
Understanding Formal Methods

Springer-Verlag London Ltd.

Written and translated by: Jean-Franc;:ois Monin
Translation editor: Michael G. Hinchey

Understanding
Formal Methods

, Springer

This work has been published with the help of the French
Ministere de la Culture - Centre national du livre

Jean-Franlj:ois Monin, PhD
Franee TeMeom R&D, Teehnopole Anticipa, DTL/TAL, 2 avenue Pierre Marzin,
22307 Lannion, Franee

Translation editor
Michael G. Hinehey, PhD, MSe, BSe
Software Verifieation Research Centre, U niversity of Queensland, Brisbane,
Queensland 4072, Australia

British Library Cataloguing in Publication Data
Monin, Jean Francois

Understanding formal methods
l.Formal methods (Computer science)
I.Title
005.1'31
ISBN 978-1-85233-247-1 ISBN 978-1-4471-0043-0 (eBook)
DOI 10.1007/978-1-4471-0043-0

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.

Apart from any fair dea1ing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means. with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries conceming reproduction outside those terms should be sent to the
publishers.

http://www.springer.co.uk

© Springer-Verlag London 2003
Originally published by Springer-Verlag London Berlin Heidelberg in 2003

Translation from the French language edition of: Introduction aUl[mc!thodes formelles. © France Tc!lc!com
R&D et HERMES Science Publications. Paris, 2000 (2nd edition) and © Masson, Paris, 1996 (Ist edition).

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typesetting: Camera-ready by author
34/3830-543210 Printed on acid-free paper SPIN 10749290

Foreword to the First Edition

Slowly, but surely, formal methods are spreading from academic research to
industrial applications. The need for certified software for security applications
is driven by the increasingly large proportion of software in embedded systems,
and by the exponential development of networks, whose reliability and secu
rity are essential for the modern economy. In these domains, where zero-defect
software is a must, the high cost of these techniques is actually justified by the
absolute necessity of certification. In the more traditional domains of software
engineering, where zero-defect software is far from being the norm, development
methods relying on a rigorous discipline of formal specification are profitable
in the long run, thanks to the better structuring of the results, their greater
robustness, their better documentation, which entails savings on maintenance
and transfer operations, and their greater independence of languages and hard
ware. The algorithmic solutions are extricated from implementation choices
and elaborated with a generality which favors their reuse in other applications.
One may then talk about CASE tools, where logical specifications form the
conceptual basis of the evolution of a system throughout its lifecycle, from the
analysis of customer requirements through to the continuous adaptation to new
environments and to new features.

This revolution in the design of software systems has already been success
fully undertaken in the domain of hardware design, where formal methods are
routinely used on a large scale. The corresponding revolution in software engi
neering is still to come, because mastering these abstract techniques and the
difficulty in using associated tools hampers their penetration of an environment
where traditional, or even obsolete programming techniques, die hard. Indeed,
it is often tempting to "hack the bug with a patch" in order to urgently satisfy
the complaint of a client, even if it means paying dearly, in the long term, for
the disorder generated by such practices.

In fact, that part of software which is formally developed is currently tiny,
in spite of the considerable amount of research and development which has
been devoted to this technology since the 1970s. There is no well-established
standard, and tools are still very much at the level of a cottage industry. In fact,
the difficulty in learning very abstract methods and a bad estimation of scaling
problems gave rise to a number of bitter failures, and even, to some extent, a
phenomenon of rejection. The competent programmer feels his or her creativity
hindered by the use of bureaucratic shackles that sometimes obscure, using a

vi Understanding Formal Methods

cryptic set-theoretic jargon, ideas which could be very clear if presented from a
more operational perspective. When the notation hampers understanding, one
runs the risk of losing the guiding thread of the control flow, and of carrying
out symbol pushing to derive meaningless conclusions. Finally, tools are too
often used erroneously, because their limitations are insufficiently understood.

There is then a sizeable gap between the specialists in these techniques and
real-world engineers, who are pressured by deadlines and cost requirements.
It is not easy to keep up with the evolution of tools coming from research
laboratories, and in this area, professional offers are sparse and there is a lack
of standardization. Comparative studies are rare, as are impartial experts, and
the potential user of formal methods often has the impression of making his or
her choices as if involved in a game of blind man's buff.

Jean-Franl,iois Monin's book is therefore of great value, since it sets out a
sizeable amount of the knowledge which has to be mastered in order to guide
those choices. Far from being an exhaustive hotch-potch, this book proposes
an overview of the general techniques for specifying and developing software by
stepwise refinement in a modular manner, and elaborating formal proofs, illus
trated by concrete examples explained using a number of representative tools.
The example of table searching is very well chosen, because it is understand
able to everyone, it is small enough to merit a complete treatment, but it is,
at the same time, sufficiently complex for illustrating typical issues. The cover
age of techniques is satisfactory, and methods are explained without ideological
commitment or parochialism. This book relies upon a concrete knowledge of a
significant number of tools, and it soberly presents a moderate point of view,
without suffering from either the excessive enthusiasm of tool designers nor the
exaggerated suspicion of overly pragmatic programmers.

This book is aimed at all those who are rightly puzzled by the complex and
controversial panorama of formal methods. It is unique as to its completeness
and its compromise between rigorous exposition of underlying mathematical
theories and concrete explanations of the implementation of techniques using
actual tools. One of its essential merits is to be an up-to-date presentation
of the best currently available techniques, in a field where one could easily
mistakenly choose an antiquated and rigid technology, or take the risk of a
research prototype with an unknown lifespan.

This book is meant to become a reference book for the coming years, and
I recommend it to all those who have understood that one should not delay
adopting a technology which is unavoidable.

Gerard Huet
May 1996

Preface

This book is intended to help the student or the engineer who wants an intro
duction to formal techniques, as well as the practitioner who wishes to broaden
her or his knowledge of this subject. It mainly aims at providing a synthetic
view of the logical foundations of such techniques, with an emphasis on in
tuitive ideas, so that it can also be considered as a practical complement to
classical introductory manuals to logic, which generally focus more detail on
specific subjects (e.g. first-order logic), and to books dedicated to particular
formal methods.

This book is a translation of the French edition Introduction aux methodes
formelles, published by Hermes in 2000. The contents have been updated and
somewhat clarified, in particular the discussion of typing which is now at the
beginning of Chapter 10.

