n if n is non-zero, and so on. In our example the second 
value of n is 333+1 + 33+1 + 2, that is about 1038 ; the first values of (b, n) are 
approximately (2,266), (3,1038), (4,10616), (5,1010,000). Though it may seem 
strange, the incredible growth of n eventually stops - the basis becomes equal 
to the number. The process then amounts to letting n be decremented by 1 
at each step, so that the sequence is finite (the process stops when n = 0). 
However, this cannot be proved in Peano's arithmetic. 

The second theorem of G6del is the most celebrated because of its epis
temologic consequences. It states that the consistency of arithmetic cannot be 
proved by simple induction on natural numbers. Later, Gentzen proved the 
consistency of arithmetic by means of a stronger induction principle. 

Note that an important fragment of arithmetic, called Presburger arith
metic, is decidable. Its essential difference with Peano arithmetic is that terms 
cannot include a product x.y where x and y are variables. In other words, terms 
are linear expressions with integer coefficients. 

Theorem 9.15 
Presburger arithmetic is decidable. 

9.8.3 Impact of These Results 

A good knowledge of the previous results is useful when one uses a proof as
sistant - it is even a must in the design of a such tool. Positive results open 
possibilities, negative ones bring impassable theoretical barriers to light. 

The actual impact of decision or semi-decision results depends on the com
plexity of the computations they entail. Unfortunately, even in the simple case 
of the propositional calculus, deciding the satisfiability or the validity of a 
proposition is up to now believed to need a computation time which is, in the 

8Epimenides says that he is lying; if this is true, i.e. Epimenides is a liar, then he is 
telling the truth, so he is not a liar - a contradiction. If this is false, i.e. Epimenides 
is telling a lie when he says that he is a liar, then that means he is not a liar - a 
contradiction again. 
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worst case, an exponential function of the size of the formula.9 Beyond this, 
results are truly disastrous: for many decidable problems, theoretical upper 
bounds lead to computation times which would be larger than the age of the 
universe. However, on problems we encounter in actual practice, the efficiency 
of decision procedures is sometimes drastically improved by clever techniques 
or by appropriate restrictions. This is notably the case for Boolean formulas 
and Pres burger arithmetic - in particular, in the latter framework, it is a good 
idea to consider formulas without existential quantifiers. 

In summary, fully automated proof search can only be carried out in a less 
expressive logic, so that only very specific classes of problems can be handled in 
this way. In the general case, the skills and knowledge of the user seems to be 
the determining factor. Software support tools are of course very useful. As they 
have to be interactive rather than fully automated in many situations, one may 
consider that there is no point in restricting oneself to a limited language, say, 
first-order logic. Indeed, support tools based on higher-order logic (e.g. PVS, 
Coq or Isabelle) become more widely used nowadays. Of course they are much 
more user-friendly when "simple" subgoals can be solved by efficient decision 
procedures. 

9.9 Notes and Suggestions for Further Reading 

The principles and algorithms used by automated proof tools for first-order 
logic, notably the resolution principle, are often presented from a model
theoretic perspective, using the fact that a special model, called the model 
of Herbrand, is sufficiently representative of the general situation: this model is 
built upon the set of syntactic terms that can be constructed in the language 
under consideration. The book of Chang and Lee [CL73] provides a good syn
thesis along these lines. 

Logic is presented from a sequent calculus perspective in more recent books, 
such as the one of Jean Gallier [GaI86], devoted to first-order classical logic, 
or the book of Girard, Lafont and Taylor [GLT89], which contains a good 
introduction to natural deduction and second-order logic. Reference books on 
proof theory include [Tak75], [Sch77] and [Gir87b]. 

Natural deduction inspired a theory of programming language semantics 
called natural semantics by Kahn [Kah87], which is close to the structural 
operational semantics of Plotkin [Pl081]. These two approaches are also ex
plained and compared in [NN92]. Natural semantics has been implemented in 
Centaur [JRG92], an experimental software tool for prototyping programming 
languages. 

9To be more precise, determining whether a Boolean formula has a model is the 
NP-complete problem par excellence: many combinatory problems (knapsack, opti
mization, etc.) can be reduced to it. For such problems, algorithms able to find a 
solution in exponential time (in the worst case) are known, but until now there is no 
proof that a polynomial time solution does not exist, though it seems highly improb
able. 
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The books [Coh90j and [Ka190j present the approach of Dijkstra and 
Scholten to logic and its application to the design of correct algorithms. A 
thorough development of the logical part is given in [DS90j. 

Reference publications on rewriting include the article of Huet and Oppen 
[H080], the chapter of Dershowitz and Jouannaud [DJ90j in [vL90bj and the 
book of Baader and Nipkow [BN98j. 

A translation of the original of G6del on his incompleteness theorems is 
available in [NNGG89j. The article is preceded by a long explanation of F. 
Nagel and J-R. Newman, and then followed by an interesting presentation of 
J-Y. Girard about the program of Hilbert, its epistemological stakes and the 
consequences of its failure. Many results on decidability and indecidability are 
given in [Rab77j. 



10. Abstract Data Types, Algebraic Specification 

At first glance, algebraic specification techniques may seem to have less rele
vance to industrial applications than other methods. They are, however, worth 
studying because they benefit from extensive theoretical research and have had 
a great influence on other specification techniques, and more importantly, on 
computer science in general, notably with the concept of the abstract data type. 
Typing is a well-known concept in computer science. It is not only a means of 
protection against a number of mistakes, but also a methodological tool. We 
start with an informal discussion of the uses of typing and several interpreta
tions of this notion. As a first approximation, a type can be regarded as a set. 
Unfortunately, one has to be more cautious with this interpretation, than one 
would expect. We will therefore consider more abstract concepts of a type. 

10.1 Types 

Adding a Boolean value to a string hardly makes sense. Types are basically 
used for ensuring that such situations do not occur. To this end, types are 
assigned to the relevant expressions (terms, formulas, commands, etc.) of the 
language we are considering. When a given operation, say addition, is applied 
to its arguments, we can then check that the latter have the expected type. 
Type-checking a given expression consists of verifying that all its components 
have the expected type. The key to type-checking is a means to determine, 
given an expression E and a type T, whether or not E has the type T (denoted 
E : T). There are several options for a typing system. 

- If one wishes type-checking to be performed statically (at compile-time), 
this problem has to be decidable; then the quantity of information carried 
by types tends to be limited. 

- A part of type-checking can also be performed at run-time; one of the most 
well-known examples, previously introduced in Chapter 2, concerns array 
indices, which must be kept between two bounds. We can no longer guarantee 
the absence of run-time faults, yet it is still possible to have the program 
terminate in a graceful manner. Another disadvantage is the additional time 
required by these verification steps. Unless explicitly stated otherwise, we 
will consider only static type-checking below. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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- If one wishes to have an expressive typing system, free of run-time penalties, 
the proof that the program is well typed must be carried out with the help 
of the programmer. Let us also mention that, in a development with the B 
method, typing information is added to the invariant and the assertions, so 
that type checking yields proof obligations; however, the typing system of 
B is not terribly rich, in order that proof obligations corresponding to type 
checking can be automatically discharged. 

The type associated to an object is not necessarily unique. For example, if 
we consider the set-theoretic interpretation of a type, many sets containing a 
given item could be seen as a possible type for this item. This yields a possible 
interpretation of subtyping, a concept related to inheritance in object-oriented 
languages. 

Also, we often want to give several types to a function, but for other rea
sons. The idea can be illustrated with the simple case of the identity function, 
which can be considered to have the types int -+ int, bool-+ baal, ... , that 
is, in general, T -+ T where T is an arbitrary type. Such types are called poly
morphic types in the framework of functional languages, or generic types in 
the framework of languages such as Ada or Eiffel. 

A number of functions on lists, such as catenation or the computation of the 
length of a list, are in the same category as the identity function: the algorithm 
used is exactly the same. Note that addition is also a polymorphic operation, 
because it can be defined over integers, floating numbers, vectors, matrices, 
etc.; but here the underlying algorithm is different for each case. The former 
kind of polymorphism is called parametric polymorphism, whereas the latter 
kind is called ad-hoc polymorphism. In the following we will limit ourselves to 
parametric polymorphism. 

10.2 Sets as Types 

In a typed programming language, a variable v is associated with a type, which 
is generally seen as the collection of the possible values of v. Typing the variables 
amounts then to specifying the set of the possible states, or equivalently, a 
constraint on the execution of the program. We can then say that types provide 
an invariant. For illustration purposes, let us imagine a programming language 
having a Pascal-like syntax, where types are sets. 

10.2.1 Basic Types 

For example, we can interpret the declaration: 

var x: {a,b,c}; 
y: {d,e}; 

as a specification requiring that the state space of the program is a strict subset 
of {a, b, c, d, e p, which is, specifically, {a, b, c} x {d, e}. If we add: 
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z: N; 

the state space becomes {a, b, c} x {d, e} x N. 

10.2.2 A First Glance at Dependent Types 

More advanced languages, such as Cayenne [Aug98], allow more sophisticated 
type declarations, where the type of a component depends on the value of 
another component. Thus: 

var x: N; 
y: 0 .. x; 

would specify that the state space is {(x, Y) E N2 I Y :::; x}. As a classical 
example, we can consider the (Gregorian) calendar. As a first approximation, 
we can take {I ... 31} as the type of the day of the month, but a more accurate 
typing would be {1. .. f (m, a)}, where m and a represent, respectively, the 
current month and year, and where f is a well-known function. Such types are 
referred to as dependent types. One may also use a logical formulation for them, 
for example 1 :::;q/\q:::; f(m, a). In this framework, type-checking involves coping 
with logical inferences, which make it more complex. We will revisit dependent 
types at the end of Chapter 11. 

10.2.3 Type of a Function 

Functions can also be given a type. For example, a possible type for addition 
is N x N -t N. In fact, the main purpose of typing is to ensure that applying 
a function to its arguments does indeed make sense. In our example, we want 
to reject an expression such as a + b if either a or b is not in N. On the other 
hand, assuming that a + b is well typed, we know that a + b is a member of N, 
hence it can be, in turn, one of the arguments of a further addition. 

10.2.4 Type Checking 

Using the constructs which are available in the language under consideration 
(arrays, function application, tuples or whatever), one may form an expression 
E. Saying that E has the type T amounts here to saying that E is a member 
of T. Type-checking may then be seen as membership checking. 

10.2.5 From Sets to Types 

In the language imagined so far, types are defined in a set-theoretic notation. 
Now, we could ask ourselves if any set could actually serve as a type. 

Consider the set of even non-negative numbers, denoted here by 2N. There 
are functions or programs that require such numbers as arguments, as we have 
already seen at the end of § 3.5.2. Let fe be such a function, and assume we 
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are given two non-negative even numbers p and q. Then we can form fe(P) 
and fe(q). But it is unclear, at this stage, whether or not fe(P + q) should be 
accepted. Since x E 2N implies x E N, p + q makes sense, but as the type of 
+ is N x N -+ N, we can only conclude that p + q E N. On the other hand, we 
have more, i.e., p + q E 2N, so we could in principle write fe(P + q). But this 
cannot be decided with the type of + only, we need additional knowledge from 
number theory. For a more complex example, consider a function fe that takes 
as input a number which is not a cube. Then one could write fe(a 3 +b3 ) if a and 
b are positive integers - this is a special case of Fermat's last theorem. Such 
examples are somewhat artificial, but actually, everyday programming provides 
arbitrarily difficult situations - and involves data structures which are more 
complex than N. We cannot afford to embed any amount of mathematics in a 
static type-checking procedure. 

Hence, in the general case, we have to admit that when we apply a function 
to arguments, the type of the result is provided by the type of the function, and 
nothing more. In general, this entails a loss of information. It also means that 
type-checking is not equivalent to membership checking: we may have E E T 
whereas E : T does not hold. 

10.2.6 Towards Abstract Data Types 

In our example, we then give up the idea that fe(P + q) is well typed. But it 
is still possible to recover something very close to fe(P + q). The price to pay 
is the introduction of new symbols for functions that return even numbers: for 
example, the addition +e oftwo even numbers, which has the type 2Nx 2N-+2N, 
or the multiplication *el of an even number by a non-negative integer, which 
has the type 2N x N -+ 2N. These operations behave exactly like + and *, on 
their respective domains. Using +e and *el (and if we declare that the constant 
2 has the type 2N) we can easily construct many well-typed expressions under 
the form fe(E), including fe(P+eq). Moreover, type-checking can be performed 
as normal, by a systematic syntactical inspection of the expression.1 

In fact, we just worked in the spirit of abstract data types, as we will see 
in § 10.3. The conclusion is that 2N is useful as a type, provided that we are 
given functions returning a result in 2N. 

10.2.7 Coercions 

If we know that an expression E has the type 2N, we certainly would like to 
be able to use it in situations where something of type N is expected. In the 
general case, inferring that E : U from E : T is possible provided we have 

10f course, the correctness of this approach still relies upon arithmetical facts, 
which provide evidence that +e and *el return even numbers. This task is indepen
dent from the general type-checking procedure. We can then say that the relevant 
arithmetical facts are now used in a controlled manner, as defined by the occurrences 
of +e and *el in the expression to be type-checked. 
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some evidence that T is a subtype of U. In the set-theoretic interpretation of 
types, this amounts to T c U. But subset checking is at least as difficult as 
membership checking. Such inferences can be guided by syntactic means, just 
as before: introduce an explicit identity function iT,U from T to U that maps 
any x, considered as a member of T, to the same x, considered as a member of 
U. Thus, in our example, i2N,N(p) + i2N,N(Q) has the type N. 

In general, we are also interested in converting integers to real or floating
point numbers, etc. This may involve a change in the internal representation, 
so that iT,U is no longer a function that maps x to itself but, more generally, 
an injection. Such injections are referred to as coercions. They can often be 
declared once-and-for-all, and left implicit in expressions, in order to keep them 
simple - type-checking should then be completed in such a way that the 
coercions are recovered. 

10.2.8 A Simpler Approach 

One may conclude that allowing arbitrary subsets of N or, more generally, of 
any given type, to be considered as types, drives us to cumbersome notations. 
An alternative approach, which is followed in Z and in B, consists of taking 
a collection of sets for types, in such a way that, for all x, we have a unique 
type Tx such that x E Tx. (For example, the type of integers will be Z.) As a 
consequence, the intersection of two different types must be empty. 

Let A be a set, and j be an operation defined over S. If we want to be able 
to assign a type to j, all elements of A must be of the same type, say T, so 
that j will have the type T -t U, for some type U (actually the type of j will 
be P(T x U), since, in set theory, functions are special cases of relations). We 
see that the only sets A we can work with, are the subsets of types. The type 
Tx of x is then the greatest set containing x. 

As we have seen in Chapter 6, type-checking is not very difficult in this 
framework. Examples such as the one with even numbers are dealt with using 
invariants or assertions instead of types. 

10.2.9 Unions and Sums 

In the previous approach, we cannot build a set with elements of different types. 
It is problematic because one sometimes needs to handle several things on an 
equal footing, say, integers and pairs ofintegers, whereas Z uZxZ is not allowed. 

On the other hand, we know that a direct use of Z uZxZ is not that useful: 
given a data item x which is a member of Z U Z x Z, one generally wants to 
eventually perform a computation which depends on the source of x. But it is 
not obvious that its source can be recovered. In the implementation of many 
programming languages, we cannot distinguish a 64-bit integer from a pair of 
two 32-bit integers. Even in set theory, integers and Cartesian products are 
encoded in such a way that a given element can be interpreted in several ways. 
As we have seen in § 3.1.2, a better concept is the sum. Recall that the sum 
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A+B of two sets A and B can be defined as {false}xA U {true}xB. This is a 
special subset of Bx (AUB). But it would be strange to allow that {false}xA 
and {true} x B may be mixed, whereas A and B may not. 

What we need here is a structured or abstract view of A + B, where A U B 
is hidden. Such an approach is still more relevant if we consider slightly more 
complicated data structures, such as binary trees: recall that the type of binary 
trees is similar to an infinite sum A+ (AxA) + (Ax(AxA)) + «AxA)xA) + .... 
Here again, we will see in § 10.3 that abstract data types are helpful. 

Note also that the difficulty pointed out here is overcome in Z due to the in
troduction of the concept of a free type. Indeed, Z free types provide a notation 
for the special abstract data types that we need in such situations. 

10.2.10 Summary 

Interpreting a type as a set has the immediate benefit of simplicity. However, a 
direct use of typed sets is not that helpful when we want to represent a number 
of well-typed regular data structures used in computer science. It is certainly 
not by chance that set-theory is an untyped theory, where 3 = 1 U (0,1) is a 
perfectly legal equality. Let us end this discussion with two comments. 

- On the one hand, set theory is too general: the set of set-theoretic functions 
from NxN to N is not countable, whereas only the set of computable functions 
is relevant for programs, and this is a countable set2 (cf. § 3.3.4). 

- From another perspective, set theory is not general enough, if one needs to 
describe a polymorphic (also called generic) type [Rey85], as was already 
mentioned in Chapter 7. 

10.3 Abstract Data Types 

The general idea behind abstract data types is to describe data structures 
without unveiling their implementation. Essentially, an abstract data type en
capsulates a data structure D together with the operations which manipulate 
it. Each value in D is expressed by means of these operations only. It then 
becomes possible to axiomatize D in an algebraic manner. 