Many colleagues, researchers, and friends, have had an influence on the form
and the content of this text, either through direct comments or enthralling
discussions. I would like to cite: Jean-Raymond Abrial, Andre Arnold, Yves
Bertot, Michel Cartier, Paul Caspi, Christine Choppy, Thierry Coquand, Vin
cent Danos, Pierre Desforges, Gilles Dowek, Jean-Christophe Filliatre, Lau
rent Fribourg, Roland Groz, Nicolas Halbwachs, Claude Jard, Gilles Kahn,
Claude and Helene Kirchner, Emmanuel Ledinot, Pierre Lescanne, Fernando
Meijia, Max Michel, Kathleen Milsted, Chetan Murthy, Christine Paulin, Si
mon Pickin, Laurent Regnier, John Rushby, Natarajan Shankar, Joseph Sifakis,
Jean-Bernard Stefani and Daniel Vincent.

I am particularly indebted to Gerard Huet, who wrote the foreword and
gave me precious hints. Special thanks to Didier Begay, Pierre Caster an, Pierre
Cregut, Thierry Heuillard, Francis Klay and Jean-Marc Pitie for their careful
rereading of the French version, to Mike Hinchey for his considerable work on
the translation, and to Catherine Drury, Mekanie Jackson and Rosie Kemp for
their kind help.

Finally, I will not forget Caroline, Maxime and Wei, who brought me a
band, a book, a small-scale model of a car and, above everything else, constant
support.

Acronyms

ASNI

BDD

BNF

CASE

CCS

CSP

CTL

HOL

ISO

LCF

LTL

LP

PLTL

PVS

RRL

SADT

TLA

VDM

Abstract Syntax Notation 1

Binary Decision Diagram

Backus-Naur Form

Computer Aided Sofware Engineering

Calculus of Communicating Systems

Communicating Sequential Processes

Computation Tree Logic

Higher Order Logic

International Standardization Organization

Logic of Computable Functions

Linear Temporal Logic

Larch Prover

Propositional Linear Temporal Logic

Prototype Verification System

Rewrite Rule Laboratory

Structured Analysis Design Technique

Temporal Logic of Actions

Vienna Development Method

Table of Contents

1. Motivation
1.1 Some Industrial Applications

1.1.1 Specification for Re-engineering ..
1.1.2 Proving Critical Railway Software

1.2 What Is a Formal Method?
1.3 From Software Engineering to Formal Methods

1.3.1 Towards More Rigorous Processes ...
1.3.2 Software Development Using Formal Methods
1.3.3 Formal Methods for the Customer

1.4 On Weaknesses of Formal Methods
1.5 A Survey of Formal Methods

1.5.1 Specialized and General Approaches
1.5.2 Emphasizing the Specification or the Verification

1.6 Aim of this Book
1. 7 How to Read this Book
1.8 Notes and Suggestions for Further Reading

2. Introductory Exercise
2.1 Exposition.............
2.2 Sketch of a Formal Specification
2.3 Is There a Solution?

2.3.1 Doing Nothing
2.3.2 Attempting the Impossible
2.3.3 Weakening the Postcondition
2.3.4 Intermezzo: Sum of Sets . . .
2.3.5 Strengthening the Precondition

2.4 Program Development
2.4.1 Prelude: Correctness of a Loop
2.4.2 Linear Search
2.4.3 Discussion: Reasoning Figures.
2.4.4 Bounded Linear Search
2.4.5 Discussion.

2.5 Summary
2.6 Semantics
2.7 Notes and Suggestions for Further Reading

1
2
2
2
3
4
4
5
6
6
7
8
9

10
11
12

15
15
16
18
18
19
19
20
22
22
23
25
25
27
31
32
33
33

x Understanding Formal Methods

3. A Presentation of Logical Tools 35
3.1 Some Applications of Logic 36

3.1.1 Programming 36
3.1.2 Sums and Unions 37
3.1.3 Chasing Paradoxes Away 38

3.2 Antecedents 39
3.3 The Different Branches of Logic . 40

3.3.1 Model Theory. 40
3.3.2 Proof Theory 41
3.3.3 Axiomatic Set Theory and Type Theory . 43
3.3.4 Computability Theory 44

3.4 Mathematical Reminders 45
3.4.1 Set Notations 46
3.4.2 Logical Operators .. 46
3.4.3 Relations and FUnctions 48
3.4.4 Operations 49
3.4.5 Morphisms 50
3.4.6 Numbers 50
3.4.7 Sequences. 51

3.5 Well-founded Relations and Ordinals. 51
3.5.1 Loop Variant and Well-founded Relation. 51
3.5.2 Examples 52
3.5.3 Well-founded Induction 55
3.5.4 Well Orders and Ordinals 55

3.6 Fixed Points. 57
3.7 More About Computability .. 58

3.7.1 Primitive Recursion .. 59
3.7.2 Recursion, Decidability 61
3.7.3 Partial Recursion, Semi-Decidability 62
3.7.4 A Few Words on Logical Complexity . 63

3.8 Notes and Suggestions for FUrther Reading 64

4. Hoare Logic 65
4.1 Introducing Assertions in Programs. 65
4.2 Verification Using Hoare Logic ... 66

4.2.1 Rules of Hoare Logic 67
4.2.2 Bounded Linear Search Program 68

4.3 Program Calculus. 69
4.3.1 Calculation of a Loop 69
4.3.2 Calculation of an Assignment Statement . 70
4.3.3 Weakest Precondition 72

4.4 Scope of These Techniques. 73
4.5 Notes and Suggestions for FUrther Reading 74

Table of Contents xi

5. Classical Logic 75
5.1 Propositional Logic. 75

5.1.1 Atomic Propositions . . 75
5.1.2 Syntax of Propositions. 76
5.1.3 Interpretation.... 78

5.2 First-order Predicate Logic . 79
5.2.1 Syntax......... 80
5.2.2 Example of the Table 81
5.2.3 Interpretation..... 82

5.3 Significant Examples 84
5.3.1 Equational Languages 84
5.3.2 Peano Arithmetic. . . 85

5.4 On Total Functions, Many-sorted Logics. 87
5.5 Second-order and Higher-order Logics .. 89
5.6 Model Theory. 91

5.6.1 Definitions 92
5.6.2 Some Results of Model Theory; Limitations of

First-Order Logic 93
5.7 Notes and Suggestions for Further Reading 94

6. Set-theoretic Specifications 95
6.1 The Z Notation. . 95

6.1.1 Schemas.. 95
6.1.2 Operations 97
6.1.3 Example.. 98
6.1.4 Relations and Functions 99
6.1.5 Typing.... 100
6.1.6 Refinements. 101
6.1.7 Usage . 101

6.2 VDM 102
6.2.1 Origins 102
6.2.2 Typing. 103
6.2.3 Operations 103
6.2.4 Functions. 103
6.2.5 Three-valued Logic . 104
6.2.6 Usage . . 104

6.3 The B Method 105
6.3.1 Example...... 105
6.3.2 Abstract Machines 106
6.3.3 Simple Substitutions and Generalized Substitutions 107
6.3.4 The B Refinement Process. 109
6.3.5 Modularity 110

6.4 Notes and Suggestions for Further Reading 110

xii Understanding Formal Methods

7. Set Theory
7.1 Typical Features

7.1.1 An Untyped Theory ..
7.1.2 Functions in Set Theory
7.1.3 Set-theoretic Operations.

7.2 Zermelo-Fraenkel Axiomatic System
7.2.1 Axioms
7.2.2 Reconstruction of Usual Set-theoretic Concepts
7.2.3 The Original System of Zermelo

7.3 Induction
7.3.1 Reconstruction of Arithmetic
7.3.2 Other Inductive Definitions
7.3.3 The Axiom of Separation
7.3.4 Separation of a Fixed Point
7.3.5 Ordinals

7.4 Sets, Abstract Data Types and Polymorphism.
7.4.1 Trees, Again
7.4.2 Algebraic Approach
7.4.3 Polymorphism (or Genericity)
7.4.4 The Abstract Type of Set Operations

7.5 Properties of ZF and ZFC
7.6 Summary
7.7 Notes and Suggestions for Further Reading

8. Behavioral Specifications
8.1 Unity

8.1.1 Execution of a Unity program.
8.1.2 The Table Example
8.1.3 A Protocol Example ...

8.2 Transition Systems
8.2.1 Definitions and Notations
8.2.2 Examples
8.2.3 Behavior of a Transition System
8.2.4 Synchronized Product of Transition Systems
8.2.5 Stuttering Transitions
8.2.6 Transition Systems for Unity

8.3 CCS, a Calculus of Communicating Systems . . .
8.4 The Synchronous Approach on Reactive Systems
8.5 Temporal Logic

8.5.1 Temporal Logic and Regular Logic
8.5.2 CTL*
8.5.3 CTL
8.5.4 LTL and PLTL
8.5.5 The Temporal Logic of Unity
8.5.6 Hennessy-Milner Modalities.
8.5.7 Mu-calculus

111
111
111
112
112
113
113
115
116
117
117
118
119
119
120
121
121
121
122
122
123
123
124

125
125
126
126
128
129
130
130
132
132
133
134
134
136
137
137
138
141
141
141
142
143

Table of Contents xiii

8.6 TLA............. 144
8.7 Verification Tools 146

8.7.1 Deductive Approach 146
8.7.2 Verification by Model Checking. 146

8.8 Notes and Suggestions for FUrther Reading 147

9. Deduction Systems 149
9.1 Hilbert Systems. 150
9.2 Natural Deduction 152

9.2.1 Informal Presentation 152
9.2.2 Formal Rules 154
9.2.3 Toward Classical Logic. 160
9.2.4 Natural Deduction Presented by Sequents 161
9.2.5 Natural Deduction in Practice .. 162

9.3 The Sequent Calculus 163
9.3.1 The Rules of the Sequent Calculus 164
9.3.2 Examples 165
9.3.3 Cut Elimination 166

9.4 Applications to Automated Theorem Proving 168
9.4.1 Sequents and Semantical Tableaux 169
9.4.2 From the Cut Rule to Resolution 170
9.4.3 Proofs in Temporal Logic 175

9.5 Beyond First-order Logic ... 175
9.6 Dijkstra-Scholten's System ... 176

9.6.1 An Algebraic Approach 176
9.6.2 Displaying the Calculations 177
9.6.3 The Role of Equivalence . . 178
9.6.4 Comparison with Other Systems 179
9.6.5 Choosing Between Predicates and Sets . 180
9.6.6 Uses of Dijkstra-Scholten's System 181

9.7 A Word About Rewriting Systems 181
9.8 Results on Completeness and Decidability 182

9.8.1 Properties of Logics .. 183
9.8.2 Properties of Theories 184
9.8.3 Impact of These Results 186

9.9 Notes and Suggestions for FUrther Reading 187

10.Abstract Data Types and Algebraic Specification 189
10.1 Types 189
10.2 Sets as Types 190

10.2.1 Basic Types. 190
10.2.2 A First Glance at Dependent Types 191
10.2.3 Type of a Function. 191
10.2.4 Type Checking 191
10.2.5 From Sets to Types 191
10.2.6 Towards Abstract Data Types 192

xiv Understanding Formal Methods

10.2.7 Coercions 192
10.2.8 A Simpler Approach 193
10.2.9 Unions and Sums . 193
1O.2.lOSummary 194

10.3 Abstract Data Types . . 194
10.3.1 Sorts, Signatures 195
10.3.2 Axioms 196
10.3.3 First-order and Beyond 197

10.4 Semantics 198
10.5 Example of the Table 199

10.5.1 Signature of Operations 199
10.5.2 Axioms 199

10.6 Rewriting 200
10.7 Notes and Suggestions for Further Reading 200

1l.Type Systems and Constructive Logics 203
11.1 Yet Another Concept of a Type. 203

11.1.1 Formulas as Types 203
11.1.2 Interpretation. 204

11.2 The Lambda-calculus. . . 204
11.2.1 Syntax. 205
11.2.2 The Pure A-calculus and the A-calculus with Constants 206
11.2.3 Function and Function. 206
11.2.4 Representing Elementary Functions 207
11.2.5 Functionality of {j-reduction . . . 211

11.3 Intuitionistic Logic and Simple Typing. 212
11.3.1 Constructive Logics 212
11.3.2 Intuitionistic Logic 213
11.3.3 The Simply Typed A-calculus. 214
11.3.4 Curry-Howard Correspondence 215