Let us illustrate the idea with the very simple case of the natural integers. 
To this end, instead of using directly N, we would introduce an abstract data 
type called nat, together with names for the regular arithmetical operations. 
Of course, N, endowed with appropriate operations defined by means of set
theoretic primitives, would provide a model for this abstract data type. Note 
that the typing discipline itself does not depend on this interpretation. The rule 
we should conform to would be that only expressions built up from the opera
tions declared in the type are accepted as arithmetical (integer) expressions. 

2In a "high-level" (or abstract) specification stage, a less strict viewpoint is accept
able. 
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We can proceed in the same manner with even numbers, as suggested at 
the end of § 10.2.6: introduce a data type called even_nb, with appropriate 
operations, and consider that 2N (endowed with +e and *et) is a model for 
them. 

Finally, consider the example of a binary tree. In order to be able to use 
binary trees, one needs to construct a new tree, to compose a tree from two 
previously constructed ones, to compare two trees, etc. One has also to know 
whether information items are stored at the leaves or at the nodes. But imple
mentation choices such as the use of pointers, arithmetical operations in arrays, 
or whatever, are not relevant here. One has a concrete type when the repre
sentation of data items, and of the functions for accessing or modifying them, 
are described, whereas one has an abstract data type when only properties 
of these data items and functions are described. There is an analogy in logic: 
a concrete type would correspond to the notion of a model, while properties 
defined in an abstract data type would be represented by formulas. 

10.3.1 Sorts, Signatures 

To define an abstract data type, one first gives a name, termed a sort, to 
the various kinds of data items to be used. For example, we will need trees, 
integers and Boolean valnes, having tree; nat and bool, respectively, as t.heir 
sort. We also need to designate operations over these objects. For example, for a 
binary tree whose leaves contain an integer, we can consider the operations bin 
which constructs a tree from its two sub-trees, leaf which constructs a one-leaf 
tree, 1ft (respectively rgt) which extracts the left (respectively right) sub-tree, 
depth which yields the depth of a tree (the length of its longest branch), bal 
which indicates whether the tree is balanced, and so on. 

The operations we consider are side-effect free; that is, they have no effect 
other than the production of a value. Let us give some examples: the expression 
bin (leaf (3) ,leaf (1)) represents a tree having two leaves containing 3 and 1, 
respectively; rgt (bin(leaf (3) ,leaf (1))) represents a tree having exactly a 
leaf containing 1. A value is always designated by means of previously declared 
operations, without reference to a particular model. In most cases there are 
operations, called the constructors, which playa special role. They allow one 
to designate all possible values, and only those values. In the case of binary 
trees, the constructors are leaf and bin. Using axioms, one should be able to 
prove that every expression is equal to an expression using only constructors. 

The signature of an operation consists of the declaration of the sorts 
of its arguments and of its result. For example nat -+ tree is the signa
ture of a function which takes an integer as input, and returns a tree, while 
tree x tree -+ tree is the signature of a function which takes two trees as 
inputs, and returns a tree. The previous operations would then be declared as 
follows: 

leaf 
1ft 
depth 

nat -+ tree 
tree -+ tree 
tree -+ nat 

bin 
rgt 
bal 

tree x tree -+ tree 
tree -+ tree 
tree -+ bool . 
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10.3.2 Axioms 

We need to have more knowledge about the contents or about the behavior 
of those operations. In the case of a programming language (Ada, CLU), the 
semantics of operations is expressed by programs. Their internals are based on 
a concrete representation of data types; the formal interface is then made up 
of only the signatures. In the case of B, a set-based model is provided for the 
operations. This model is quite a high-level one, however, as it uses unbounded 
choices and general operations over sets and relations. The more concrete rep
resentations, described in refinements and finally in implementations, are then 
hidden behind an abstract specification. In the framework of an algebraic spec
ification language, one does not provide any model, abstract nor concrete, but 
rather a number of properties which are expected from the operations. Those 
properties are expressed by logical formulas, which can be axioms or theorems. 

We have an analogous situation in mathematics. As a well-known example, 
groups can be characterized by three axioms. Similarly, the effect of the opera
tions of an abstract data type can be characterized by appropriate axioms. For 
example, natural numbers can be seen as an abstract data type, described by 
the signature: 

zero 
plus 
eq 

~ nat 
nat X nat ~ nat 
nat X nat ~ bool 

and the axioms of Peano. 

succ 
mult 
inf 

nat ~ nat 
nat x nat ~ nat 
nat X nat ~ bool 

In the example of binary trees, here is an axiom stating that a tree, made 
up of two sub-trees is balanced, if these sub-trees are themselves balanced and 
if the difference between their respective depths does not exceed 1 (we use here 
a liberal syntax for the arithmetical parts of the formula): 

Va, b (bal(a) /I. bal(b) /I. 
Idepth(a) - depth(b)I ::; 1) 

::::} bal(bin(a, b)) 
(10.1) 

The functions 1ft, rgt and depth are determined by the following axioms: 

Va, b 1ft(bin(a, b)) = a 
Va, b rgt(bin(a, b)) = b 
"In depth(leaf(n)) = 1 
V a, b depth(bin( a, b)) = 1 + max ( depth( a), depth(b)) 

If the axioms are arbitrary formulas, we have an axiomatic abstract data 
type; the name algebraic abstract data type is preferred when the axioms are 
equations3 (or, sometimes, formulas of the form El /I. .•. /I. En::::} Eo, where Ei 
are equations). We can state the axiom about bal in the form of an implication 
between equations in the following manner: 

3Recall that in mathematics, the axioms used to define algebraic structures such 
as groups, rings, vector spaces, etc. are (universally quantified) equations. 
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Va, b (bal(a) = true 1\ bal(b) = true 1\ 
infeg(ldepth(a) - depth(b)I ,1) = true) (10.2) 

=> bal(bin(a, b)) = true . 

All these formulas are quantified universally for every variable; the general 
framework is first-order logic, as described in § 5.2. 

In our specification, boo 1 is a sort corresponding to an abstract data 
type in the same way as arb. Its constructors are true and false. 

It can be endowed with usual Boolean operations (negation, conjunction, dis
junction, etc.). 

Note that bal is a predicate in (10.1), whereas it is an ordinary 
function in (10.2). If we consider semantics, in both cases bal is interpreted as 
a function to 1m. In a way, explicitly using bool places a formula such as bal(a) 
at the level of semantics. 

For the sake of completeness, the specification of binary trees should 
~ make explicit that any tree constructed with bin is different from 
any tree constructed with leaf, and that the constructors are injections, and 
finally, that all trees are constructed with bin and leaf. This is easy to express 
using first-order axioms, for example: 

Va,b,n 
Vm,n 
Vm,n 

...,(bin(a, b) = leaf(n)) 
rgt(bin(a, b)) = b 
leaf(m) = leaf(n) => m = n . 

In order to simplify the specification, it is agreed that such axioms 
are implicitly stated. One does not then have the freedom to interpret two 
expressions as the same object, except if this is a consequence of the axioms. In 
short: two objects which are not explicitly (or provably) equal must be distinct. 

10.3.3 First-order and Beyond 

The formulas considered so far in this chapter are first-order. However, higher
order logic may be useful if we want to express generic operations. Let us 
illustrate the idea on (an abstract view of) the sum of nat and nat x nat -
another abstract data type, say, for binary trees, would do just as well. We 
have essentially two manners of constructing a value of this type - let us call 
it Snat: 

- by means of the constructor i1 (first injection) of type 
nat -7 Snat; 

- by means of the constructor i2 (second injection) of type 
nat X nat -7 Snat. 

If we want to use a value s of type Snat, in order to build up a Boolean for 
example, we have to consider the two possible sources of s. To this end we 
would introduce the operation case with three arguments: 



198 Understanding Formal Methods 

- a value of type Snat; 
- a function of type nat -+ bool to be applied in the first case; 
- a function of type nat x nat -+ boo I to be applied in the second case. 

These operations come with the following axioms: 

case(ii(n), t, g) = t(n) , 
case(i2«x,y»), t, g) = g«x,y») . 

Any model of Snat should satisfy these axioms. In particular, this can be 
checked with a set-theoretic interpretation based on {false }xNU{ true }x(NxN) 
together with an appropriate model of ii, i2 and case. 

Note that the function case takes functions as arguments. A polymorphic 
version of this function would be welcome: its behavior is the same whatever 
the type of the result. Then one would systematically replace bool with a 
parameter T. 

Actually, one would like to introduce such parameters for the sum itself and 
for the two injections i 1 and i2. All this can be done, provided that one goes 
beyond first-order. Appropriate devices for doing that will be introduced in the 
next chapter. 

10.4 Semantics 

The semantics of a specification defined by an abstract data type is given by 
a model of the axioms (§ 5.6). For algebraic abstract data types, one generally 
considers multi-sorted logic. Each sort is interpreted by a previously known set. 
Expressions such as nat x nat -+ nat are interpreted by a total function from 
a Cartesian product to a set, for example, the addition is from N x N to N. 

The abstract data type itself is interpreted by a mathematical structure, 
that is, an n-tuple composed of sets and operations over these sets. For example, 
the abstract data type nat of the previous section could be interpreted by 
(N,]$, 0, S,+, x, =, <). 

The example of even_nb, given in § 10.2.6, is interesting. One model for 
it is 2N, of course, but another one is N itself, endowed with regular addition 
and multiplication, without any changes. What changes in this interpretation 
is the coercion function from even_nb to nat, which is no longer the identity 
function, but the function which returns the double of its argument. 

There are several options for defining the semantics of an algebraic ab
stract data type. Let us mention two of them here: initial semantics and loose 
semantics. 

In the case of initial semantics, a specific structure, referred to as the initial 
model, plays a central role. For example, we would take (N, 111\, 0, S, +, x, = 
, <) in the case of arithmetic. This approach is well suited when we have 
constructors, such as zero and succ (we want them to have a ''no junk - no 
confusion" property). 
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On the other hand, loose semantics considers the class of all possible models. 
As a mathematical example, this framework would be more appropriate than 
initial semantics for group theory. 

10.5 Example of the Table 

10.5.1 Signature of Operations 

Given an arbitrary sort U, we want to represent tables of elements of U, con
sidered here as finite sets of elements of U. We will construct them by means 
of the operations emptytab (the empty table, this operation, intuitively, corre
sponds to the creation of a new table) and insert (which inserts an element 
in a table): 

emptytab : table insert : U x table ~ table . 

Other operations can be designed, for example, removing an element or building 
the union of two tables: 

remove U x table ~ table 
tabunion : table x table ~ table 

The search for an item will be specified by the relation in: 

in U x table ~ bool 
search : table ~ U . 

10.5.2 Axioms 

The following axioms express that the order of insertion is not important, and 
that possible repetitions are not either. 

'r/ x, y, t insert(x, insert(y, t)) = insert(y, insert(x, t)) 
'r/ x, t insert(x, insert(x, t)) = insert(x, t) . 

In order to specify the search for an item we need a predicate P over elements 
ofU: 

'r/x 
'r/x,t 
'r/x,y,t 
'r/x,t 

in(x, emptytab) = false 
in(x, insert(x, t)) = true 
x i- y ::} in(x, insert(y, t)) = in(x, t) 
search(t) = x 1\ in(x, t) ::} P(x) . 

Note that the failure of a search is not completely specified here. We can only 
say that, in case of failure, the item that is returned is not an element of t. 
The two axioms given for in are sufficient because we consider that the order 
of insertion is not relevant. 
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10.6 Rewriting 

It may be tempting to write the - unfortunately flawed - following specifi
cation for the search operation: 

v x, t P(x) ::::} search(insert(x, t)) = x 

An undesired consequence of this specification is that the table could not con
tain two distinct items x and y satisfying P! Indeed, a table containing x and 
y can be put in the two forms insert(x, t) and insert(y, t') - where x and 
yare members, respectively, of t' and of t. If we also have P(x) and P(y), we 
get: 

x = search(insert(x, t)) = search(insert(y, t')) = y 

Yet the latter specification of search might seem quite harmless. The lesson 
we draw from this is that formal statements, alone, are not a panacea. It is 
crucial to examine their consequences. This is precisely the job performed by 
deduction tools. In the case of algebraic specifications, they are generally based 
on rewriting systems, as explained in the previous chapter. Let us illustrate 
this technique using the example of binary trees. 

An example of a property which is quite easy to check is that the left subtree 
of a tree a (supposed to be in the form bin(b, e)), is less deep than the full tree 
a: 

a = bin(b,e) ::::} inf(depth(lft(a)),depth(a)) = true. 

Indeed, after the substitution of bin(b, e) for a in the right-hand side of this im
plication, we obtain a formula containing lft(bin(b, e)) and depth(bin(b, e)), 
which in turn can be rewritten to band 1 + max(depth(b), depth(e)), respec
tively, according to our axioms. The right-hand side can then be written: 

inf(depth(b), 1 + max(depth(b), depth(e))) = true, 

which is easy to solve using arithmetic rules: 

inf(x,l+y) = infeg(x,y) 
infeg(x, max(x, y)) true . 

Note that in this example, we always proceeded by replacing the left-hand side 
with the right-hand side of an equation. In other words, equations were used 
as rewriting rules, as indicated in § 9.7. 

10.7 Notes and Suggestions for Further Reading 

The book [BKL +91] provides an overview of algebraic specifications. One of the 
main approaches to this topic, using so-called initial algebras, is developed in 
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[EM85, EM90j, where the reader can find a description of the language ACTl. 
This language has been reused in the two ''formal description techniques" for 
communication protocols LOTOS - whose control aspects are derived from 
process algebras in CSP and CCS style - and a (now obsolete) version of SDL. 

Another important algebraic specification language is OBJ, described for 
example in [JKKM92]. Its more recent successors include Maude [CDE+99] 
and CafeOBJ [DF98]. 



11. Type Systems and Constructive Logics 

This chapter introduces the relationship between typing, logic, and specifica
tion. In fact, a type can be viewed as a kind of specification. This analogy can be 
carried to a fair extent, at least in the framework of the constructive approach 
to logic, already mentioned on page 42. From this perspective, intuitionistic 
logic turns out to have better features than classical logic. 

In passing, we will introduce the ,x-calculus, which is both a plain logical 
tool and an elementary language which is much appreciated for studying fun
damental issues in computer science, including questions related to typing. All 
that will lead us to the topic of the next chapter, devoted to the calculus of 
inductive constructions, a powerful type system implemented in two software 
systems, Coq and Lego.1 

11.1 Yet Another Concept of a Type 

11.1.1 Formulas as Types 

The most general thing we can say about a type is that it is just a non
interpreted formal expression, which can be attached to the concepts of the 
language we consider (variables, functions, etc.). An object which has a given 
type is sometimes referred to as an inhabitant of this type. 

A typing system tells us how to assign a type to an expression of the lan
guage, as soon as we know the type of the components of that expression. For 
example, if f has the type A -+ B and if x has the type A, then f(x) has the 
type B. A typing system can then be regarded as a formal specification lan
guage, which is more, or less, refined depending on the richness of the typing 
system. From this perspective, verifying that a program is well typed amounts 
to proving that it satisfies its specification. 

Note that the concept of a type applies not only to programming languages, 
but to specification languages as well. Thus, in algebraic specification languages, 
the basic symbols for types are called sorts, for example nat, bool, stack. The 
operators x and -+ allow one to construct compound types, such as nat x 
nat -+ bool. In this case we have two levels of specification: the typing specifies 

lWe also want to mention NuPRL and ALF, which are based on very similar prin
ciples. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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something about the algebraic specification. In particular, it forces the axioms 
which come with the declaration of operations to be well typed. The same 
comment applies to the specification languages based on set-theoretic notations. 

Considering that a specification is, in general, a logical formula, we can 
still go one step further. Types, regarded as formal expressions, become more 
precisely logical formulas. This was already suggested in the case of dependent 
types. We get here the first part of the so-called Curry-Howard isomorphism, 
to be developed below: 

type = logical formula . 

We will see that, in this framework, x and -t are given a simple logical meaning. 

11.1.2 Interpretation 

As soon as we consider a type as a formula, we can consider interpretations of it, 
as in model theory. However, model theory does not provide all possible kinds 
of interpretation. Instead of interpreting the truth value of a formula by means 
of the two values true and false, one can examine the space of the proofs that 
conclude with this formula. Such objects turn out to be relevant to computer 
science: they are just computable functions. More exactly, they are algorithmic 
(or, intentional) definitions of computable functions - recall that usually, 
''function'' is used with its extensional meaning, including the phrase ''recursive 
function" in computability theory. A good framework for expressing intentional 
presentations of recursive functions, and for studying typing systems, is the A
calculus. We start with the untyped version of this formalism. 

11.2 The Lambda-calculus 

Une fois rien ... c 'est rien / 
Deux fois rien ... ce n'est pas beaucoup / 
Mais trois fois rien / ... Pour trois fois rien, on peut deja 
acheter quelque chose... et pour pas cher /2 

R. DEVOS 

The A-calculus, devised by Alonzo Church, formalizes with remarkably re
stricted means the concept of a computable function. It can be regarded as a 
programming language, powerful enough for encoding any algorithm, whereas 
its rudimentary character simplifies the study of a number of fundamental is
sues, such as computability and typing. The A-calculus was also used for defin
ing the semantics of programming languages, and it is the archetype of func
tional languages. Finally, notations of the A-calculus are very often re-used, 
including in languages such as Z or B. 

2 One time nothing ... this is just nothing! Two times nothing ... this is not much! 
But three times nothing! ... with three times nothing, one can buy something ... and 
with little money! 
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In the A-calculus, the notation AX. x+3 represents the function 1 such that 
I(x) = x+3. Evaluating 1(5), denoted by «Ax. x+3) 5), consists of substituting 
5 for X in the body of the function, which yields 5+3 (and then, 8). 