11.4 Expressive Power of the Simply Typed A-calculus . 218
11.4.1 Typing of the Natural Numbers. 218
11.4.2 Typing of Booleans. 219
11.4.3 Typing of the Identity Function. . 219
11.4.4 Typing of Pairs, Product of Types 219
11.4.5 Sum Types 220
11.4.6 Paradoxical and Fixed-point Combinators 221
11.4.7 Summary 221

11.5 Second-Order Typing: System F 222
11.5.1 Typing of Regular Structures . . . 223
11.5.2 Systematic Construction of Types 225
11.5.3 Expressive Power and Consistency of System F 226

11.6 Dependent Types 227
11.6.1 Introduction of First-order Variables . . . 227
11.6.2 Sums and Products. 228
11.6.3 Specification Based on Dependent Types. 230

Table of Contents xv

11.7 Example: Defining Temporal Logic 230
11.8 Towards Linear Logic 231
11.9 Notes and Suggestions for Further Reading 232

12.Using Type Theory 233
12.1 The Calculus of Inductive Constructions. 234

12.1.1 Basic Concepts . . . 234
12.1.2 Inductive Types .. 235
12.1.3 The Table Example 235

12.2 More on Type Theory . . . 237
12.2.1 System Fw 237
12.2.2 The Calculus of Pure Constructions 238
12.2.3 Inductive Definitions 238
12.2.4 Inductive Dependent Types 239
12.2.5 Primitive Recursive Functions. . . . 239
12.2.6 Reasoning by Generalized Induction 240
12.2.7 Induction Over a Dependent Type 241
12.2.8 General Purpose Inductive Types. 241

12.3 A Program Correct by Construction . . . 243
12.3.1 Programs and Proofs. 244
12.3.2 Example: Searching for an Element in a List 245
12.3.3 Searching in an Interval of Integers. 246
12.3.4 Program Extraction 248

12.4 On Undefined Expressions. 251
12.5 Other Proof Systems Based on Higher-order Logic 251
12.6 Notes and Suggestions for Further Reading 253

Bibliography 255

Index 269

1. Motivation

After a long gestation period, formal methods for software development have
reached a maturity level sufficient for use in a range of real applications such
as railway or aircraft transportation systems, telecommunications or energy.
The fundamental ideas of formal methods have been known for a long time:
they emerged with the first computers and have been studied since the 1960s.
Independently of any cultural considerations, it transpired that putting them
into practice required theoretical improvements as well as complex software
support tools, whose principles and architectures became understood over the
following decades, resulting in more and more effective prototypes, and, last
but not least, machines endowed with powerful computational capabilities.

Various institutions are aware of the progress that has been made in the re
lated technologies. In the domain of security, the European ITSEC (Information
Technology Security Evaluation Criteria) has required the use of formal meth
ods in its fourth security level, and above, since the mid 1990s. More recently,
the Common Criteria for Information Technology Security, which have been in
force as an ISO standard since 1999, recommend the use of formal models from
its fifth security level, and above, and require the use of formal verification
techniques at the seventh level.1 By the end of the 1990s, industrial interest in
these techniques had been confirmed and significantly widened. This could be
observed, for example, on the occasion of the First World Congress on Formal

. Methods, in September 1999 [WWD99]. As new, and significantly more com
plex, application areas are emerging (smart cards, highly-secured information
systems, robotics, e-commerce, aircraft control, etc.), one can see the increas
ing importance and relevance of formal methods. New techniques, theories and
tools are being used in various applications, and these in turn provide feedback
to the theory and evolution of formal methods and their associated proof tools.
Nowadays, formal methods are applied in a whole plethora of systems ranging
from complicated algorithms, of just a few pages in length, to software systems
involving tens of thousands of lines of code. Let us illustrate the evolution of
the technology with some industrial applications.

IThe Common Criteria are the result of a joint effort of several countries, in
North America, Europe, and Australia/New Zealand. Formal methods have also been
mentioned in US security standards as far back as the 1980s.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

2 Understanding Formal Methods

1.1 Some Industrial Applications

1.1.1 Specification for Re-engineering

One of the oldest large-scale experiments is the CICS project undertaken at
IBM (Huxley Park, United Kingdom), in collaboration with Oxford University.
Its purpose was to perform a major restructuring of a large existing software
system used for transaction management. The overall system was composed of
about 800,000 lines of assembly language and of Plas, a high-level proprietary
language. 268,000 lines were modified or rewritten, of which 37,000 made use
of formal specification with the Z specification notation. Measurem ~nt proce
dures were introduced in order to evaluate the impact of a formal method on
productivity and on quality. The quantitative results are detailed in [HK91].
They can be summarized as follows:

- development costs decreased by 9 percent;
- in the first eight months following the installation of the new version of CICS,

in 1990, the clients reported 2.5 times fewer errors in the parts developed with
Z than in the parts developed with non-formal techniques; moreover, these
errors were perceived as being less serious.

This experiment is interesting because of the large amount of code involved. In
contrast, its technical goals were rather limited: the issue was to specify software
with the Z formal notation, and then to develop the code from the documents
resulting from this phase; proof techniques were not taken into account.

1.1.2 Proving Critical Railway Software

When one tackles critical domains, involving human lives or having a poten
tially great economic or social impact, it becomes important to ensure the
correctness of the executable code, or at least to give ourselves the strongest
guarantees we can of this correctness. The code should possess no errors or devi
ations from intended behavior. One means of attaining this goal is to prove that
it complies with a carefully written specification, on which competent persons
involved in the development agree. Such a requirement entails a large amount
of work. It is then important to give the whole system under consideration an
appropriate structure, so that the areas where proofs will be performed are suit
ably delimited. The use of the B method by GEC-Alsthom, and more recently
by Matra Transport International-Siemens, in projects such as the Calcutta
subway [SDM92] or the Meteor line of the Paris subway [BBFM99] is a good il
lustration of this approach. The objective is to command and control the speed
of a train by means of a device, which can be conceptualized, roughly, in the
form of an uninterruptible sequence of instructions which run periodically. This
is composed of a phase where pieces of input information are collected, followed
by a phase where decisions are made, and finally a phase where commands are
sent to physical control devices. It transpires that all of the complexity is con
centrated in the second phase. This involves data transformation, which can be

Motivation 3

reasonably well modeled using the set-theoretic constructs available in Z or in
B. However, B, developed more recently than Z, involves a process allowing ex
ecutable code to be derived in a step-by-step manner; moreover, this code can
be proven to conform to the initial specification, thanks to applicable support
tools. The result of this procedure was several thousands lines of code written
in the C language.

Note that, in the above example, reaction times are relatively long compared
to computation times. In other applications, the constraints may be more strict;
sometimes several devices have to be handled simultaneously and, generally,
this greatly complicates matters. Other formal approaches, based on transition
systems or on synchronous languages, for example, are well suited for dealing

. with such problems.
Finally, more complex applications, such as security components of net

work services, compilers, or support tools for formal methods themselves, in
volve both complex data structures and subtle behaviors. Using powerful logics
becomes necessary, and we already know of a number of encouraging success
stories using tools such as PVS, HOl and Coq.

1.2 What Is a Formal Method?

By ''method'', one generally means a process aiming at progressively reaching
a given objective. For example, the method followed by a high-school student
to solve a simple problem of mechanics consists of establishing the balance of
forces, modeling them by vectors, then computing the unknowns using linear
algebra or vector calculus. We must be aware that today, such a method, in
the former sense, is still very underdeveloped in the case of formal methods for
software construction. Such methods provide, essentially, a rational framework
composed of tools to aid in modeling and reasoning, but they don't bring
much from a methodological perspective. We will use the term formal method,
because it is well established, but formal technique would certainly be more
appropriate.

The domain of compilation techniques may be an exception. In order to
construct a compiler, first the grammar of the source language is defined using
suitable formal rules. After a possible transformation of the latter, an efficient
parser is automatically derived thanks to general mechanisms determined in
the 1960s. We have here all of the ingredients of a formal method. First, we
obviously have a formal language for describing the grammar rules in a precise
manner - a BNF, normal form of Backus-Naur. Furthermore, we have a well
understood mathematical substratum, which is the theory of formal languages
and automata, and which provides the precise meaning of the grammar rules
and justifies the general algorithms to be used. The formal methods we will
consider in this book are all based on a formal language, including, for example,
set-theoretic or logical notations, or more ad hoc concepts as in the case of
the BNF formalism, together with a means of giving a precise mathematical
meaning to every statement - its so-called semantics.

4 Understanding Formal Methods

What can this be useful for? First, to communicate well: a rigorous se
mantics eliminates ambiguities, and it is an impartial arbiter. This is also an
excellent guide for defining support tools. Finally, when a formal model of a
system is available, the properties we expect from this system can be stated
with precision, then formally verified. This leads us to say a few words on the
role of formal methods within software engineering.

1.3 From Software Engineering to Formal Methods

Mastering the complexity and the cost of software proved to be a real techno
logical and economical challenge; this gave birth to a well-established discipline,
namely, software engineering. The practical aspects of this discipline are those
most well known to developers: languages, compilers, CASE tools and sup
port environments, development methods, programming techniques, methods
related to quality management, etc. Design methods appeared: SADT, Jack
son, object-oriented techniques, and others. These methods and techniques have
non-negligible results to their credit, such as the following:

- a number of key notions have been recognized, for instance the concept of a
lifecycle for software (commonly: requirements, specification, general design,
detailed design, encoding, unit testing, integration testing, installation and
maintenance) ;

- the introduction of rigorous methods in the production of software;
- the costs of the different stages have been evaluated and compared; for ex-

ample, one estimates that maintenance takes up at least two-thirds of the
overall cost of a software project, and that fixing a specification error re
quires twenty times more effort if it is detected after the installation stage,
and sometimes even much more than that.

1.3.1 Towards More Rigorous Processes

The consequences of a software failure are not limited to recovery issues. In a
number of cases (transportation, power plant command and control, medical
systems), human lives are concerned. In the domain of telecommunications,
major operators have experienced serious failures that entailed heavy losses -
for example, the AT&T network in January 1990, following the installation of
a new software upgrade to its switching systems. The sad fate of flight number
501 of the satellite launcher Ariane is yet another blasting demonstration that
methods in current use are insufficient with regard to the high stakes of today.

We already mentioned that the later a mistake is detected, the more difficult
it is to repair. This highlights the concern to devote a large amount of invest
ment to the early stages of the software lifecycle, and the great importance of
deriving reliable specifications:

1. which actually correspond to what is intuitively expected from the
system; and

Motivation 5

2. which are consistent.

The techniques considered in this book deal mainly with the second issue. These
techniques start with a formal specification, and they allow one to develop
software in a rigorous way based on this specification.

Regarding the first issue above, note that establishing good specifications
necessitates a good knowledge of the users' needs, a knowledge that users them
selves do not always possess from the outset. One may remedy this problem by
confronting a formal specification with a number of simple properties which we
expect. Such properties can be regarded as formal specifications themselves,
though partial ones, because their scope is generally limited only to certain
aspects.

One may also consider complementary techniques, such as rapid prototyp
ing, in order to quickly develop an easy-to-modify version of the intended sys
tem. The most important feature of the technology to be used is then its ability
to favor reactivity in the development process; considerations relative to clean
ness or efficiency of the software may turn out to be awkward at this level.
Beyond the stage of prototyping, the order of priorities changes, objectives of
quality and rigor come to the forefront. However, it should be noted that, as a
side result of formal approaches to computer science, programming languages
which are simultaneously powerful, mathematically well defined, efficiently im
plemented and protected by a strong typing system are now available: func
tionallanguages, in particular languages from the ML family [CMP02, Pau91].

1.3.2 Software Development Using Formal Methods

Formal approaches allow one to write rigorous, precise, and complete speci
fications, and to develop software from them. The main component, as was
already mentioned, is a formal specification language. The main benefits of
these approaches are the following:

- a formal language comes together with a well-founded and safe semantics,
particularly if it is based on well-tried mathematical theories;

- proving that the system under consideration satisfies intended properties
becomes possible, at the specification level on the one hand, and at the code
level on the other - the idea is to prove that a program conforms to a given
specification; the latter issue may be tackled using several approaches: Hoare
logic, enumeration of reachable states, refinement of specifications, program
transformation, program calculation and program extraction;

- a formal language is a good basis for the development of support tools;
- efforts related to testing, maintenance, and sometimes coding may decrease

significantly, since one gets a better control over these stages and since doc
umentation becomes more reliable.

6 Understanding Formal Methods

1.3.3 ForInal Methods for the CustoIner

Formal methods are also of concern to organizations that contract their software
development to others. Indeed, such organizations are mainly involved in the
specification stages, and thus have to check that:

1. they are working with correct specifications;
2. the delivered product complies with the specifications.