One can get rid of the symbols "+", "3" and "5". The main idea of the 
A-calculus is that everything can be represented by one-argument functions, 
including data structures and control structures. Only one computation mech
anism, called the ,a-reduction, is available. It formalizes what happens when a 
function is applied to its argument. 

11.2.1 Syntax 

In the A-calculus, programs, or functions, are expressed by A-terms, built up 
from variables denoted by identifiers x, y, z ... and only three rules: 

- a variable is a A-term; 
- A-abstraction: if T is a A-term and if x is a variable, AX. T is a A-term 

(intuitively, it represents the function which maps x to T; for example AX. X 
is the identity function); 

- application: if F and X are A-terms, the application of F to X is a A-term 
denoted by F X. 

As usual, parentheses are used for removing ambiguities, for example, for 
distinguishing (Ax. x)y from AX. (xy). Application has syntactical precedence 
over abstraction: AX. xy is a shorthand for AX. (xy). 

The concept of a free, or of a bound, variable is similar to the one in pred
icate calculus, the role of V being played by A. In the same way, the meta
notation [x := V] T denotes the substitution of a term V for each free occur
rence of X in T. For example, in x(Ax. xy) the first occurrence of x is free, the 
second is bound, and y possesses only one occurrence which happens to be free; 
[x:= (Az.z)] (x(Ax.xy)) represents the term (Az.z)(Ax.xy). 

The mechanism of the ,a-reduction is quite natural: when a function F with 
a parameter x, say AX. T, is invoked on an argument V (this situation is called 
a redex), V is substituted for all free occurrences of x in the body T of F; 
more precisely, the A-term (Ax. T)V is rewritten as [x := V] T. For example, if 
we take T = x, (Ax. x)V is rewritten as V; thus we check that AX. x represents 
the identity function, as one would expect. 

We easily see that Ay. y is also the identity function. More generally, A-terms 
are defined up to a renaming of bound variables (this is called a-conversion). 
In practice, such renaming can be performed systematically before every ,a
reduction in order to avoid confusion. We will always comply with this discipline 
in the following. 

A redex can occur at the top of a term, but also at the top of an arbi
trary sub-term. Of course, the scope of substitutions performed by a given 
,a-reduction extends only over the concerned sub-term. A ,a-reduction step, 

from T to T', is denoted by T .f!t T' . For example, we have 

{3 
(Ax. x)(AY. y) -'-+ Ay· y . (11.1) 
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When we have a (finite) chain of ,B-reductions going from T to S this is written 

T ~* S . When a term has no redex, we say that it is irreducible, or in normal 
form. Evaluating a A-term T consists of looking for an irreducible term S such 

that T ~*S . 

11.2.2 The Pure "x-calculus and the "x-calculus with Constants 

It turns out to be possible to encode all useful data structures (integers, 
Booleans, pairs, lists, trees, etc.), as well as the functions which allow one 
to manipulate them, by means of A-terms. One can also represent fixed-point 
operators, and then recursive functions. Thus, this calculus has the maximal 
expressive power that one can expect. 

Nevertheless, it is sometimes convenient to enrich the syntax with additional 
operations, together with appropriate reduction rules called a-rules. These op
erations are called constants,3 the system thus obtained is called the A-calculus 
with constants. For example, one could introduce the constants +, 0 ... 3, 4, 
5 ... with rules such as: 

5+3~ 8 . 

An important example is the A-calculus with pairs, which introduces three 
constants: pair formation L, _), and the first (respectively the second) pro
jection PI (respectively P2) which, respectively, extract the first and the second 
elements from a pair. For example, AX. W2X,PIX) represents the transposition 

of the elements of a pair. It is necessary to introduce the a-rules PI (x, y) ~ x 

and P2(x, y) ~ y. The system without constants is called the pure A-calculus. 
We consider the latter up to the end of the current section. 

11.2.3 Function and Function 

We have seen that, as a function, a A-term takes a function as input and then 
returns a function. However, the example given in (11.1) illustrates something 
less common: a function can be applied to itself! Indeed, applying the identity 
function to the identity function can be written (Ax. x)(Ax. x), or, preferably 
(Ax. x)(Ay. y); after ,B-reduction we get Ay. y, which is the identity function 
again (as expected). Recall that in set theory it is required that before defining a 
function, its domain and its co-domain are defined, and this prevents a function 
from being applied to itself: a function from A to B is regarded as a member 
of P(A x B), so that it cannot be a member of A. We will see later that, even 
though a function of the A-calculus is not interpreted by a set (of pairs), a 

3 Admittedly, these constants represent functions, but these functions do not 
change. One has to distinguish between the result of a function, which generally 
varies when arguments vary, from the function itself. In contrast, letters x, y are 
variables, which represent (and may be substituted by) arbitrary functions. 



Type Systems and Constructive Logics 207 

type may be assigned to it. The concept of a function in the A-calculus turns 
out to be, from this respect, more powerful than the set-theoretic concept of a 
function. 

Actually, functions in the A-calculus are computation procedures above all. 
In this respect, they are quite close to the concept of a function used prior to 
Dedekind and Cantor. We admit that they represent computable functions par 
excellence. Moreover, recall that there are many more set-theoretic functions 
than computable functions (cf. § 3.3.4). 

The difference between set-theoretic functions and computable functions 
remains at the root of an important issue for formal specification of software. 
Indeed, the set-theoretic concept of a function is sometimes easier to handle or 
to understand, than the constructive concept, whereas the latter is the only one 
available in programming; the set-theoretic concept is then put to the fore. An 
essential issue in program construction from formal specifications is to exhibit 
an algorithm computing a function previously presented in an implicit manner, 
and one hopes that such an algorithm does exist. 

11.2.4 Representing Elementary Functions 

In order to illustrate more concretely how the A-calculus can be used, let us 
show how a number of common programming constructs can be represented. 
This will shed new light on a mapping between data structures and control 
structures. Thus, the concept of a pair is associated with the concept of a 
projection, the concept of a Boolean is associated with the concept of a test, 
the concept of an integer is associated with the concept of an iteration. In some 
respect, a data structure is defined by its typical use cases. 

11.2.4.1 Preliminary Conventions, Curryfication. We have to agree on 
a number of notational simplifications. We will also show how to "curryfy" a 
two arguments function in order to consider it as a one argument function. 

Let us consider informally the case of addition, which maps x and y to 
"x+y" . If we fix the first argument to 2 (respectively to u), we get the function 
"add 2" (respectively "add u") which maps y to "2+y" (respectively "u+y"); 
this function is then Ay. "2+y" (respectively Ay. "u+y"). 

Consider that x, y and "x+y" have the type nat. The function Ay."x+y" 
then has the type nat -t nat. The addition is then regarded as the function 
which maps x, not to an integer, but to the function of type nat -t nat we 
have just seen, Ay. "x+y" . In other words, the addition is represented by 
AX. (Ay."X+Y") of type nat-t(nat-tnat) . We agree that this term is also 
noted AX. Ay. "x+y" or even more simply, AXY. "x+y" . 

More generally, AXY. T and AX. Ay. T represents AX. (Ay. T); this convention 
generalizes to an arbitrary number of arguments. Consistently, the application 
operation associates to the left: gfy does not represent gUy) as one would 
expect at a first glance, but (gf)y: this expression should be interpreted as the 
application of the two-arguments (curryfied) function g to f and y. Thus we 
do have, assuming that the only occurrences of X and yare in T: 
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(3 
(Axy. T) U V ~* [x, y := U, V] T . 

11.2.4.2 Concept of a Combinator. A combinator is a closed A-term (that 
is, without free variables). Three examples of combinators are: 

I ~ Ax.x K ~fAxy.x and S ~fAxyz. (xz)(yz) 

A theorem states that every combinator can be obtained using only I, K and 

S. One can even dispense with I, because SKK A*I (recall that abc is read 
(ab)c). 

11.2.4.3 Booleans and Tests. The very purpose of a Boolean b is to choose, 
from two arguments X and Y, the first if the value of b is ''true'' and the second 
otherwise. In a functional language, this would be expressed by: 

if b then X else Y . (11.2) 

Beware: this expression designates the value of X or of Y, and not a command. 
We take for ''true'' and for ''false'' two terms denoted by t and f, respectively, 
and defined by 

t ~fAxy.x and f~ Axy.y. 

The fact that tXY A* X and that fXY A*y allows us to represent the test 
(11.2) by bXY (which reads: (bX)Y). 

Now Boolean functions are easy to program. For example, the disjunction 
is obtained by computing x V y by means of if x then t else y: 

or ~fAxy.xty . 

11.2.4.4 Integers and Iteration. There are several means of encoding in
tegers with the A-calculus. The most popular, due to Church, consists of rep
resenting the integers n by the function which iterates a function given as an 
argument n times, that is, intuitively: 

Af· r = Af. f 0 f··· 0 f = Afx. f(J··· (J x)···) --------- -----n n 

We need to represent the two constructors 0 and S. Let us observe that fO is 
the identity function, while fntl(X) is f(r(x)). This idea is implemented in 
the following combinators: 

o ~f Af.Ax.x and S ~ An. Afx. f(nfx) . 

We will also use: 

1 ~f Afx.fx 2 ~ Afx. f(Jx) , etc. 
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As an illustration of the use of iteration, let us represent arithmetical op
erations. The addition m+n is obtained by m successive increments of n: 
"m+n" = "sm(n)" = mSn, that is, formally, plus ~ )..mn.mSn. 

In the following we prefer a slightly different definition, which comes directly 
from fm+n(x) = fm(r(x)), that is, 

plus d~f )..mn. )..fx. (mf)(nfx) . 

This version is actually shorter than the previous one, because we should ex
pand S in the latter. 

We can get the multiplication m x n by iterating m times the addition of 
n to 0, which yields the expression: )..mn. m()..x. plus n x)O . However we get a 
shorter definition from fmn = (jm)n: 

mult ~f )..mn.)..f. n(mf) . 

Remarkably, the exponential function is still simpler to represent, since a 
Church integer is precisely the exponential operation: 

exp ~ )..mn. nm . 

Finally, comparison to zero is expressed by 

zer ~f )..n. n()..x. f)t . 

Indeed, ()..x. f)O is the identity, which obviously yields t when applied to t; in 
contrast, for n > 0, ()..x.f)n is )..x.fwhich, applied to t yields f. As an exercise, 
the reader may calculate zer(plus 1 x) and zer(plus 0 0). 

11.2.4.5 Pairs and Projections. The combinator for constructing a pair 
takes two "data" items X and Y as inputs (for example integers, Booleans, but 
actually arbitrary )..-terms) and it returns (X, Y). The first (respectively the 
second) projection takes a pair as input and it returns X (respectively Y). The 
abstract type "pair" is actually characterized by three functions pair, prl and 
pr2 which must verify prl(pair(x,y)) = x and pr2(pair(x,y)) = y . 

Natural definitions of the curryfied projections pel and pc2 are )..xy. x and 
)..xy. y . Let us represent the construction of the pair (x, y) by a term taking a 
curryfied projection p as an argument and applies it to x and y: 

(x,y) ~f )..p.pxy and pair ~f )..xy. )..p. pxy . 

The projections are then in the form )..c. C7r where c is a pair and 7r is a curryfied 
projection: 

prJ ~f )..c. c()..xy. x) and pr2 def )..c.c()..xy.y) . 
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11.2.4.6 Paradoxical and Fixed-point Combinators. The paradoxical 
combinator is 

o ~f (Ax. xx)(Ax. xx) 

It has a feature which was not present in the combinators introduced so far: 
there is a redex inside it. One can even perform an arbitrarily high number of 

successive ,B-reductions from 0, since 0 ~ 0 . This term represents a "looping" 
program. On first inspection, one might blame AX. xx, because it contains the 
"self-application" xx; but there are combinators T such that (Ax. xx)T con
verges (terminates). The simplest is I: 

(Ax. xx)(Ax. x) ~ (Ax. x)(Ax. x) ~ (Ax. x) 

We can even get an infinite number of such terms, by taking for T the Church 
encoding of an arbitrary integer n: this yields a representation of nn which, 
after successive reductions, reaches the normal form 

Afx. f(f···(fx)···) 

---------
This is an example of a term yielding a very long chain of ,B-reductions. 

A slight modification of 0 provides a fixed-point combinator: 

Y ~ V. (Ax. f(xx)) (Ax. f(xx)) , 

which, applied to any term F, yields after a ,B-reduction step a term F' that 
reduces itself to F F', hence the infinite chain: 

YF ~ F' ~ FF' ~ F(FF') ~ F(F(FF')) ~ ... (11.3) 

This term then yields an infinite loop too, but not necessarily! Let us consider a 
"recursive" definition of the form 9 = AX. G, where G contains free occurrences 
of g. We know that, from a semantical viewpoint, we should interpret it as "g is 
the least fixed point of G" (cf. § 3.6). Even though the set-theoretical concept 
of a function turns out too narrow for developing this idea in A-calculus, the 
intuitive idea remains valid: in some sense, Y F is a fixed point of F. Let us see 
what happens if we take F = Agx. G and we apply Y F to a given term t. In 
the example of the sequence of Fibonacci, G would be a translation of 

if x = 0 V x = 1 then 1 else g(x - 1) + g(x - 2) . 

When we reach F F't, that is, (Agx. G)F't, two new redexes appear successively, 
so that we get [g := F', x := t]G. If the function G is programmed as expected, 
this term contains redexes that, intuitively, check the value of x. Then there 
are two options: 
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- "recursive" case, the j1-reduction yields a term containing other occurrences 
of 9 - but recall that 9 has been replaced with F'; then a reduction step 

F' 4 F F' can be applied, and we get one or several sub-terms under the 
form FF'ti' so that we have a situation similar to the previous one, with 
new values for t ("t - 1" and "t - 2" in the above example); 

- "base" case, the j1-reduction yields a term which contains no occurrence of 9 
("1" in the above example); we no longer enter in the infinite loop (11.3); all 
additional reductions that may have been performed on F' turn out to be 
useless. 

To sum up, we observe that suitable applications of the j1-reduction mech
anism allow us to simulate the evaluation of a "recursive" function. 

11.2.5 Functionality of .a-reduction 

We presented j1-reduction as an evaluation mechanism which transforms any 
given term into an irreducible one. A number of phenomena appear in previous 
examples: 

1. As a term may contain several redexes, it can be reduced in several ways; 
is it possible to get different irreducible forms from the same term? 

2. In a number of cases, such as ft, a term does not possess a normal form; 
can this be decided a priori? 

3. In other situations, a term can be transformed into an irreducible form, 
along some paths, while successive reductions along other paths do not 
terminate. A very simple case is (>.x. T)O, where T is a normal term con
taining no free occurrence of x. Can we find a strategy for the choice of 
redexes such that an irreducible form will eventually be reached if there is 
one? 

The first issue is about functionality: we wish the result to depend only on 
the initial expression, and not on the manner of performing computations. This 
property is called confluence, or the Church-Rosser property. The following 
result is quite difficult to prove. 

Theorem 11.1 (Church-Rosser) 
If a term T can be reduced to two different terms U and V, that is, ifT .!!t* U 

and T .!!t * V, then there exists a term W such that U .!!t * Wand V .!!t * W. 

As a corollary, if the irreducible form exists, it is unique (hence the name 
normal form). 

This result can also be regarded as stating a kind of consistency of the >.
calculus, in the following sense. Let us consider ~, the reflexive and symmet

rical closure of .!!t*. By construction, this is an equivalence relation. Each term is 

in a unique equivalence class modulo ~, and each class represents the ''value'' 

denoted by one of its members. For example, we have (or t f) ~ (or t t). It 
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is clear that j1-reductions preserve the equivalence class. However, it is impor
tant that the values represented by t and f are different, that all the values 
of Church integers are different, and similarly for each data structure: other
wise computations would have no interest, one would say that the calculus is 
inconsistent. The Church-Rosser property guarantees the consistency of the 
calculus because the normal form forms of t and f are syntactically different 
(and similarly for Church integers). 

The second and third point concern the termination of computations. The 
answer to the second can only be negative, because the A-calculus has the power 
of Turing machines. In contrast, a strategy exists which reaches the normal form 
if it exists. This strategy, called the normal strategy, consists of reducing the 
redex whose "X' is on the left-most position. For example, in (Ax. T)fI, one has 

to choose the reduction (Ax. T)fI ~ [x := fI]T (which yields T if T does not 
contain a free occurrence of x), and not the redex which is inside fl. These two 
results are summarized in the following theorem. 

Theorem 11.2 
The existence of a normal form of an arbitrary A-term is a semi-decidable 
problem. 

Confluence and termination properties playa pivotal role in the study of rewrit
ing systems. The tools developed in the framework of the A-calculus are widely 
used in this theory. 

To summarize, we can recall that the A-calculus is a formalism well suited 
for representing the concept of a computable function (or of a recursive func
tion, as defined in § 3.7). Indeed, it is a consistent and Turing-complete calcu
lus. In practice, it is present in several important specification languages, and 
also in functional programming languages, though the notations used there are 
more user-friendly. In these languages, integers and other data structures are 
generally represented by common encodings close to the machine, instead of 
A-terms, for obvious reasons of efficiency. However, understanding the behavior 
of Church integers and other combinators is quite useful, because they are a 
good illustration of fundamental manipulations of functions to be met in the 
practice of modeling and of programming. 

11.3 Intuitionistic Logic and Simple Typing 

11.3.1 Constructive Logics 

In mathematics, it can sometimes occur that one proves the existence of an 
object verifying some property without exhibiting this witnessing object. A 
frequently cited example is the proof that there is an irrational number r such 
that rV2 is a rational ~ so that we have two irrational numbers rand s such 
that r S is rational. Consider a ~f y'3 and b ~f aV2. If b is rational, we can 

take r = a; otherwise, we can take r = b because (aV2)V2 = y'32. By the law 



Type Systems and Constructive Logics 213 

of the excluded middle, the existence of r is ensured, without needing to say 
whether r is a or b. 

Such proofs are called non-constructive, because they do not provide an 
effective manner to obtain the witness possessing the desired property. Con
structive proofs are, however, quite common. A simple case is when the witness 
is explicitly provided, for example 3 in the property 3x 2x = 6. Many proofs 
by induction are constructive, because they implicitly contain a construction 
process allowing one to compute a witness. For example, in order to prove that 
every integer is even or odd, the induction step consists of taking an integer n 
which is already in the form 2k or 21 + 1, and then proving that n + 1 is in 
the form 2k' or 21' + 1; here one has to consider k' = 1 + 1 and l' = k. During 
this proof, we implicitly described an algorithm which performs the Euclidian 
division of n by 2. 

Most theorems in basic arithmetic are proved constructively, as well as 
theorems which are involved in program proving. Note that the axiom of choice, 
in set theory, is essentially non-constructive. Actually, it is scarcely used in 
computer science, because one is often interested in the algorithmic contents 
of proofs. Unfortunately, classical logic, that is, the kind of logic that everyone 
uses regularly, turns out to be inappropriate for the development of constructive 
proofs. 

We need constructive logics, which not only allow us to extract an algo
rithmic content from proofs, but provide proof spaces themselves with an in
teresting mathematical structure. The most commonly used constructive logic 
in computer science is intuitionistic logic, which originated at the beginning of 
the 20th century. In constructive logics, provability and proof structure become 
more important concepts than truth values. 

More recently, a considerable amount of research work has been de
voted to a new and promising constructive logic called linear logic. 

We want to also mention that subtle variants of classical logic can be made 
constructive. This is a recent discovery, related to the interpretation of control 
structures such as exceptions and calli cc [Gir91, Gri90, Mur91]. 

11.3.2 Intuitionistic Logic 

Intuitionistic logic was already presented in Chapter 9. In the following we rely 
on natural deduction. Let us recall that, in the system NJ, one manipulates 
deductions made under some hypotheses. These are displayed in a tree whose 
root contains the conclusion. A finished proof is a deduction where all hypothe
ses have been discharged. The formation of deductions can be interpreted in 
the following manner (disjunction and quantifiers will be discussed later): 

I\i given a deduction a of A and a deduction b of B, one forms a deduction 
of A 1\ B; the latter is represented by the pair (a, b); 

I\e given a deduction c of AI\B, under the form (a, b), one forms a deduction 
of A (respectively of B) which is a (respectively b), obtained from c by 
a projection; 
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=>e given a deduction f of A=>B and a deduction a of A, one forms a deduc
tion of B; f is then regarded as a function which maps every deduction 
of A to a deduction of B; 

=>i given a deduction of B under the hypothesis A, one forms a deduction 
of A=> B; it can be regarded as a function from the space of deductions 
concluding to A, to the space of deductions concluding to B; 

..1 the space of deductions of ..1 is empty. 

This interpretation is the interpretation of Heyting, also called the BHK in
terpretation (Brouwer-Heyting-Kolmogoroff). Here, the semantics of a propo
sition P is not a truth value, but the space of proofs concluding to P. The 
propositions which can be proved with the connectors considered here are es
sentially implications (for example P => P or P 1\ Q => Q 1\ P), since the con
junctions which can be proved are conjunctions of implications (for example 
(P => P) 1\ (P 1\ Q => Q 1\ P». The main spaces we consider are then essen
tially sets of functions. 

We use the term "space" because the study of the semantics of these 
objects shows that they live in spaces, in the common mathematical 

sense, that is, sets endowed with algebraic or topological properties. 

11.3.3 The Simply Typed A-calculus 

It will be seen that these functions are actually nothing but A-terms, more 
precisely terms of the simply typed A-calculus with pairs which we introduce 
now. 

First we define types as expressions formed by the means of type variables 
A, B, C, etc. and of binary connectors --+ and x. The terms of the simply 
typed A-calculus with pairs are just the terms of the A-calculus with pairs 
which are compatible with typing rules. Thus, we are given, for each type T, 

typed variables of type T, for example x : A, y : A, z: A x B, t: A --+ B. Let T 

and 0' be types: 

- if x is a variable of type 0' and if t is a A-term of type T, AX: 0'. t is a A-term 
of type 0' --+ T; to simplify reading, we also write AXO". t; 

- if f is a A-term of type 0' --+ T and if 5 is a A-term of type 0', f 5 is a A-term 
of type T; 

- if 5 and t are A-terms oftypes 0' and T, respectively, (5, t) is a A-term of type 
O'XT; 

- if c is a A-term of type 0' x T, PI c and P2 care A-terms of types respectively 
0' and T. 

Each typed A-term can trivially be mapped to an untyped A-term: just remove 
typing information. 

11.3.3.1 Examples. 

- '\xA. x has the type A --+ A; the underlying untyped A-term is AX. X; 
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- AxA. AyB. x has the type A ~ B ~ Aj the underlying untyped A-term is 
Ax.Ay·x; 

- AfAxB-tc. AxA. AyB. f(x,y) has the type (AxB ~ C) ~ (A ~ B ~ C)j the 
underlying untyped A-term is Af. Axy. f(x, y) - this is curryfication. 

11.3.3.2 Properties. When T is the underlying untyped A-term of a typed 
A-term of type 7, we say that T is typable with type 7. As one may expect, 

J3-reduction is compatible with typing: if T 4. S and if T is typable with type 
7, then S is typable with type 7. Theorem 11.3 will soon provide a much more 
interesting property. 

11.3.4 Curry-Howard Correspondence 

The semantics of Heyting amounts to interpreting deductions by A-terms of the 
above system. In this interpretation, 1\ is regarded as a product, since proof of 
A 1\ B boils down to a proof of A and a proof of B. The connector ::::} is still 
more interesting: A::::} B allows one to construct a proof of B from any proof of 
A; implication is then interpreted as the construction of a space of functions. 
This yields the following systematic translation: 

- a proposition P is translated into a type pn, obtained from P by replacing 
::::} with ~ and 1\ with x; 

- a packet of hypotheses P (see page 161) is translated into a variable x : pn 
(or xP~)j 

- if two deductions of A and B are respectively translated into the A-terms 
a of type An and b of type Bn, the deduction of A 1\ B obtained by I\i is 
translated into (a, b) of type An x Bn j 

- if a deduction of A 1\ B is translated into the A-term c of type An x Bn, the 
deduction of A (respectively of B) obtained by l\el (respectively l\e2) is 
translated into PIC (respectively P2C); 

- if a deduction of A::::} B is translated into the A-term f of type An ~ Bn, and 
if a deduction of A is translated into the A-term a of type An, the deduction 
of B obtained by ::::}e is fa of type Bn; 

- if a deduction of B, done under a packet of hypotheses A, is translated into 
the A-term b of type Bn - the latter must contain a free variable of type 
An, say x, which translates the packet of hypotheses - the deduction of B 
obtained by ::::}i by discharging this packet of hypotheses is translated into 
AxAI. b of type An ~ Bn. 

Conversely, every A-term of type 7 can be regarded as a deduction conclud
ing to 7" which is 7 after the replacement of x with 1\ and of ~ with ::::}. The 
two reciprocal translations ~ and D constitute the Curry-Howard correspon
dence (also called the Curry-Howard isomorphism), which can be summarized 
as follows: 

proposition 
proof = 

type 
function 
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where ''function'' should be understood as "A-term". This sheds a new light on 
the typed A-calculus: it is a concise notation for deductions. Here are some 
examples: 

7 =>.. is noted AXA. X , 
(X) } 

A =} A t(X) 

2A =>'(YI } is noted AXA. AyB. x , 
-----=>.. 
A =} B =} A t(x) 

(f) 
~ 

(X) ... -.... 
A 

(y) ,........, 
B 

-----/\i 
A/\B=}C A/\B 
--------- '*e 

C 
-B-=}-C- =}i(y) 

-----=>..( ) 
A=}B=}C zx 

(A /\ B =} C) =} (A =} B =} C) =}i(f) 

is noted 

From now on, types will be considered and noted as propositions, and we 
will take "-+" as the symbol for implication. 

It is then natural to ask how to interpret the ,B-reduction from the per
spective of logic. In other words, what is the meaning of the evaluation of a 
function in the space of proofs? In order to simplify the discussion, let us here 
limit ourselves to the implicative fragment of NJ, that is, the fragment having 
-+ as its only connector. The corresponding A-calculus is the simply typed 
A-calculus. 

Let us write the deduction corresponding to a A-term containing a redex 
(AxA. b) a where a has the type A and b has the type B: 

(X) ,........, 
A 
;b 

B :a 
----+ 
A -+ B Z(X) A 
--------+e 

B 

(11.4) 
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The deduction corresponding to [x := a] b is: 

(11.5) 

In (11.4), the deduction a can be seen as a proof of the lemma A, and this 
lemma is used an arbitrary number of times in b for proving B. In (11.5), each 
occurrence of the hypothesis A which is a member of the packet denoted by 
x, is replaced with the deduction a in b. In some sense, the proof (11.5) is 
more direct than (11.4), because it avoids the passage by A -+ B, which is not 
a sub-formula of the conclusion B to be proved. The transformation of (11.4) 
into (11.5) is called a normalization step. This provides the third part of the 
Curry-Howard correspondence: 

normalization = {3 -reduction 

This transformation is similar to cut-elimination in the sequent calculus. The 
deduction (11.4) corresponds to: 

r, A I- B B I- B r' I- A 
-r-I-'---A--+-B- -+r r' , A -+ B I- B -+ 1 
--------------------~---------cut 

r,r' I- B 

while (11.5) corresponds to: 

r' I- A r, A I- B 
-----------'----- cut 

r,r' I- B 

(11.6) 

(11.7) 

The transition from (11.6) to (11.7) is the one that was already discussed 
on page 167. By iterating such steps, one reaches a proof without lemma, 
also called a normal proof, as in the Hauptsatz of Gentzen. We have even a 
theorem stating that this normal form is reached whichever reduction strategy 
is employed: this property is called strong normalization. One says also that 

the relation ~, restricted to typed terms, is Noetherian (see page 52). 

Theorem 11.3 
The above procedure for transforming deductions (1104) -+ (11.5) in the im
plicative fragment of NJ, or, equivalently, the {3-reduction of simply typed A
calculus, has the strong normalization property. 

We have seen that there exist A-terms, such as (2 and YF, which are not 
normalizable. There is no contradiction, because these terms are not simply 
typable. Actually, even Ax. xx is not. 

Let us take stock. The untyped A-calculus has the power of Turing machines. 
In general one cannot know in advance whether the evaluation of a A-term t 
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does or does not terminate. Moreover, it can terminate for some reduction 
strategies only, for example, if t encodes a recursive function by the means of 
a fixed-point combinator. We also learned that the evaluation of t terminates 
in all cases if t is simply typed. We will see that there are yet other strongly 
normalizable terms. 

11.4 Expressive Power of the Simply Typed ~-calculus 

The fact that the simply typed >.-calculus prohibits some terms is, by itself, 
quite legitimate. The very purpose of a typing discipline is precisely to detect 
irrelevant combinations, such as the application of a function defined over in
tegers to a Boolean value. But what is preserved from the expressive power of 
the >.-calculus? Let us consider some of the combinators presented above. 

11.4.1 Typing of the Natural Numbers 

A possible typing of >.fx. f(f·· . (f x) ... ) is 
~ 

n 

>'fX-+X.>,xX. f(f ... (fx) ... ) 
~ 

n 

which has the type (X --* X) --* (X --* X). Any other expression where X is 
uniformly substituted for a given proposition <p is also suitable; we will abbre
viate this formula to NIP' It is easy to verify that we can give 0 the type Nx, 
S the type N x --* N x, plus and mult the type N x --* N x --* N x . 

The exponential function exp ~f >.mn. nm raises a problem. If we give 
m and the result the type N x, we are driven to give n the type N x --* N x, 
which yields >.mNx. >'nNx-+Nx. nm of type Nx --* (Nx --* Nx) --* Nx, while 
one would expect the same type as for plus and multo 

Indeed, note that Nx --* Nx is also of the form NIP: it is Nx-+x. However, 
it is not very satisfactory to have to consider different formulas for the type of 
the natural numbers within the same term.4 

We have a more serious issue:5 it is impossible to give a type to a term 
as simple as >.n. (exp n n) - which can be simplified to >.n. nn - and, more 
generally, to any term in which one would use a variable with different instances 
of the same type. 

4Note that a similar problem would be raised with other definitions of the addition 
and of the multiplication, for example plus ~f Amn. mSn. 

5Warning: we consider here one among the possible encodings of the function that 
maps n to nn. Other encodings admit a simple type, but they are more complicated. 
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11.4.2 Typing of Booleans 

A typing of AXY. x is AXX. AyY . x of type X -+ Y -+ X, and a typing of AXY. Y 
is AXX. AY Y. Y of type X -+ Y -+ Y. As we want t and f to have the same type, 
we are led to take X = Y. The Boolean type is then X -+ X -+ X (abbreviated 
to Bx) or any instance of Bx. 

Consider a possible expression for the negation: Ab. bft. Assume we give t 
and f the type B x, we are led to taking the expression B x -+ B x -+ B x, as the 
type of b; this expression is of the form B"" as desired, with cp = Bx. But this 
yields BBx -+ Bx as the type of Ab. bft, so we again get a quite unsatisfactory 
situation, as with the exponential. We can, however, use another expression for 
the negation, which is Ab. AXY. byx, that is, Abx -+x -+x . AXX. AyX. byx, whose 
type is Bx -+ Bx as expected. We get a similar problem if we encode disjunc
tion by Abc. btc, whereas Abc. AXY. bx(cxy) has the type Bx -+ Bx -+ Bx· 

There is no relationship between the terms t or f and the logical in
~ terpretation of the typing system. The type of Booleans is essentially 
an enumerated type with two values, which could quite legitimately be named 
aa and bb instead of t and f; the fact that the latter convention is preferred can 
be regarded as tradition. It is sometimes convenient to introduce an enumerated 
type with, for example, three values. It would be ex ~ X -+ X -+ X -+ X, it 
is inhabited by AXX. AyX. AZX. x, AXX. AyX. AZX. y and AXX. AyX. AZX. Z . For 
this type one would get a ''three-cases if" control structure. 

~ Several types can be given to the same A-term. For example, a pos-
'8 sible typing of Af. AX. x is A/X-+X. AXX. x, that is, 0; another is 
A/X. AXX. x, that is, f. 

11.4.3 Typing of the Identity Function 

The aforementioned problems can readily be observed in a very simple example, 
the identity function: AX. x is typable by X -+ X and by every proposition under 
the form cp -+ cp • What do we think about the term (AX. x) (AX. x)? Possible 
typings are of the form (AX"'-+"'. X) (AX"'. x), which forces us to consider two 
different identity functions within the same expression. 

11.4.4 Typing of Pairs, Product of Types 

It is not difficult to propose a type for the curryfied projections pcl and pc2, 
with pcl ~fAXY.X and pc2 ~ AXY. y: just take X -+ Y -+ X and X-+Y -+Y. 
However, the implicative fragment of NJ turns out to be insufficient for coping 
with pair formation. The typed version of the combinator pair ~fAXYp. Pxy 
is of the form: 
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The variable p represents here a projection, which means that U must be either 
X, or Y. However X and Y are a priori distinct - for example, if we want to 
form pairs composed of an integer and of a Boolean. 

This drives us to consider a >.-calculus where the formation of pairs and pro
jections are primitive: this is the simply typed >.-calculus with pairs. Its typing 
system corresponds to the fragment {~, t\} of N J. Note that, in propositional 
logic, t\ cannot be defined using ~ only. 

11.4.5 Sum Types 

Given two types CT and T, we can form their sum CT + T. Let y be an inhabitant 
of CT + T, y comes from an inhabitant u which is either in CT, or in T. 

How can we use y? A function from CT + T to <p is obtained by providing a 
function f of type CT ~ <p and a function g of type T ~ <po Then one considers a 
construction case yf g, designed in such a way that, if u is of type CT, the result 
is obtained by applying f to u and if u is of type T, the result is obtained by 
applying g to u. 

In order to form y, we are given two injections, which are il of type 
CT ~ CT + T, and i2 of type T ~ CT + T. We assume that the abstract type sum 
satisfies case (it s)f g = f 5 and case (i2 t)f g = gt. 

In the untyped >.-calculus, these operations can be represented by 

it ~f >.s. >./g. /s , 
i2 ~ >.t. >./g. gt , 
case ~f >'x/g.x/g 

Again, it is not possible to give a satisfactory type to these operations. 
As for the product, the sum cannot be recovered from ~ only. It cannot be 
constructed from ~ and x either; we thus need a further extension. 

The strong normalization theorem stated on page 217 can be extended to 
the whole NJ calculus; that is, to the simply typed >.-calculus with pairs and 
sums. 