Regarding the second issue, the customer must at least validate the product.
To this end, the product is extensively tested. Designing and debugging test
cases becomes more complicated when the complexity of the desired product
increases. Moreover, this is an error-prone and tedious task. There again, formal
techniques can serve as a support tool. Automated generation of test cases
from formal specifications is an active research topic, and industrial tools are
available.

However, validating the product turns out to be insufficient. Tests can only
verify that the behavior of the considered system is normal in a finite number
of (hopefully) typical situations, but it can only tackle a partial view of the set
of all possible behaviors. This can be sufficient for analog systems, which are
continuous and regular, but software systems, which are essentially discrete,
do not benefit from these properties.2 In particular, it is illusory to think that
software may be specified by the set of test cases to be used in order to validate
it. Let us add that it could even be dangerous, because a malicious provider,
or simply a provider in a hurry, may well deliver a system which behaves as
expected, in the cases corresponding to the specified tests, but badly in other
ones.

Clearly, a better perspective is obtained if a product is developed using a
formal method: it can be delivered together with the proof that it satisfies the
intended properties, for example, in a textual form that the customer may have
audited by a contractor, or may check using automated verification software -
recall that it is much easier to check a proof than to construct it.

1.4 On Weaknesses of Formal Methods

The previous arguments give some indications of the support which can be pro
vided by formal methods for improving various stages of software development.
However, we don't want to pretend that they constitute a miraculous remedy.
When we are faced with complex problems, there is no simple way out.

First, we have to keep in mind that there always remains a distance between
a formal specification, and the object it is supposed to represent. A similar well
known situation is true of the laws of physics: we cannot prove that they govern

20f course, it is not enough to test all "branches" in the code, all possible combi
nations of values for data and parameters have to be taken into account. In general,
there are an infinite number of them, or at least a number which is greater than cur
rent estimations of the number of atoms in the universe, which is quite a reasonable
approximation to the infinite.

Motivation 7

the real world, but it is quite reasonable to be confident that this is the case.
The certainty of the correctness or appropriateness of a specification can be
accepted as relevant only if it has been validated by a process composed of
careful reading, reformulation, and confrontation.

When a new formal method is considered, the first obstacle to be overcome
is to become fully acquainted with the notation. Beyond this stage, formal
methods require an appropriate application, which includes pragmatic aspects
- manipulation of tools - and theoretical aspects. Note, in passing, that the
mathematical culture developed in traditional scholarly programs often favorl'l
analysis to the detriment of discrete mathematics. The situation is improving
nowadays, but it is symptomatic that we still feel the need to inform about
formal methods for software, whereas in other engineering disciplines, such as
electronics or aircraft engineering, mathematical models are natumlly applied.
This acknowledges the rather experimental light in which programming is still
commonly perceived.

Finally, let us note that with formal approaches, much more time is devoted
to the initial phases of a development (specification, design) than in common
processes. However, experiments show that this investment is (partly) compen
sated in later phases (tests, integration). Indeed, formalization reveals delicate
issues very early, whereas, in a conventional lifecycle, these would have to be
solved during debugging, or later. Many difficulties that are met when using a
formal method are actually a reflection of difficulties that are inherent in the
problem at hand. For example, modeling problems will occur just because the
situation is intrinsically more complicated than it may appear at first sight. The
introduction of complex or abstract concepts - often denoted by mathematical
symbols - is then not that surprising. We will see that actual formal techniques
offer various degrees of abstraction level and mathematical complexity. But to
reassure the reader: basic concepts in logic and set theory, understandable to
high-school students, are sufficient for a working knowledge of techniques such
as B.

On3 the issue of formulation, recall that the task of designing a judi
cious notation requires much care, though it is all too often neglected

or overlooked. Both specification and programming languages may suffer from
that. As this topic is rarely dealt with explicitly, let us mention here the books
[vG90a], [Mey92] and [Set89].

1.5 A Survey of Formal Methods

There are various kinds of formal methods, which we can collect into several
families. Most of them can be characterized by:

- an underlying prominent theory (examples: transition systems, set theory,
universal algebra, A-calculus);

3The meaning of the Mobius band is explained in § 1.7.

8 Understanding Formal Methods

- a preferred application field (examples: data processing, real-time systems,
protocols) ;

- a research and user community, themselves sometimes divided into several
variants or schools.

We will not go into a detailed taxonomy of the domain, but we can suggest
a number of design choices which determine important characteristics of most
formal methods.

1.5.1 Specialized and General Approaches

The specification of a system includes various issues, including: architecture,
interfaces, visible behaviors and algorithms to be implemented. Some formal
methods consider systems which are presented from the outset in a given form,
for example, in the form of data transformers, or of data flow, or even of finite
state machines; information exchanges are supposed to be performed by data
sharing, by synchronous or asynchronous message transmission, by function
or procedure calls. Other formal methods stand back from such a view of the
world, and limit themselves to a flexible general mathematical framework.

In the first category, one finds specialized formalisms, which may have been
designed for protocols, for reactive devices, or for data handlers. This specializa
tion favors the methodological aspects and the development of effective support
tools, but it may have an undesirable effect: making irrevocable choices, which
are relevant at a given stage of a technology, but may turn out to be a burden in
later stages. For example, there are techniques for animating a formal specifi
cation: one then uses a so-called executable specification. But limiting oneself to
the executable fragment of a general language tends to make some descriptions
obscure, by forcing the use of ad hoc contortions. Thus, a convincing logical
statement may lose much of its original clarity once it is translated to Prolog.

Conversely, methods closer to logic and mathematics offer much more free
dom of expression. They have a big theoretical advantage, particularly when one
has to model real systems and to reason about them, because reality often re
veals an unexpected complexity. But such methods say nothing at the method
ological level. The way of using them consists of reconstructing paradigms of
specialized methods - with, sometimes, a suitable adaptation or generaliza
tion. It is also possible to combine several techniques, in order to work simul
taneously on several facets of a given system using a unified framework. But
this is still a topic for research.