From the viewpoint of logic, the sum corresponds exactly to the intuition
istic disjunction: ViI corresponds to iI, Vi2 to i2, Ve to case. An inhabitant of 
CT + T is either an inhabitant of CT, or an inhabitant of T; similarly, a deduction 
of S V T is formed either from a deduction of S, or from a deduction of T. 
Moreover, we are able to know which is the right case, depending on whether 
ViI or Vi2 was applied: this is typical of the intuitionistic disjunction. 

There is, however, a subtle point: if (it 5) is of type CT + T, (>.x. x)(il 5) is 
also of type CT + T. There are actually an infinite number of terms of type CT + T 

which are not of the form (it 5) or (i2 t). Then, how can we justify that every 
inhabitant of CT + T comes from a term of type CT or of type T - and that we 
know which one? Precisely because of the strong normalization property, which 
entails that every term of type CT + T reduces to a normal term of type CT + T, 

and that the latter is necessarily of the form (it 5) or (i2 t). 
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Comment. In the set-theoretic interpretation of types, if we denote the inter
pretation of the type cp by Ilcpll, 1I0+TII is a disjoint union {1} x 110"11 U {2} x IITII· 
Recall that the union cannot be used in a naive manner because, if 110"11 and 
IITII share elements, their origin cannot be distinguished in 110"11 U IITII· 

11.4.6 Paradoxical and Fixed-point Combinators 

We already mentioned that there is no simple type for the paradoxical combi
nator O. The same is true for fixed-point combinators such as Y. This is more 
problematic because they provide a very important expressiveness. In partic
ular they are crucial for simulating a Turing machine. We may add that this 
is precisely why functional languages such as ML include a typed fixed-point 
constant (syntactically, it is presented in the form of a let ree construct). 

11.4.7 Summary 

The previous examples illustrate the benefits of simple typing, as well as its 
limitations: the constraints of simple typing turn out to make it reject too 
many A-terms. The expressive power left with the calculus is insufficient for 
the needs of programming, even if primitives for the product and the sum are 
introduced. Recursion is not allowed, and iteration itself cannot be employed to 
its full extent - remember An. (exp n n). On the other hand, the typing system 
considered above is still far from what is needed in specification languages. For 
example, all functions mapping an integer to a Boolean are indiscriminately put 
in the same category, whereas it would make sense to distinguish the functions 
which, say, return "true" if their argument is an even integer less than 100. 

These two issues can be attacked by generalizing the typing system, and this 
is done in two independent directions. In both cases, this amounts to consider
ing a more powerful constructive logic. A means to greatly increase the number 
of typable functions is introducing second-order quantification, over proposi
tional variables. To allow for richness of expression, we gain polymorphism. In 
the second direction, introducing first-order variables and related quantifiers 
provides a system which includes dependent types, which are interesting for 
specification purposes. 

Note that, in compensation for its coarseness, simple typing has a feature 
of interest to secure prototyping languages: type inference. As indicated by its 
name, this mechanism infers the type of an expression or of a program where 
minimal or even no typing information is given explicitly.6 The typing system 
implemented in functional languages such as ML and Haskell is a kind of simple 
typing extended to recursive constructs, in a manner such that type inference 
is still possible. 

6Type inference relies on the use of a unification algorithm to type expressions. 
Unification was already described in Chapter 9: it is one of the main basic tools of 
automated proof. 
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11.5 Second-Order Typing: System F 

The system F was devised by Girard and independently rediscovered by 
Reynolds. It is built on a single logical connector, implication, and on second
order quantification. We will see that in the presence of the latter, the other 
intuitionistic connectors can be defined. 

Let us first illustrate some intuitive ideas behind second-order quantifica
tion, by starting with the following deduction of P -t P: 

(X) ,-..... 
P 

---~. 
P -t P. Z(X) 

We then deduce 'rf2 P P -t P (in the current section we distinguish second
order from first-order quantification by using 'rf2 in the former case and Y in 
the latter). The second-order quantifier can then be eliminated by substituting 
an arbitrary proposition for P. This yields, for example: 

We can even substitute y2 P P -t P for P, and we get 

Now consider the deduction: 

(X) .--.-.. 
...:.Q_-t_P __ Q...:. -te 

P 
------~. 

(Q -t P) -t P z(x) 

We can deduce y2 P (Q -t P) -t P, without incident because we still have the 
hypothesis Q. In contrast, it would be manifestly incorrect to deduce y2Q (Q-t 
P) -t P. For example, [Q := Pj ((Q -t P) -t P) does not hold, even under the 
hypothesis Q, which does not intervene. The most simple case of that kind is 
the trivial deduction of P under the hypothesis P; we certainly don't want to 
deduce y2 P P ! This unprovable proposition actually provides a representation 
of the absurd proposition ..1 of NJ. In the light of the preceding remarks, we can 
give the introduction and elimination rules of y2 (Figure 11.1), the first rule 
being constrained by a proviso: the deduction of cp must make no hypothesis 
over P. 

Let us consider again the theorem 'rf2 P P -t P. We have seen that the 
quantifier carries over the space of all propositions, including y2 P P -t P . We 
recognize here the impredicativity previously encountered in set theory. We are 
going to employ techniques similar to the ones used in § 7.3.1, for inductively 
defining the product, the sum, the natural numbers, trees, etc.; but here we will 
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V2P IfJ V~ 
[p:=.,p]1fJ 

In V~ , all undischarged hypotheses must contain 
no fiee occurrence of P. 

Figure 11.1: Rules of "12 in system F 

not be disturbed by a constraint corresponding to the one governing the axiom 
of separation. Moreover, the structures constructed here will be polymorphic 
right away. The latter feature can already be observed in the previous proof 
of y2 P P ~ P. It is time to provide a functional syntax for the manipulation 
rules of y2. The introduction of yz will be represented by a A-abstraction which 
does not carryover a regular variable, but over a type variable (a propositional 
variable). From the proof AXP. x of P ~ P, we then construct AP. AXP. x of 
type yz P P ~ P. Define 

Idp ~ AP. AXP • x , 

AXP. x is the identity function over P, while Idp is the polymorphic identity 
function which may be applied to an inhabitant h of any type H ... after P has 
been explicitly instantiated by means of y~ , that is, in a functional syntax, 
by means of a "second-order application": (AP. AXP. x)Hh, which successively 
reduces to (AxH. x)h, then to h. Impredicativity appears when we take for h 
the polymorphic function identity itself: 

Idp (y2 P P ~ P) Idp 
def 

Idp 
def 

The remainder of this section provides some hints on the expressive capacity 
of system F. 

11.5.1 Typing of Regular Structures 

The natural numbers, the Booleans, and the other data structures 
admit a satisfactory typing if we combine the simple typings previ

ously proposed with suitable quantifications. Let us quickly inspect them. The 
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type of integers is: 

N ~f 'liP X (X -t X) -t (X -t X) 

Any inhabitant of N can be regarded as a polymorphic iterator which, given a 
type T, a function f from T to T and an inhabitant x of T, is able to compute 
f( .. . (x) ... ). The exponential function can be typed as follows: 

AmN. AnN. AX. n(X -t X)(mX) : N -t N -t N . 

As a consequence, the function which maps n to nn, that is An. nn, gets a 
suitable typing. 

The type of Booleans is: 

B ~f V2X X-tX-tX 

The constants t and f are respectively typed in the following manner: 

and 

The two versions of the negation are typable in F, including Ab. bft: 

AbE. b (B-tB-tB) ft . 

The initial version of or can be typed by following a similar approach. 

In order to represent pairs, we first examine the problem from a 
logical perspective: how can we represent the conjunction by means 

of '12 and of -t? The intuitive idea can be explained from the impredicative 
definitions we have seen in § 7.3.1. The intersection of a and {3 could have been 
impredicatively defined as the smallest superset of a and {3: 

e contains a n (3 

{x IVe (Vy yEa 1\ y" E (3 -t y E e) -t x E e } , , .. 
x is in any superset of a n (3 

But P 1\ Q -t R can also be written without" 1\": P -t Q -t R, hence: 

an {3 ~f {x I 'Ie (Vy yEa -t y E (3 -t y E e) -t x E e} , 

that is: 

x E a n {3 iff 'Ie (Vy yEa -t y E (3 -t Y E e) -t x E e . (11.8) 

If we consider that x E P means "x allows us to prove P", or just "I know how 
to prove P", (11.8) can read: "I know how to prove A 1\ B if and only if I know 
how to prove every consequence of A and of B", which can be represented in 
second-order logic as follows: 7 

7It is not a completely rigorous justification of (11.9). But we can see an analogy 
between impredicative constructions in set theory and in type theory. 
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A 1\ B d~f \j2 X (A ~ B ~ X) ~ X , (11.9) 

At the functional level, we then have a guideline for building (a, b) from aA and 
from bB: (a, b) is of the form AX. >'fA-+B-+X. e, where e is an inhabitant of X 
built on a, b and f: the only possibility is fab, which yields 

(a, b) ~ AX. >'fA-+B-+X. fab . 

The projections are inhabitants of A 1\ B ~ A and of A 1\ B ~ B. Let c be 'a 
variable of type A 1\ B, c can be specialized as a function to A by an application 
to A, since cA is of type (A ~ B ~ A) ~ A. We still have to find a function of 
type A ~ B ~ A, we naturally consider the curryfied projection >.xA. >.yB. x. 
With a similar reasoning about the second projection, we get: 

prl ~f >.CAAB. cA(>.xA. >.yB. x) and 
pr2 ~ >.CAAB. cB(>.xA. >.yB. y) . 

We still have to check that prl(a, b) 4 a and pr2(a, b) 4 b, but this was pre
viously done, since removing types provides exactly the definitions of untyped 
>.-calculus. This example illustrates the help provided by types for designing a 
program (in >.-calculus here). 

The sum of types is designed along the same lines, only the steps are 
given here: 

e contains a U fJ 

x is in any superset of a U fJ 
= {x I '<Ie ('<Iy yEa ~ y E e) ~ 

('<Iy y E (3 -+ Y E e) ~ x E e} , 

which means "I know how to prove A V B if and only if 1 know how to prove 
any X which is both a consequence of A and a consequence of B": 

A V B ~f '<12 X (A ~ X) ~ (B ~ X) ~ X , 

i1 a ~fAX. >.fA-+X. >.gB-+X. fa 

i2 b ~ AX. >.fA-+X. >.gB-+X. gb 

case ~f AT. >.sAVB. >.fA-+T. >.gB-+T. sTfg . 

11.5.2 Systematic Construction of Types 

for a : A , 

for b : B , 

The scope of the method explained in the previous subsection goes 
far beyond propositional connectors: it can be generalized to induc

tive definitions such as the natural numbers (one recovers the representation 
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of Church), all kind of trees, the (polymorphic) lists, etc. In this way, one 
can represent all sets of closed terms obtained by the means of a finite set of 
constructors, which are employed in algebraic specification.8 

The reciepe consists of starting with the curryfied signature of each 
constructor, in which the desired type is systematically replaced with the vari
able X, where X has previously been universally quantified. If this type is made 
up ofn constructors, having 0"1, ••• O"n as their respective signatures, we repre
sent it by y2 X 0"1 -+ ... 0" n -+ X. For example, the two constructors of A V Bare 
il of type A -+ A V B and i2 of type B -+ A VB, which yields 0"1 = A -+ X and 
0"2 = B -+ Xj A V B is then represented by y2 X (A -+ X) -+ (B -+ X) -+ X. 
For a little variety, let us consider binary trees, as defined by 

leaf int -+ tree 
bin : tree x tree -+ tree 

Here we represent the integers by N. After curryfication and replacement with 
X, the constructor signatures become N -+ X and X -+ X -+ X, which yields 
for tree: 

y2 X (N -+ X) -+ (X -+ X -+ X) -+ X . 

This idea goes far beyond regular algebraic data types, because we 
may introduce constructors having more complex types. For example, 

here is a type of trees where each node may possess 0, 1, or an infinite number 
of children: 

init arbi 
next arbi -+ arbi 
lim (int -+ arbi) -+ arbi. 

It is represented in system F by 

y2 X X -+ (X -+ X) -+ «N -+ X) -+ X) -+ X 

This structure provides a representation of ordinal numbers, where ini t is 
interpreted by 0, next is interpreted by the successor function and lim is in
terpreted by the formation of a limit ordinal number. This gives some idea of 
the expressive abilities of system F. 

11.5.3 Expressive Power and Consistency of System F 

System F includes an extremely rich class of functions. The following theorem 
states that almost all functions we need in practice can be represented in F.9 

8See the concept of an initial algebra on page 88. 
9However, there is a restriction: system F does not always provide a type for the 

most efficient algorithm which computes a given function. Here the term "function" 
takes its set-theoretical meaning - something uncommon in this chapter. 
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Theorem 11.4 
Any total function whose termination can be proved by means of regular math
ematics10 can be represented in system F. 

It is then quite remarkable that the strong normalization property of the simply 
typed A-calculus still holds. 

Theorem 11.5 
The fJ-reduction is strongly normalizing in system F. 

This means that the termination of computations is decidable (ensured, in 
fact) as soon as typing is checked. This property has a good consequence: it 
guarantees that system F is free of logical paradoxes (such problems may have 
been caused by the impredicativity of the system). Note that, the expressive 
power of system F does not come from recursion (in the sense of computer 
science): fixed-point combinators cannot be represented. 

11.6 Dependent Types 

11.6.1 Introduction of First-order Variables 

The interpretation of Heyting allows one to distinguish the (many) proofs of a 
given formula. For example, the most simple proofs of N -+ B are AnN. t and 
AnN. f; but we can find many others: . 

AnN. "if n = 0 then t else f" , 
AnN. "if n is even then t else f" , 
etc. 

From the viewpoint of specification, only the domain (N) and the co-domain 
(B) of these functions are specified, but we would like to go further: stating 
a relation between the result and the argument. To provide an analogy with 
abstract data types, system F declares only the signatures - however, we have 
a new feature with relation to algebraic data types: higher-order signatures are 
allowed here. 

In order to tackle this problem, we take predicates instead of propositions. 
For example, in the case of natural integers, we introduce the symbols S and 
o in the logical language, and N becomes a I-argument predicate. The idea 
is that N(x) is provable if x is obtained by successive applications of S to O. 
Intuitively, N(x) represents x E N. Let us write the expected induction schema, 
where the induction step comes first;ll here, X is a unary predicate variable: 

laThe precise meaning of this phrase should be explained but this is beyond the 
scope of this chapter. A precise statement can be found in [GLT89]. 

11 We could also consider the base case first; the integer n will then be represented 
by AX/. f(f··· (f x) ... ) instead of >.ix. f(f··· (f x)·· .). Of course, all operations 

" ---n n 
defined over the natural numbers have to be rewritten accordingly. 
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'<;2 X (Yx Xx --+ X(SX)) --+ Xo --+ \:In N(n) --+ Xn . 

The quantification over n can also be written at the beginning of the formula, 
which yields: 

\:In N(n) --+ \:12 X (Yx Xx --+ X(Sx)) --+ XO --+ Xn 

Formally, we will actually define N by: 

N(n) ~f y2 X (Yx Xx --+ X(Sx)) --+ XO --+ Xn (11.10) 

Note that, if we remove first-order information, we recover the definition given 
in system F: 

N ~f y2 X (X --+ X) --+ X --+ X 

The system we just sketched was introduced by Krivine under the name 
second-order functional arithmetic (AF2) [Kri93]. The class of functions, 
which can be described in it, is the same as in system F; but typing provides a 
real specification language. 

The previous type expressions may seem somewhat mysterious at first sight, 
but looking at them as Prolog programs may help. From this perspective, one 
should ignore issues related to the special resolution strategy of Prolog, and 
concentrate on the proof trees that could be constructed using a fair strategy. 
The Prolog program corresponding to the type of the integers in system F would 
be 

nat: - nat. 
nat. 

The Prolog program corresponding to the type of the integers in AF2 would be 

nat(S(x)):- nat(x). 
nat(O). 

11.6.2 SUInS and Products 

11.6.2.1 Products of Sets. Until now, we considered the product S x T or 
the sum S + T - also denoted, respectively, by S 1\ T and S V T, thanks to the 
Curry-Howard correspondence - of two types. In mathematics, these concepts 
can be generalized to the product, and to the sum, of a family of sets (Ti) 
indexed by a set [. 

For the sake of simplicity, let us first take for [ an interval of integers of the 
form [l..n]. The elements of the product lliEI Ti are the tuples (Xl, ... , xn) 
where, for all i from [, we have Xi E T i . In the case where all Ti are identical, 
we can write Ti = T, then we can view the tuples (Xl, ... , Xn) as functions 
from [l..n] to T. For example, there is a natural bijection between TxT and 
{I, 2} --+ T. 
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More generally, for an arbitrary I, DiE! T is defined as the set of mappings 
from I to T, which is commonly denoted by I -t T. 

In conclusion, I -t T is a kind of product. 
In the general case, where Ti are distinct sets, DiE! Ti is termed a depen

dent product. It is seen as a function, whose domain is I, and whose co-domain 
Ti depends on the element to which it is applied.12 The following notation is 
often used: 

II T(i) 
iE! 

The product R x S is a simple example of a dependent product, it is: 

II T(i) with T(l) = Rand T(2) = S 
iE{1,2} 

Examples: 

- In communication protocols, it is not uncommon that, in a message, the type 
of a field depends on a value, or on a combination of values, which come from 
a previous field. 

- In the example of a calendar, which was mentioned at the beginning of the 
previous chapter, suppose that we would like to select a day in each month 
of the year 2002. This will be represented by a 12-tuple, that is, at a first 
approximation, a member of [1, 12)-t [1,31). But, for a more accurate spec
ification, we would consider it as a member of the dependent product: 

II month(i), 
iE[1..12] 

{ 
month(l) = [1,31)' 

with month(2) = [1,28) , 
etc. 

11.6.2.2 Sum of Sets. In a similar manner, LiE! T(i) is composed of pairs 
(i, month(i») whose first element i is taken from [1,12) and the second element 
is taken from month(i). This is a dependent sum. In this case, it represents the 
type of the dates of a non-leap year. 

11.6.2.3 Products and Sums of Types. The previous constructs over sets 
can be translated into constructs over proof spaces. We know that providing a 
proof of Tl /\ T2 amounts to providing a proof of Tl and a proof of T2 • 

By generalizing this remark, providing a proof of Vi T(i) amounts to pro
viding a proof of T(i) for each i: this corresponds to the dependent product 
11 T(i). 

Finally, providing an intuitionistic proof of 3i T(i) amounts to providing 
an i and a proof of T(i), that is, an inhabitant of Li T(i). 

When a type is represented by a formula which contains parameters, it is 
termed a dependent type, because the type of the result of a function, which 
inhabits such a type, depends on the value of its argument. 

12In order to recover the common concept of a set-theoretic function, one has to 
build its co-domain: it is the union of all Ti. 
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11.6.3 Specification Based on Dependent Types 

A function to be implemented can be specified using dependent types, in a 
formula such as: 

\;fx:E P(x) -+ 3y:S Q(x,y) , (11.11) 

where E is the type of the input argument, S is the type of the output, P is a 
precondition and Q is a post condition. Intuitively, the above formula tells us 
that, for all x from E satisfying P, there exists a y from S such that Q(x,y) 
is satisfied. A constructive proof of (11.11) forces us to make the witness y 
explicit, or more precisely to make it explicit how y can be computed from x 
(in classical logic, we could content ourselves with proving that, if all y satisfy 
-,Py, a contradiction can be derived). 

After closer examination, an inhabitant c.p oftype (11.11) is a function which 
takes, first, an inhabitant x from E and then, an inhabitant from - a proof of 
- Px, and which returns a pair (y, q) such that y inhabits Sand q inhabits 
Q(x, y). This is then more complicated an object than a function from E to S. 
Nevertheless, it is possible to extract from c.p a function f of type E -+ S such 
that: 

\;fx:E P(x) -+ Q(x, f(x)) (11.12) 

This operation is termed program extraction or program synthesis. It is im
plemented in several software tools such as Nuprl and Coq; we will return to 
this idea in Chapter 12. 

11.7 Example: Defining Temporal Logic 

In order to illustrate the expressive power of the notions presented in the pre
vious sections, we formalize here the definition of CTL * given in § 8.5. 

We assume that we are in an environment which includes a type 
state for the states and a type nat for the natural integers. We 

define traj, the type of trajectories, and suff, the function which computes 
the kth suffix. 

traj ~f nat -+ state 

For the sake of clarity, we distinguish various kind of predicates by giving them 
a type: Pstate, for the predicates over states, and Ptraj, for the predicates over 
trajectories. They are defined from the type of propositions, which is denoted 
by Prop (as in the next chapter). 

Pstate ~f state -+ Prop Ptraj ~f traj -+ Prop 

Then we formalize the start operator 8 and logical connectors. Here, we give 
only the conjunction andst over state predicates, the conjunction andtr over 
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trajectory predicates, and the universal quantification forallst over state 
predicates. 

a ~f ApPstate. Aatraj. P(aO) 

andst ~f ApPstats. AQPstats. Asstats. Ps 1\ Qs 

forallst ~ ApA--+Pstate. Asstate. '<Ia A Pas 

andtr ~f A<pPtraj. A1/;ptraj. Aatraj. <pa 1\ 1/;a 

Finally, we have the temporal and the branching operators. 

x ~ A<pPtraj. Aatraj. <p(suff 1 a) 

F ~ A<pPtraj. Aatraj. 3nnat <p(suff n a) 

G ~f A<pPtraj. Aatraj. '<Innat <p( suff n a) 

W ~f A<pPtraj. A1/;ptraj. Aatraj. 

'<Innat ('<Iinat i ~ n -t ...,1/;( suff i a)) -t <p( suff n a) 
U ~f A<pptraj. A1/;ptraj. Aatraj. 

3nnat 1/;( suff n a) 1\ ('<Iinat i <n -t <p( suff i a)) 

E ~f A<pPtraj. Asstate. 3atraj a(O) = s 1\ <pa 

A ~f A<pPtra j . Asstats. '<Iatraj a(O) = s -t <pa 

11.8 Towards Linear Logic 

Recall that, in sequent calculus, intuitionistic logic appears as a re
striction of classical logic, where the right-hand side of sequents can 

be made up of at most one formula. As an important consequence, the use of 
the contraction rule is prohibited on the right, and the use of the weakening 
rule is drastically limited. After a deep analysis of this fact, based on seman
tical considerations, Girard came to consider a logic where a fine-grain control 
over the space of hypotheses and conclusions, regarded as resources, is specified 
by special logical operators [Gir87a]. Typically, regular implication is decom
posed into a new kind of implication, which is denoted by -0 and is termed 
linear implication, and whose inhabitants are functions which "consume" their 
argument, and a cloning operator for keeping this argument in memory. Two 
versions of the conjunction and of the disjunction are distinguished: a multi
plicative and an additive version. For example, the multiplicative conjunction 
can be interpreted as the juxtaposition of resources, while the additive con
junction can be interpreted as their superposition. An interesting property of 
the multiplicative fragment is that, in the corresponding calculus on proofs 
(according to the Curry-Howard correspondence) transitions can be performed 
in parallel without synchronization problems. 
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The new constructive logic thus obtained is termed the linear logic 
(not to be confused with the linear temporal logic considered in Chapter 8). In 
the same vein, let us mention interaction nets [Laf90], an elegant paradigm for 
parallel computations over graphs, which is based on linear logic. 

11.9 Notes and Suggestions for Further Reading 

Reference works on the A-calculus are [Bar84] and [HS86]. An algorithmic for
mulation, interesting for computer scientists and practitioners, is presented by 
Gerard Huet in [Hue92]. 

The book [Hue90] edited by Huet contains fundamental chapters on type 
theory. Chapter 2 of [AGM92b], by Barendregt, presents several type systems 
for the A-calculus in a uniform and synthetic manner (see also Chapter 16 in 
[Hue90)). One may also consider the papers of Mitchell in [vL90b]. The book 
[Th091] contains a thorough and progressive introduction to type theory. It 
is based on a predicative version of type theory, due to Martin-Lof, which is 
particularly influential [ML84]. 

The relationship between typing, natural deduction and sequent calculus are 
handled in [GLT89] and [GaI93]. Interesting hints are also given by Coquand 
in [Hue92, ch. 17]. 

Reference books on intuitionistic logic and, more generally, constructive 
mathematics, are [DumOO] and [TvD88]. 
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Et, comme la multitude des lois fournit souvent des excuses aux vices, en 
sorte qu 'un Stat est bien mieux regie lorsque, n'en ayant que fort peu, elles 
y sont fort etroitement observees ; ainsi, au lieu de ce grand nombre de pre
ceptes dont la logique est composee, je crus que j'aurais assez des quatre 
suivants, pourvu que je prisse une ferme et constante resolution de ne man
quer pas une seule fois Ii les observer.! 

R. DESCARTES, discours de la methode, II. 

In the table example, we would like to consider the search criterion P as a 
parameter. This is not possible in the framework of a formal method based on 
first-order logic, at least not in a satisfactory manner: 

- P may be encoded in the form of a set, but in the framework of B, for 
example, only certain finite sets are allowed; 

- Z is more flexible, but no straightforward mechanism is provided for deriving 
a program from the specification; 

- the axiom for search, in the algebraic specification of Chapter 10 is actually 
a schema of axioms; we then have to write down an instance of this schema 
for every property of interest. 

Furthermore, the proposed expedients hardly survive if one wants to tackle 
arbitrary situations, for example if P is an argument to be discovered only at 
call time, or if P is given by an algorithm instead of a data structure, or else 
when we consider several-level search processes in complex overlapping tables. 

If we take a predicate P as an object which may vary, or be manipulated 
as an argument of a function or of a predicate, we are working in higher-order 
logic. The version of higher-order logic we will employ in this chapter is the 
calculus of inductive constructions. This is a very powerful logic, well-adapted 
to specifying and reasoning about programs. Interactive and reliable tools, such 
as Coq and Lego, are available for aiding the development of specifications and 
proofs. 

1 And as a multitude of laws often only hampers justice, so that a state is best 
governed when, with few laws, these are rigidly administered; in like manner, in
stead of the great number of precepts of which logic is composed, I believed that the 
four following would prove perfectly sufficient for me, provided I took the firm and 
unwavering resolution never in a single instance to fail in observing them. 

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003
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12.1 The Calculus of Inductive Constructions 

We start with a pragmatic presentation of the logic, then we will indicate how 
it is related to type theory as introduced in the previous chapter. 

12.1.1 Basic Concepts 

The calculus of constructions includes the ordinary logical operators 1\, V, --, and 
the implication denoted -to Quantifications are typed. Thus, a property which 
holds true for every natural integer is expressed by Vn:nat Pn. (Comment on 
the notation: as in the A-calculus, we henceforth omit parentheses for function 
application whenever possible. For example, Vn : nat P n would be denoted 
Vn:nat pen) in standard mathematical notation.) 

The notational confusion between a proposition P -t Q and function space 
P-tQ is intentional: according to the Curry-Howard correspondence (§ 11.3.4), 
a proof of P -t Q can be interpreted as a total function which computes a proof 
of Q from a proof of P. 

Propositions themselves have a type named Prop. For example, the predi
cates over natural integers have the type nat -t Prop. We can express that, for 
any given proposition P, P implies P, by the formula VP: Prop P -t P. Let 
us point out that P is quantified here: this would be impossible in first-order 
logic. 

The data types such as nat themselves have a type named Set. Thus we 
can build up functions whose type depends on the first argument. The most 
simple example is the identity function, which is defined (without types) by 
Idx = x. Its behavior is the same, independently from the type of x, which 
could be an integer, a Boolean, or even a function itself. It is assigned the type 
VX:Set X -tX. The typed version of Id is then Id(X:Set; x:X) = x. For 
example, Id could take nat as its first argument, then 3, and its result is then 
3. We can also consider the expression Idnat, and take it as the definition of 
Idn. Idn is then the specialization of Id to natural integers. 

Similarly, data structures can be parameterized by a data type. The clas
sical example is lists: given an arbitrary type X, list X is the type of lists of 
elements from X; list then has the type Set -t Set, its constructors are nil, 
of type V X: Set list X, and cons, of type V X: Set X -t list X -t list X. 

The expression Al -t Az -t ... An -t B denotes the type of a function 
_{0~ which has n arguments of types AI ... An, respectively, and which 
returns a result of type B. Similarly, on the side of propositions, we have seen, 
in the equation (3.11) on page 47, that P -t Q -t R, which means "if I have P, 
then if I have Q, then I have R" can replace P 1\ Q -t R. 

A type such as nat -t nat is still of type Set. This allows us to form, 
for example, lists of functions over integers. Thus, we can legitimately 

apply Id to nat -t nat. For example, Id (nat -t nat) Idn returns Idn. We can 
even apply Id to itself as follows: Id (V X: Set X -t X) Id, and this expression 
reduces to Id. 
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12.1.2 Inductive Types 

The calculus of inductive constructions also includes a mechanism for defining 
data types from constructors, as in algebraic data types. The integers, the 
Booleans, and the lists are defined in this way. However, as we can use higher
order features, we have polymorphic lists from the outset, (also termed "generic" 
lists, in the terminology of programming languages such as Ada). 

The inductive types that we will use in the table example are specializatiofls 
of very general inductive types, which we present in an informal manner for the 
moment (we will give the formal definitions in § 12.2.8). The first is {x : SIP x} 
where S is of type Set and P is of type S ~ Prop. As is suggested by the 
notation, this type plays the role of the set of elements x from S which satisfy 
Px. 

However, the reader must be aware that {x : SIP x} does not denote 
~ exactly the same thing in set theory and in type theory. Here, the 
inhabitants of {x: S I Px} are the pairs (x,p) where p is a proof of Px. We 
will see, in § 12.3.4, how the logical part p can be removed. 

The sum of two data types is yet another general inductive type. The most 
common form is: 

A+B, with A, B: Set. (12.1) 

The elements of type A + B are elements of type either A, or B, together with 
a piece of information for indicating their origin. 

The following construct uses two propositions: 

{P} + {Q}, with P, Q : Prop. (12.2) 

There are two kinds of inhabitants from this type, the first tells us that P 
is true and the second tells us that Q is true. As we use a constructive logic 
here, this means that we can effectively compute whether P or Q is satisfied. 
In the case where Q is the negation of P, this type can also be regarded as an 
enriched version of bool: an inhabitant of {P} + {-,P} yields the truth value 
of P; providing such an element simply amounts to saying that P is decidable 
(in our example, on page 16, we employed the term P is defined.) 

The last construct we will use is a kind of mixture of the two previous ones. 
Its elements are either inhabitants of A which satisfy the predicate P, or an 
indication that Q is true: 

{x:A I Px} + {Q}, with A:Set, P:A ~ Prop et Q:Prop. (12.3) 

This construct is an enriched version of the option type of Ml. 

12.1.3 The Table Example 

12.1.3.1 Specification. We are given an arbitrary universe U oftype Set and 
an arbitrary predicate P over U. The table is represented by its characteristic 
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predicate Ptable. We first state the precondition: P is defined for all elements 
from the table. To this end we write, using (12.2) - the identifiers inside the 
square brackets U, Ptable and P, are simply the parameters of the function 
def_tbl: 

def _ tbl[U: Set; Ptable, P: U -+ Prop] ~f 
Vx:U Ptablex -+ {Px} + {..,Px} . 

The expression on the right-hand side can also be interpreted as the type of a 
total function which, for every x which satisfies Ptable, returns the truth value 
of P x. This expresses the idea of a ''table where every element can be tested". 
If we consider § 12.3.4, an inhabitant D of type def_tbl could simply be an 
array of Booleans which represent truth values of P. But a Boolean function 
defined over an infinite domain would do the job just as well. The specification 
written above assumes nothing about the future realization of D. 

Let us consider the type of the result. It should be either an element from 
the table verifying P, or an indication that there is no such element. Its type 
is defined using (12.3): 

resu_ tbl[U: Set; Ptable, P: U -+ Prop] ~f 
{x:U I Ptablex 1\ Px} + {Vx:U Ptablex -+..,p x} 

12.1.3.2 Specialization to an Array. With the aim of developing a pro
gram, we consider the case where U is the type of the natural integers and 
where Ptable characterizes an interval of integers. P is left free. The considered 
interval is defined by its two bounds p and q, which are also considered as pa
rameters, for which we assume that p ~ q. This context is concretely declared 
in the following manner: 

Variable P: nat -+ Prop . 
Variable p, q: nat . 
Hypothesis lepq: p ~ q . 

Now we just have to apply def_tbl and resu_tbl to nat and to Pinterv, once 
the latter is defined: 

between[a, b, c:nat] d~f a ~ b 1\ b < c . 
Pinterv[x:nat] ~f betweenpxq . 

def_tbl_int ~f def_tblnat Pinterv P 
resu_ tbl_int ~f resu_ tbl nat Pinterv P 

The definition chosen for betweenpx q corresponds to the interval [p .. q[ that 
we used in Chapter 2. 

12.1.3.3 Specialization to a List. We can also specialize the general speci
fication above to the search for an element in a list. We don't need to specialize 
U: the table will be represented by a list of elements from U and we will assume 
that P is defined for all elements of this list. Formally, we first stipulate that a 
list contains u if, and only if, it is of the form cons u l, or of the form cons v l, 
where u is in I. 
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Inducti ve contains: list -t U -t Prop ~ 
contains_head : Vl: list Vu: U contains( cons u l) u 

I contains_queue : 
Vl: list Vu, v: U contains l u -t contains( cons v 1) u. 

We then consider a given list l, and we write the definition of Ptablist in order 
to state the desired specification. 

Variable l: list . 
Ptablist[u: UJ ~f contains l u 
def _ tbl_lis ~f def _ tbl U Ptablist P 
resu_tbl_lis ~ resu_tbl U Ptablist P 

12.2 More on Type Theory 

The calculus of inductive constructions is obtained from system F, introduced 
in Chapter 11, using three independent extensions that we consider in turn: 

- introduction of an additional type level on top of propositions; 
- introduction of predicates and of dependent types; 
- introduction of inductive types, 

This system allows one to represent a strict superset of the functions rep
resentable in system F, while preserving the strong normalization property. 

12.2.1 System Fw 

We introduced the symbol Prop for representing the type of propositions. A 
type quantified using second-order quantification, denoted V2 X r.p in Chapter 11, 
is henceforth denoted V X : Prop r.p; similarly, AX. r.p becomes AX : Prop. r.p • For 
example, the formula expressing that P implies P, for any proposition P, is 
V P: Prop P -t P. It is inhabited by the polymorphic identity AP: Prop. AX : P. x. 

This provides a more uniform syntax, but the main point is that we are 
now allowed to consider expressions such as Prop -t Prop -t Prop - the type 
of logical connectors - and even quantifications over connectors. 