Example: role of states. We can illustrate the distinction between general
methods and specialized methods by means of the importance given to the
concept of a state. It seems impossible to bypass this notion, since the systems
that we want to model, which are a support for software (computers or virtual
machines), or for their environment, are essentially memories whose contents
change from time to time. On the other hand, this concept is not fundamental
in mathematics, which lies in the realm of quantities, shapes, functions, all
kinds of spaces - in summary, immutable values in a wide sense. It does not

Motivation 9

mean that, in mathematics, we are unable to talk about states. In general, state
changes are represented by a trajectory, that is, a value from a suitable space.

The decision to attach more, or less, importance to states, is sig
nificant in practice, because transformations with side effects are

rather more complicated to compose than pure (side-effect-free) transforma
tions. When one writes "let x = 3" and "let y = x + I", it is absolutely certain
that, in the considered scope, the value of x is 3, and that x and y are related by
the equation y = x + 1. In contrast, if one states "let x be a memory cell which
contains 3" and "let y be a memory cell which contains the value of x + I", one
can no longer understand the produced effect, without meticulously examining
how x and y may be transformed in every state change. This increase in the dif
ficulty is one of the main motivations for introducing simultaneous assignments
in imperative languages: it diminishes the number of intermediate states that
need to be considered. This idea was proposed by Dijkstra and reused in B (see
§ 4.3.2 and § 6.3.3). It also explains the interest of functional programming:
in its pure and strict version, it consists of describing computations on values;
actually, most functional languages include imperative features, because it is
sometimes convenient to keep some values in memory and to have side effects.
Hence such programs include states, but a good programming discipline limits
their impact to a very limited number of areas.

The first formal methods we will consider, Hoare logic or B for example,
handle an implicit state. In others, states play an essential role out of necessity:
they aim at studying behaviors, and a behavior is nothing but a sequence of
states. Some of them will be considered in Chapter 8. Finally, the more abstract
formal approaches, such as algebraic specifications, or higher-order logic-based
languages, have no predefined concept of a state.

1.5.2 Emphasizing the Specification or the Verification

A formal method is composed of two main ingredients: a specification language
and a verification system. The development of these two components is of vary
ing importance depending on the approaches and the associated tools. Thus,
the proof assistant of Boyer and Moore puts the emphasis on automating proofs
to the detriment of ease of expression. In contrast, the first goal in the design
of Z, was to get a very expressive language, but it turned out to be difficult to
develop support tools for this language. The first versions of Boyer-Moore and
of Z go back to the 1970s.

More recent approaches, such as HOl or Coq or PVS, attempt to provide
both advantages: they are based on very powerful logics, together with support
tools which aid the user in developing proofs, and some of them are able to
check the correctness of the proofs in a very reliable manner.

In this book, we will pay more attention to specification than to auto
mated verification mechanisms. In particular, we will ignore the Boyer-Moore
approach, though it can be credited with remarkable successes, such as the par
tial verification of a complex system, where a hardware processor, an assembly

10 Understanding Formal Methods

language, a toy Pascal-like language and a basic operating system kernel are
stacked.

1.6 Aim of this Book

How does one get one's bearing in the maze of available techniques? Each of
them deserves a whole book to describe its foundations and practice. Such
books already exist for many of them. On the other hand, it would probably
be fruitless to try to tackle all approaches, even if we limit ourselves to a
brief presentation. Our aim here is to propose a synthetic view of the subject,
by following logic as our main thread. Logic has an influence on all formal
methods, and often a direct one. At the same time, logic allows us to understand
important and subtle phenomena which occur in practice.

Beyond logic, other mathematical theories play an important role in some
formal techniques: notably, algebra and automata. They will be mentioned in
order to provide some perspective. At the same time, it should be emphasized
that logic has various other application fields in computer science, such as
databases, operating systems, and programming languages.4

The importance of the different aspects of logic varies a lot, depending on
the particular techniques one considers. For example, set theory is essential to
formalisms such as Z or B, while intuitionistic logic is a more appropriate basis
for the study of typed functional languages and corresponding specification
languages. These two approaches share a number of concepts, but they actually
belong to different logical traditions, which go back to the beginning of the 20th
century.

The reader should find here an overview of logical disciplines which are rel
evant to computer science, and, more specifically, to formal methods. The aim
of covering such a wide domain is moderated by the modesty of the technical
contents: most theoretical results are given without demonstration. We hope
that the reader will be inspired to gain a deeper knowledge of those topics. We
have tried to give appropriate references to the literature, in particular at the
end of every chapter.

We tried, whenever possible, to rely on a common simple example: the search
for an element in a table. In order to shed light on concepts, without swamping
them by irrelevant details, it appeared preferable that the example be as simple
as possible. Obviously, the benefits of formalization would be better illustrated
on a larger size problem. Indeed, very little will be told about how to tackle a
large-sized application in a formal manner. Thus, although we will sometimes
give an appreciation of a formalism, it should be clear that we don't have a

4For example, modern implementations of the functional language ML, which was
initially designed from purely logical considerations, can be elegantly and efficiently
used in software applications composed of system calls, network modules, and human
machine interfaces. Such examples are the file synchronizer Unison [PJVOl] and the
Web browser MMM [LR98].

Motivation 11

goal of providing a comparative study, which is definitely beyond the scope of
this book. The table example is only a support, not a benchmark!

1. 7 How to Read this Book

We tried to make this book as self-contained as possible. The three first chapters
contain introductory material, including elementary mathematical reminders
(in § 3.4). Then, the general idea is to alternate the presentation of (the basics
of) concrete formal methods with chapters devoted to their logical foundations.
Occasionally, we need to introduce a concept that is not discussed in detail until
a later chapter. In such cases, we will provide an intuitive explanation, which
should suffice.

Chapter 2 introduces basic concepts related to specification and verification,
in an intuitive and semi-formal manner.

The different branches of logic are presented in Chapter 3.
Chapter 4 is devoted to proving the correctness of imperative programs

using formal assertions. The ideas contained in this approach, mainly due to
Floyd, Hoare and Dijkstra, have an influence on all other techniques.

Chapter 5 presents so-called classical logic, which is a reference for all other
logics.

Chapter 6 deals with formal methods based on set manipulations, namely
Z, Band VDM.

Chapter 7 is devoted to set theory.
We then propose, in Chapter 8, a synthetic view on formal techniques for

specifying complex behaviors, based on transition systems and on temporal
logic. More specifically, we consider formalisms such as Unity, TlA and CCS.

Chapter 9 is an introduction to proof theory, which not only provides the
essential concepts for understanding computer-aided proof systems, but serves
as a foundation for typing systems and computational aspects of logic, to be
considered in the last two chapters.