Vc: (Prop -t Prop -t Prop) r.p 

Thus, from now on, we can define the logical connectors as functions, using a 
A-term. For example, for /\, we adapt (11.9): 

and ~f AA: Prop. AB: Prop. V X: Prop (A -t B -t X) -t X (12.4) 

In system F, we could only represent A /\ B for given A and B. 
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P -+ Q is actually only a simplified notation for Vx:P Q, that we 
use when Q does not depend on P. Indeed, we have seen, in § 11.6.2, 

that the regular product is a particular case of a dependent product. This still 
holds if we take Prop instead of P. The only primitive logical operation is then 
the universal quantification. 

As in P: Prop, we can construct other inhabitants of Prop, such as 
P -+ P. We have to give a type to expressions such as Prop, Prop.-+ Prop, 
etc. This type is named Type. The process continues with a hierarchy of types 
Typel , Type2 , and so on. The important point is that polymorphism is not 
allowed within Type and beyond, because this would leave room for paradoxes. 

12.2.2 The Calculus of Pure Constructions 

We have seen how to define data types in system F, such as N, the natural 
integers, or B, the Booleans. We then have three levels: objects from the bottom 
level, such as 0 or S, inhabit objects from the second level, such as N or N -+ N, 
which themselves inhabit an object of the third level, Prop. 

The calculus of constructions authorizes products such as N -+ Prop, which 
are simply predicates over the integers. If P is of type N -+ Prop, the formula 
Vn:N Pn expresses that this property is verified for every integer. 

12.2.3 Inductive Definitions 

There is another way of introducing objects such as the natural integers, the 
Booleans, binary trees and the like: using an inductive definition, which con
sists of an exhaustive enumeration of the constructors of the type to be defined, 
together with their respective signatures. For example, here is the definition of 
bool and of nat: 

Inductive bool: Set:= true: bool false: bool. 

Inductive nat: Set:= 0: nat S: nat -+ nat. 

Note that bool and nat have the type Set instead of Prop. We can ignore 
the difference between Set and Prop at the moment. Distinguishing them will 
become important later, in the context of program extraction, for separating 
data structures from proofs. In the following example, which defines binary 
trees, we have a two-argument constructor: 

Inductive tree: Set:= 
leaf: nat -+ tree I bin: tree -+ tree -+ tree. 

Thanks to inductive definitions, not only does the representation of data struc
tures become clearer, but we gain automatically generated induction principles, 
which are essential for reasoning about objects or programs. We will come back 
to them in § 12.2.6. The definitions inspired from system F keep their interest 
as control structures. For example, an inhabitant of N is an iterator which 
applies a function to an argument for a given number of times. 
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12.2.4 Inductive Dependent Types 

In the calculus of inductive constructions, we can also define predicates in an 
inductive manner. For example, here is a definition of the predicate which states 
that a given natural integer is even: 

Inductive even: nat -+ Prop:= 
pO: even 0 

I p2: Vn:nat evenn -+ even(n + 2). 

The assertion pO stipulates that 0 is even, the assertion p2 stipulates that for 
any integer n, if n is even, then n + 2 is even; finally, an integer is even only if 
this can be proved using pO and p2 only - similarly, the definition of nat says 
that any integer can be constructed with 0 and S only. 

A proof of even n, where n is non-zero, can be given in the form p2 k P 
where p is a proof of even k. For example, the tree 

p2 
/"-,. 

2 p2 
~ 

o pO 

which represents the term p2 2 (p2 0 pO), is a proof of ~ven4. Let us observe 
that, in p2 k p, the type of the component p depends on the value of the previous 
component k. 

A Prolog definition of even would be composed of clauses similar 
to pO and p2, but here we can write n + 2 instead of S(Sn). The 

next definition of even, called even1 below, does not correspond to a Prolog 
program. 

12.2.5 Primitive Recursive Functions 

In order to define a function such as the addition, one indicates how to construct 
the result by means of a case analysis on the possible constructors of nat, which 
are S and O. More precisely, one expresses that m + 0 evaluates to m, and that 
m + S n evaluates to S(m + n). A possible syntax in Coq is (replacing, following 
common notation, plusab with a + b): 

Fixpoint plus [m, n : nat] 
Cases n of 

o => m 

: nat:= 

I Sn => S(m + n) end. 

An expression such as SO + SO is then an unreduced form of s(s 0). Similarly 
2, viewed as a constant function without arguments, is an unreduced form of 
S(S 0). 

We can define in the same way functions over binary trees, by exhausting 
the possible cases. This is sometimes called structural induction. For example, 
here is a definition of the sum of the leaves of a tree: 
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Fixpoint sumlf [a : tree] 
Cases a of 

::::} n 

nat:= 

leafn 
bingd ::::} sumlf 9 + sumlf d end. 

In the case of integers, we can then define the primitive recursive 
functions which were introduced in § 3.7.1. The system presented 

here then includes a generalization of primitive recursive functions to arbitrary 
inductive types. FUrthermore, even in the case of the integers, we actually have 
much more than primitive recursion: we have a large class of total recursive 
functions (totality is automatically ensured by the theorem of strong normal
ization). The large size of this class comes partly from the higher-order features 
of the calculus. For example, we saw in § 3.7.1 that the Ackermann function is 
not primitive recursive in the ordinary sense, but after curryfication it becomes 
so. 

12.2.6 Reasoning by Generalized Induction 

Here is another definition of the property, for a natural integer, to be even: 

Inductive even1: nat -+ Prop:= 
p1: V'n:nat even1(n + n). 

How can we ensure that the two definitions even and even1 are equivalent? 
Each inductive definition is automatically associated to an elimination rule, 
which allows one to reason by cases on an object which inhabits an inductive 
type. In the simple case of an enumerated type, such as bool, the rule simply 
states that, in order to prove Pb for any Boolean b, it is sufficient to prove 
Ptrue and Pfalse. 

In the case of a "recursive" type such as nat, the rule states that, in order 
to prove P n for any natural number n, it is sufficient to prove PO and to prove 
that, if Pm, then P (8m): this is a formalization of reasoning by induction, 
expressed here by one axiom, and not by a schema as we did in § 5.3.2. 

V'P:nat-+Prop PO -+ [Ym:nat Pm -+ P(8m)] -+ V'n:nat Pn. 

For example, let us consider a proof of even1 n -+ even n. Reasoning di
rectly by induction over n is not a very good idea, because if n is even, 
then 8 n is odd. However, the hypothesis even1 n entails that n has the form 
m+m (which is formally expressed by an elimination on even1). We then 
reason by induction over m, which amounts to proving that even(O+O) and 
even(k+k) -+ even(8 k + 8 k), which is trivial by applying, respectively, pO and 
p2, and then using very simple arithmetic facts. 

Another complete example of a proof by induction was previously presented 
in § 9.2.2.2. 
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12.2.7 Induction Over a Dependent Type 

For the same reason as in the previous subsection, it is neither easy, 
nor natural, to prove the formula even n -+ even1 n by induction over 

n. Intuitively, we would like to count the number of occurrences of p2, m, in 
a proof of even n, to construct p1 m and to verify that the latter is of type 
even1 n. Formally, we employ the elimination rule associated with even, which 
amounts to examining the different means of constructing a proof of even n. 
Two cases are possible: 

- either this proof is pO and, in this case, n is 0: we can take p1 0; 
- or, the proof is of the form p2 k p where p is a proof of even k 

and, in this case, n is k + 2; by the induction hypothesis we have 
a proof of even1 k, which means that k is of the form m+m (here, 
an elimination of even1 is used); we can take p1(S m), since we have 
m + m + 2 = (m+1) + (m+1). 

This reasoning needs some care. In such situations, using a software-based proof 
assistant turns out very helpful. The main lesson we can draw is that common 
induction over the natural integers is an elimination rule among many others, 
and that it is often worthwhile to use an induction principle over types which 
are more complex than nat, such as even in the previous example. 

Reasoning by induction proceeds by examining the different means 
~ of producing the eliminated object. But one always limits oneself to 
considering that this object is built using only constructors. For example, in 
an induction over a natural integer, one only considers the case where it is 
zero and the case where it is the successor of an integer. However, the integer 
under examination may well be presented in a different form, using multipli
cations or one of the many other possibilities. Similarly, a proof of even n, 
when n is non-zero, is not necessarily of the form p2 k p from the outset: an
other possibility is th n p', where p' is a proof of even1 nand th a proof of 
'<Ix : nat even1 x -+ evenx. 

Confining the exploration to constructors is sufficient, because every 
expression necessarily reduces to the form of a combination of constructors 
(when no free variable is left). Termination (normalization) properties of the 
calculus play an essential role there. 

In passing, the above discussion illustrates the importance of the 
~ computational contents of proofs - the third part of the Curry
Howard correspondence: the argument given above for proving even n-+even1 n 
relies on the fact that a proof of even n is eventually (after a number of com
putation steps) of the form p2 k p. 

12.2.8 General Purpose Inductive Types 

We provide the formal definition of the general-purpose inductive types, that 
we used in § 12.1.3, for the example of the search for an element in a table. 
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12.2.8.1 Type of Existence. We assume that a type S is given, together 
with a property P over the elements of S, and one wants to construct the type 
sig of pairs composed of an element x from S and of a proof p of P x - such 
a pair can be constructed only if x verifies P. We denote suchthatxp such a 
pair, that is, we name suchthat the corresponding constructor. The type sig 
is parameterized by S and P, we employ the following notation: 

Inductive sig [S:Setj P:S ~ Prop): Set:= 
suchthat: "tx:S Px ~ sigS P. 

As we have two parameters Sand P, suchthat actually constructs a 4-tuple 
instead of a pair, which is suchthat(S, P, x,p) where the types of P and of x 
depend on the value of S and where the type of p depends on the values of P 
and of x. 

The type sig plays a role similar to a definition by comprehension in set 
theory. For this reason one uses the notation {x:S I Px} instead of sigS P. 
For example, the type of even integers can be defined by {n:nat I evenn}. 
However, one must be aware that in set theory, {x: SIP x} denotes a subset 
A of S, while in type theory, the same expression denotes a set of pairs. We 
recover A by deleting the second element. of each pair. 

The t.ype sig has another interpretation. Indeed, proving that there exists 
an x verifying P x, is the same as exhibiting a witness x and a proof of P x. 
The definition of 3 x : S P x is identical to the definition of {x: SIP x}, with 
just one difference: the result is a proposition instead of a data type: 

Inductive ex [S:SetjP:S ~ Prop): Prop:= 
ex_intro: "tx:S Px ~ exS P. 

The difference between {x: SIP x} and 3 x : S P x is then tinyj it is important 
only in the framework of program extraction. 

12.2.8.2 Sums and Disjunction. Let A and B be two types, which are 
themselves of type Set. An inhabitant of their sum is constructed from either an 
inhabitant of A, or an inhabitant of B. The corresponding inductive definition 
sumAB has two parameters (A and B) and two constructors inl and inr: 

Inductive sum [A,B:Set): Set:= 
inl: A ~ sum A B 

I inr: B ~ sumAB. 

One generally uses the notation A + B instead of sum A B. The inhabitant 
of A + B which is constructed from an inhabitant a of A is then inl ABa. 

In § 12.1.3, we used the similar construct {P} + {Q}, where P and Q play 
the role of A and Bj here, P and Q have the type Prop, while the result has 
again the type Set: 

Inductive sumbool [P,Q:Prop): Set:= 
left: P ~ sumbool P Q 

I right: Q ~ sumboolPQ. 
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The disjunction of two propositions P and Q is another variant of this inductive 
type, where the result has the type Prop instead of Set. 

Inductive or [P, Q:Prop]: Prop:= 
or _introl: P -+ or P Q 

I or_intror: Q -+ or PQ. 

The syntax used is P V Q instead of or P Q. We get yet another useful variant 
by summing a data type A with a proposition Q. 

Inductive sumor [A:Set;Q:Prop]: Set:= 
inleft: A -+ sumor A Q 

I inright: Q -+ sumor A Q. 

The syntax used is A + {Q}. When A is itself an existential type, of the form 
{x:A I P x}, we get {x:A I (Px)} + {Q}, which is the last general type we used 
in § 12.1.3. An equivalent definition is as follows: 

Inductive option [A:Set; P:A -+ Prop; Q:Prop]: Set:= 
success: Vx: A P x -+ option(A, P, Q) 

I fail: Q -+ option(A, P, Q). 

An inhabitant of this type is either an inhabitant x of A together with a 
proof that x verifies the predicate P, or a proof of Q. 

12.3 A Program Correct by Construction 

In § 12.1.3, we gave a specification for the search for an element in a table. 
How can we design an algorithm from this specification? Two approaches can 
be taken. The first is quite standard. We view 

(def_tbl U PtableP, resu_tbl U PtableP) 

or its specialization to intervals 

as the precondition and the postcondition, respectively, of an imperative pro
gram. We can, for example, formalize the concept of a predicate transformer 
in the calculus of inductive constructions. Then we get a framework composed 
of a formal logic and of tools, which can be used to support the development 
process presented in Chapter 4. This aid is worthwhile if we want to be sure 
that nothing has been forgotten in the reasoning of § 4.2.2. 

A more sophisticated variant consists of formalizing in Coq the operational 
and axiomatic semantics of a programming language. It is then possible to 
automate the production of the lemmas to be proved. This was previously 
proposed in [BF95, Ter93]. More recent works include [Fil99J. 
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The second approach is typical of constructive logics. It is based on the 
aforementioned Curry-Howard correspondence. In this approach, a program 
and its proof are simultaneously developed. This is reminiscent of the techniques 
of Dijkstra. The main difference is that here we will get functional programs 
instead of imperative programs. In general, this means that the efficiency of 
imperative programs may be lost, but that complex recursive functions can be 
proven to be correct. However, this cannot be illustrated on the table example: 
we will get a very simple algorithm, and moreover a tail-recursive one, so that 
modern compilers of functional languages are able to provide code as efficient 
as for C programs. But our aim is only to illustrate the technique on our now 
well-known example. 

12.3.1 Programs and Proofs 

Recall the Curry-Howard correspondence: 

specification 
proof 

type, 
functional program. 

A specification is, from a logical viewpoint, an implication between a precon
dition and a postcondition. From the functional viewpoint, it is the type of 
a function, as given by the type of its arguments (together with logical con
straints) and the type of the result (together with logical constraints also). In 
the table example, for a given U, the specification of the search for an element 
x verifying P, if there is one, in a table characterized by Ptable is then: 

def _ tbl U Ptable P -t resu_ tbl U Ptable P . (12.5) 

Instead of directly displaying a function in a functional language, the idea is to 
prove the formula (12.5), using the rules of logic: introduction of hypotheses, 
case splitting, reasoning by induction, etc. Figure 12.1 gives the main corre
spondences between reasoning rules and algorithmic constructs. 

conjunction 
case analysis 

implication 
reasoning by induction 

pair of data 
case of, if then else 
function 
(primitive) recursion 

Figure 12.1: Logic and functions 

A proof constructed in this way contains an algorithm. Of course, different 
proofs correspond to different programs. Actually, one may perform the proof 
with a more or less precise algorithm in mind; in much the same way, one is 
guided by intuition when one writes down a formal proof. 
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Efficiency issues are not ignored in this approach, and this may give 
proofs a somewhat artificial taste. For example, suppose we want to 

find an inhabitant of the type Tn, where n is a given integer. If Tn is proven 
by regular induction, the result will be found after O(n) computation steps.2 
But if we use the following induction principle: 

'v'n:nat PO --+ [Vk:nat Pk--+P(2k)] 
--+ [Vk:nat Pk--+P(2k+l)] --+ Vn:nat Pn, 

the number of steps will be O(log n). This is nothing but the logical translation 
of well-known design principles for algorithms. In summary, the choice of data 
types and of induction principles are important design decisions in a develop
ment - they are expected to be performed by a human. The support provided 
by software-based proof assistants is more relevant for the management of tech
nical details. 

12.3.2 Example: Searching for an Element in a List 

According to the above sections, searching for an element verifying a given 
property, in a given list, amounts to finding a function specified by the type: 

Let us expand the definitions of def_tbLlis and of resu_tbl_lis: 

(Vu:U Ptablistu --+ {Pu} + {..,Pu}) --+ 
+{u:U I Ptablistu" Pu} 

{'v'u:U Ptablistu --+ ..,Pu} 

(12.6) 

(12.7) 

The solution is by no means mysterious: Ptablist depends on the given list I, 
and we just make the desired program check each element until a suitable one 
is found. From a logical perspective, this corresponds exactly to considering the 
case where I is empty and the case where I is composed of at least one element. 
More precisely, we proceed by induction over the structure of I as follows: 

- if a property is proved for nil, 
- furthermore, if we prove the property for cons u I with the assumption it 

holds for I, 
- we conclude that this property holds for an arbitrary list. 

In practice, such reasoning is elaborated step-by-step and interactively with 
the aid of a tool such as Coq or Lego. In our example, the Coq script takes 
less than 10 lines, whereas the underlying detailed and complete reasoning is 
longer. We write it down for the scrupulous reader. 

2Roughly speaking, O( n) is a proportional function of n. 
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Let us expand Ptablist in order to make I explicit, and, for the sake 
of simplifying the presentation, suppose that P can be tested for all 

inhabitants from U: 

(\:Iu:U {Pu} + {-'Pu}) -+ 
+{u:U I containslu 1\ Pu} 

{\:Iu : U contains I u -+ -,P u} 
(12.8) 

We consider that {x : A I <P x} + {'IjJ} has two constructors named success and 
fail. The result is then either of the form successup, where u inhabits U and 
p is a proof of contains I u 1\ P u, or of the form fail a where a is a proof of 
\:Iu: U contains 1 u -+ -,p u. We construct such an object by induction over the 
structure of the list 1: 

- the case where 1 is nil is easy to solve: we have a trivial proof a of \:Ix: U 
contains nil x -+ -,p x, we then construct failanil; intuitively, no mem
ber of the empty list verifies P, which prevents us from claiming satisfaction 
of the first choice (success); 

- if [ = cons u l', we will be allowed to use the induction hypothesis expressed 
by (12.8) where l' is substituted for I; but let us first test P on u: we get 
either a proof of P u, or a proof of -,p u - intuitively: we compute the truth 
value of PU; 
- in the first case, we get a proof Pu of contains [ u 1\ P u, from which we 

construct success u Pu; 
- in the second case, we use the induction hypothesis over l': in the case of 

success, every member of [' verifying P is also a member of I verifying P; 
in the case of failure, no member of I' verifies P, and then no member of I 
verifies P, since we already have -,Pu. 

This proof, viewed as a function, has the following form, where the expres
sions anil' Pu, Pv, p~, a and a' are not detailed, and where D u is of type 
{Pu} + {-'Pu}: 

list_search ~f function 
nil ---+ fail anil 
cons u I ---+ case D u of a proof of 

P u ---+ success u Pu 
-,p u ---+ case list_searchl' of 

success v p~ ---+ success v Pv 
I f ail a' ---+ fail a . 

12.3.3 Searching in an Interval of Integers 

In the case where the table is represented by an interval of integers [p .. q[' the 
formula to be proven is: 

(12.9) 
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The previous proof can be adapted by reasoning over the length of the 
interval, I. For example, we can consider p as a fixed parameter and I such 
that q = p + l, and then reason by induction over l. We could then paraphrase 
the previous subsection, but we prefer now to follow the line of the program 
presented in § 2.4.4, where we use an additional piece of information: if there 
are several integers satisfying P in [p .. q[, the result is the least of them. 

In this version we express the type of the result as an integer contained 
between p and q inclusive, by imposing that, if x = q, then no integer of the 
table verifies P. We introduce the auxiliary predicate ini_seg_emptyx, whose 
meaning is that no integer from [p .. x[ verifies P: 

inLseg_empty[x:nat] ~ Vi:nat betweenpix~...,Pi 
resint ~ {x:nat I (Pintervx A Px) V 

(x = q A ini_seg_emptyq)} . 

In order to allow us to recover resu_tbl_int from resint, we simply construct 
a converting function specified by: 

(12.10) 

The proof is by case analysis on the value of x contained in resint: 

- if x = q, we deduce, from the definitions of resint and Pinterv, that 
ini_seg_emptyx is verified, the inhabitant from resu_tbl_int to re
turn is then failO', where 0' is the object which formalizes the proof of 
ini_seg_emptyx; 

- if x f:. q, we deduce, from the definition of resint, that x is in the interval 
and verifies P, then we take success x (t,p), where t and p are the objects 
which formalize the proofs of Pinterv x and P x, respectively. 

The function corresponding to this proof is: 

if x = q then fail 0' else success x (t,p) 

We still have to prove resint. Intuitively, we will once more examine 
the elements in the interval [po .q] - characterized by Pdom - until 

a suitable one is found, as in the algorithm explained in § 2.4.4. To this end we 
consider a stronger specification, named strg_resint where no integer from 
[po .x[ verifies P, even when x is smaller than q: 

Pdom[x:nat] ~ Pintervx V x = q . 
strg_resint ~ {x:nat I Pdomx A ini_seg_emptyx A 

(x < q ~ Px)} . 

Proving strg_resint~resint is quite easy, the underlying function preserves 
the witnessing integer. 

Again, following the reasoning line of Chapter 2, we take q-x as our 
loop variant. Intuitively, it means that we intend to reason by induction over 
q - x. The base case is x = q. The only result we can propose in this case is 
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q, but to this end, we first need a proof of ini_seg_emptyx. It is then better 
to try to prove step x by induction, where we put a precondition in front of 
strg_resint: 

step[x:nat] ~ ini_seg_emptyx --+ strg_resint 

The informal reasoning is as follows: 

- if x = q, a proof of ini_seg_emptyx allows us to deduce that the result is q; 
- if x < q, suppose once again that we have a proof of ini_seg_emptyx at 

our disposal; the induction hypothesis expresses that we are able to find the 
result from a proof of ini_seg_empty(x + 1); we reason by case analysis on 
P x: if P x holds, the result is simply x; in the opposite case, ...,p x combined 
with ini_seg_empty x provides a proof of ini_seg_empty(x + 1), so that we 
are allowed to use the induction hypothesis. 

Note that, the hypothesis def_tbl_int is needed for reasoning by case analysis 
on Px. 

A technique for reasoning by induction over q - x is to explicitly 
determine an integer I such that x + l = q. We prove the theorem 

loop specified by: 

def_tbl_int --+ 'v'l,x:nat p'5,x --+ l+x=q --+ stepx . 

by induction over I, by formalizing the previous reasoning. A better option is 
to prove the following specification: 

deLtbl_int --+ 'v'x:nat p'5, x --+ x '5, q --+ stepx . 

using well-founded induction; in this way we avoid using I. The well-founded 
relation to be used is the one named R4(q) on page 51. 

Finally, giving x the value p in loop, (and I the value q - p, if we use 
the former specification of loop), then providing a - very simple - proof of 
ini_seg_emptyp, we obtain an element from strg_resint. 

12.3.4 Program Extraction 

The program just obtained manipulates pieces of data, such as x, p, q, and 
proofs, for example the proof of ini_seg_empty x. If we keep this program as it 
is, its execution will be composed of computation steps not only on data but also 
on proofs. Intuitively, this means that assertions on data will be dynamically 
checked, which is obviously pointless. Clearly, we can compare this with type
checking in the common typed programming languages: for example, compile
time type-checking ensures that arithmetical functions will actually be applied 
on numbers at run-time; then typing information can be removed from the 
executable code. 
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The same strategy can be adopted here. In concrete terms, everything re
lated to Prop can be removed from programs such as the ones that were pre
sented above. Thus, one extracts an untyped program which complies, by con
struction, with the initial specification. We can first illustrate the idea on the 
type def _ tbl. Its complete definition was: 

def _ tbl[U: Set; Ptable, P: U -t Prop] def 

Vx:U Ptablex -t {Px} + {...,Px} . 

In the extraction process, {P x} + {...,P x} is replaced with bool, which does 
not depend on x; we are left with: 

def_tbl[U:Set] ~ U -t bool 

For example, an inhabitant D of type def_tbl nat is a function from nat to 
bool; this function is not necessarily defined for all integers - it could be 
implemented by an array, but we are supposed to use it only under the precon
ditions which are written in the original definition. Here, D is only a parameter; 
let us consider again the converting function which was developed in § 12.3.3. 
Its type is resint -t resu_ tbl_int. Expanding resint and resu_ tbl_int, we 
get: 

{x:nat I (Pintervx 1\ Px) V (x = q 1\ ini_seg_emptyq} -t 
{x:nat I Pintervx 1\ Px} + {Vx:nat Pintervx -t ...,Px}. 

The proposed function was: 

conversion[ (x: nat, 7r: (Pinterv x 1\ P x) V ... )] ~f 
if x = q then fail a else success x , (~, p) . 

Under its expurgated form, the type resu_tbl_int is inhabited by elements 
of the form successn, where n is a natural integer, or fail. As for the type 
resint, it simply boils down to nat. The extracted program is then: 

conversion[x:nat] ~f 
if x = q then fail else successx 

If we consider the program for searching in a list, as given on page 246, the 
extraction process yields the following algorithm: 

list_search ~f function 
nil-t fail 

I cons u l -t if D u then success u 
else case list_searchl' of 

success v -t success v 
I fail-t fail . 

This program, although it is correct, is somewhat frustrating, because there is 
clearly no need to test the result of the recursive call. We would prefer: 



250 Understanding Formal Methods 

list_search ~ function 
nil-t fail 

I cons u l -t if D u then success u else list_search II 

This can be regarded as an optimization, which could be performed by a good 
compiler, or at the back-end of the extraction process itself. However, we can 
sharpen the previous development so that we directly obtain the second pro
gram. 

The main problem is that, as the type of the result is {u : U I 
contains l u /\ P u} + {Vu : U contains l u -t ..,p u}, an induction 

over l forces us to distinguish success v P~ from success v Pv and fail a l from 
f ail a: indeed, p~, for example, is of type contains l u /\ P u, whereas Pv is of 
type contains( cons v l) u /\ P u. 

Once this is understood, the solution consists of putting the goal 
into an equivalent form Condl-t { ... } + { ... } where Condl is a purely logical 
expression, and then will be removed at the extraction stage, and where { ... } + 
{ ... } is kept constant in the induction step. In this case Ptablist is just the 
ticket. We prove: 

(Vu : U contains l u t-+ Ptablist u) -t 
+ {u:U I Ptablistu /\ Pu} 

{Vu:U Ptablistu -t ..,Pu} 

by induction over l, following the same reasoning line as before. 

(12.11) 

In the case where the table is represented by an interval of integers, the 
search function is the following. We give here the ML program actually ex
tracted by the system Coq from the proof given above. Connoisseurs will note 
that we get a tail-recursive program, which compiles to a common loop. We 
then get a program quite close to the imperative algorithm given on page 3l. 

let main p q D = 
let rec loop x = 

match q = x with 
true -t q 

I false -t match D x with 
true -t x 
false -t loop (8 x) 

in loop p ;; 

The program extraction mechanism is based on general results of realiz
ability theory, which ensures that the extracted function conforms to the spec
ification of the complete function. 

Program extraction allowed us to point out the deep analogy between pro
gram and proof design. In this framework, it remains possible to adopt a more 
traditional strategy, by proposing the function to be extracted [Par95]; then it 
is up to the system to infer automatically the corresponding proof obligations. 
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12.4 On Undefined Expressions 

A tricky issue about the relationship between logic and programming was raised 
in Chapter 2: a logical expression may contain undefined terms. This issue was 
illustrated on the expression Px. In this chapter, we introduced a computable 
function D which determines whether or not P x holds. There is a clear dis
tinction between the use of P in the mathematical reasoning, the use of D at 
the same level, and the use of D in the expressions of the final program. The 
fact that D is not defined everywhere is represented in its specification by the 
formula p ~ x < q ~ {P x} + {.., P x }. By this implication, D takes an addi
tional argument which is a proof Oz of p ~ x < q: the complete expression is 
actually D x Oz. It is always defined - that is, it is defined for all pairs (x,oz) 
- and hence it always makes sense to use it in our reasoning. Once the latter 
is finished, we can consider a program obtained by extraction, where only D x 
is present, and we are ensured that x is in the domain of D. 

12.5 Other Proof Systems Based on Higher-order Logic 

The main calling of typed higher-order logic is to provide a rigorous and very 
expressive logical framework: as soon as the systems we want to model are 
complex at all, we need to rely upon a collection of mathematical results for
malized in advance. The richness of expression is an important ingredient for 
expressing problems, reasonings and hopefully solutions in a natural manner, 
with an adequate degree of generality. 

At the same time, any approach having the goal of verifying realistically 
sized systems must rely upon automated proof techniques which relieve the 
user of tasks which are often tedious (arithmetical calculations, propositional 
reasoning) or complex (model checking techniques, for example), or both. Using 
and combining efficiently the know-how accumulated in the different relevant 
disciplines is still a research topic. At the same time, the issue of the reliability 
of the analysis and proof tools becomes important, even more so as the tools 
become larger and implement more complex algorithms. 

PVS (Prototype Verification System) is a proof assistant for a higher-order 
classical logic, which is quite good at automatically discharging proof obliga
tions, thanks to the implementation of state-of-the-art decision procedures. The 
specification language of PVS includes dependent types and a predicate-based 
sub-typing mechanism, which are quite powerful for specification purposes, but 
make type-checking undecidable: type-checking may generate proof obligations. 
Fortunately, most of them can be automatically discharged thanks to the auto
mated proof procedures of the system. The latter are indeed very convenient for 
the user, and they tend to be used extensively, so that the user can concentrate 
his efforts more on the structure of his developments. 

The reliability of the approach relies mainly on the expertise of the designers 
and implementers of the system. PVS is a good laboratory for experimenting 
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with new ideas in the area. However, to prevent obvious potential problems, 
only a small number of researchers are authorized to integrate new mechanisms 
into the official version of the system. Even so, if an undiscovered flaw remains, 
in particular, a flaw which occurs only in rare configurations or is hardly ob
servable in common situations, the chances that it is - unconsciously - used 
increase when users more frequently use the automated procedures offered to 
them. Can we prevent such accidents, or, more modestly, restrict or delimit the 
risk? 

This issue motivated one of the key decisions for the design of the archi
tecture of lCF [GMW79], another proof tool for higher-order logic (without 
dependent types). The main idea is to have a small software kernel, the proof 
checker, which is very carefully written, with only one objective: checking that 
only legal deduction rules are used in a formal proof. Such an architecture 
is open: arbitrary complex proof search procedures may be involved, includ
ing, typically, new decision procedures for a specialized area, and this without 
threatening the logical integrity of the approach, since the kernel eventually 
checks the correctness of all proof steps. 

This approach is made possible when the logic itself is composed of a re
stricted number of primitive elements. For example, the calculus of inductive 
constructions is essentially based on one logical quantifier (\1'), a very general 
induction principle and the concept of a reduction. 

This idea has also been followed in a number of successors to lCF. It is 
implemented in two ways in actual systems. One of them consists of defining 
an abstract type for theorems: the latter are created and derived from each 
other through an interface, which proposes only the formation of axioms, and 
the use of deduction rules similar to the ones we have presented in Chapter 9. 
HOl, for example, is constructed according to this architecture. 

Another possibility consists of explicitly handling proof terms. This is par
ticularly suitable to intuitionistic logic, since proof terms are A-terms: A-terms 
are already available, since we are considering a higher-order logic. Actually, as 
a theorem is nothing but the type of a A-term, verifying that a formula is proven 
boils down to performing type checking. The advantage of this approach, over 
the approach based on an abstract type for theorems, is that it maintains and 
provides an exhaustive trace of formal reasonings. This leaves room for control
ling the latter by an independent system, or for extracting a natural language 
explanation from a formal proof [Cos96]. The difficulty is to keep proof terms 
to a reasonable size. Coq, which we described earlier, is a typical example of 
systems based on this principle. 

As the reliability of lCF-technology-based proof assistants relies entirely 
upon their kernel, much attention is paid to the latter by the development 
teams concerned. However, since a really powerful logic is available, why not 
try to formalize and mechanically check the kernel itself? Such a task is far from 
simple: on the one hand, the manipulated algorithmic structures are complex; 
on the other, at the specification level, representing the logical rules is not 
sufficient, it is also necessary to prove a number of metatheorems which govern 
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them. These obstacles were successfully tackled in the case of Coq, by B. Barras 
[Bar99]. In concrete terms, this opens up the possibility that the kernel of a 
future version of Coq may be obtained by program extraction (see § 12.3.4). 

We have just seen that there are several options for higher-order logic
based proof tools. There are also some differences in the logics considered. For 
example, PVS and Coq include dependent types, but HOl does not; typing 
judgements are decidable in Coq and in HOl, but not in PVS; HOl and PVS 
use a classical logic, whereas the logic of Coq is constructive.3 Among the three 
systems considered here, Coq is also the only one where types can themselves 
be computed (by reduction); this allows one to further exploit the possibilities 
of dependent types. 

To illustrate the idea, here is a small but typical example where the 
latter feature turns out to be useful. We want to represent names, 

say a and b, and a specific type for each of them: 

Inductive name: Set:= a: name I b: name. 
Definition ty:= [x: name] Cases x of 

a ::::} bool 
I b ::::} nat end. 

We can then construct pairs (x, v) ,where x is of type name and v is of type ty x: 
(b,3) is such an object. At the type-checking stage, the proof tool performs the 

reduction ty(b) ~ nat. 

The proof tools considered in this chapter have been, and are, successfully 
used in some industrial applications, for example in areas related to security, 
smart cards, protocols, etc. There is still work in progress for making them 
more powerful and more efficient, on the one hand (for example their use in 
combination with fully automated techniques based on rewriting or on model
checking), and easier to use on the other hand, thanks to syntactical devices, or 
to graphical interfaces, such as Pcoq based on the idea of "proof-by-pointing" 
[BKT94]. 

12.6 Notes and Suggestions for Further Reading 

The calculus of inductive constructions is described in the Coq manuals 
[HKPM02, TP02]. The principles for program extraction implemented in Coq 
are defined in the thesis of Christine Paulin-Mohring [PM89]. A similar sys
tem is Nuprl [CAB+86], which allows one to develop constructive mathematical 
theories in a system inspired by the type theory of Martin-Lof. Amongst other 
systems based on a higher-order logic, we have HOl, Isabelle and PVS. All are 
supplied with user and reference manuals [GM93, Pau94, CAB+86, ORS93]. A 

3 However, it should be noted that the excluded middle law can be used in the 
Prop universe. 
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number of articles are also available, for example [ORS92] on PVS, [Pau90] on 
Isabelle and [Gor88] on HOL. 

Valuable principles for designing and implementing a serious proof assistant 
are described by Larry Paulson in [Pau92]. Readers may then be tempted to 
try to write their own software. However, before doing so, it is advisable to 
read the conclusion of Paulson's article several times. 
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