Chapter 10 is essentially a short presentation of the algebraic approach to
formal methods, with an emphasis on abstract data types.

The discussion on typing started there is continued in Chapter 11, where
we present its relation to A-calculus and to higher-order constructive logic.

Finally, Chapter 12 is devoted to an implementation of these principles in a
very expressive logic, the calculus of inductive constructions, which is supported
by proof assistants such as Coq and Lego. This chapter ends with a brief account
of other formal techniques based on a higher-order logic, more specifically HOl
and PVS, and ends with some research perspectives.

The reading difficulty may vary a lot from one section to the next. The
reader already acquainted with basic concepts may skip sections presented in
this font; they are also identified by the symbol:

00

12 Understanding Formal Methods

Paragraphs that may be postponed until a second reading, such as somewhat
technical asides, are identified by a Mobius band:

Finally, pitfalls are indicated by the following symbol:

We also tried to follow a consistent discipline in our use of fonts. Here are
some samples:

- a defined term, for example: a left gyrating dahu is a quadruped whose left
legs are much shorter than its right legsj

- an arbitrary mathematical object: this is represented by a letter such as d or
L· ,

- a program or a formal specification component, which would be entered on
the keyboard: if l<r then theta:=theta+lj

- a formal language or a support tool: the method myth.

1.8 Notes and Suggestions for Further Reading

A report of the US National Institute of Standard and Technology presents, in
its first volume [CGR93a], a set of formal techniques having industrial appli
cations. Its second volume [CGR93b] collects several case studies which were
performed prior to 1993. [Rus93] is another useful document on formal meth
ods, written for NASA - and more oriented towards the needs of aerospace
systems. It contains many interesting ideas, even if its author claims that it is
sometimes biased by his involvment in a particular approach.

The book by Lalement [Lal93] allows one to obtain a deeper knowledge of
many topics introduced here. In it, one may find complementary concepts on
equational logic, rewriting and resolution. A handbook devoted to mathemati
cal logic for computer scientIsts has been published [AGM92a, AGM92b]. For a
broader introduction, one of the best references is the Handbook of Theoretical
Computer Science [vL90a, vL90b] which, as indicated by its name, covers all
theoretical bases of computer science, far beyond logic. We particularly rec
ommend the second volume [vL90b], devoted to formal models and semantics.
Chapters 1 to 14 and 16 to 19 are very readable. -

A number of topics are not covered here, even though they could be con
sidered relevant, because tackling them would have carried us too far from our
path. This is true in the case of category theory. Developed from the middle of
the 20th century, partly for establishing the foundations of mathematics on a
more structured basis than set theory,5 it still plays quite an important role in

5The initial motivation was actually different: the idea was to transfer results from
group theory to topology, in order, for example, to classify geometrical shapes.

Motivation 13

theoretical computer science, notably in algebraic specifications [EM85, EM90]
and in typing systems [L886, Hue90, AL91]. The basic reference is [Mac71], in
tended for mathematicians, but computer science-oriented introductions have
been available for several years, amongst them [Hoa89] and [BW90]. The afore
mentioned manual [AGM92a] also contains a chapter devoted to category the
ory.

2. Introductory Exercise

A new problem is always tackled, at the outset, via both intuition and empirical
methods. The design of software systems is no exception. The first step is
to determine the object! to be realized. We then have to describe it. Most
of the time, one employs the usual means of expression to this effect: our
mother tongue, explanatory diagrams. Subsequent steps are devoted to code
writing, generally using a high level language. An intuitive understanding of
the language constructs is then key. Of course, people involved in this process
employ some reasoning: ''in that case, such an event happens, then ... etc."

We will proceed in this manner with an elementary case study. We will
introduce - or recall - step-by-step the rudiments of logic and set theory
which make up the framework of formal methods, demonstrating how they can
enhance specifications and programs: they simply allow one to describe things
and to reason in a better way.

In this chapter, concepts are introduced in an intuitive way, with more
rigorous definitions coming in later chapters. Our aim is not to solve everything,
but to raise a number of questions.

2.1 Exposition

The exercise we propose is quite simple, viz. the search for an element in a
table. This is a very banal problem, but we can nevertheless already observe a
classic pitfall. This can be illustrated with the following dialog, where S. is in
charge of the specification and R. is responsible for the realization (program).

S.: "Please write a program to search for an element in a table!"
R.: "What kind of table? A list? An array? A tree? Are the ele
ments sorted? Do they have a key?"
S.: "I don't want to consider these implementation issues. That is
your job."
R.: "But what should be done if the sought element is not in the
table?"
S.: "Sorry?"

lIn this book the word object is to be understood with its usual meaning, without
regard to its connotation in computer science.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

16 Understanding Formal Methods

s. faces the following dilemma:

- either, he plays R's game, and then may well end up doing R's work;
- or, he sticks to his guns, and R may well make irrevocable choices - perhaps

unconsciously - which could later turn out wrong for S.

2.2 Sketch of a Formal Specification

The formulation given by S., as stated above, is too vague. We need to make it
more precise, without going into algorithmic details. Let us see how elementary
mathematical concepts could help.

I8"'te.1 A table is a collection of objects organized in some way. A general
~ mathematical concept for organized collections is that of a structure,
that is, a set endowed with composition laws. Let us ignore the laws at the moment:
they are about organization and we still don't know how to organize the table.

Instead of "collection" we will use the word "set". A set, intuitively, is
a collection of objects, termed its elements. What is the point of replacing the
word "collection" by another? Actually, there is a whole body of well-established
definitions, notations, properties and techniques. This allows us to manipulate sets
and reason about them in a secure way. Moreover we will see in Chapter 7 that a
collection is not necessarily a set. The statement x is a member of E is denoted
by x E E.

I8"'te.1 If we represent the table by a set T, we already know that the element
~ to be found is an x such that x E T. But the previous specification
"search for an element in a table" implicitly tells us that we don't want an arbitrary
element. In order to characterize it we make use of a property we expect of it.
Which property we choose matters little here. In any case, the element has to exist
and we must also be able to check whether or not the property holds on given
elements.

We formalize this property using the concept of a predicate: we introduce
a symbol, say P, and make P(x) denote the fact that x satisfies the property P.
P is called a predicate symbol.

In summary, we introduce a set T which represents the table, a predicate
P defined over T, and we have to search for an element x, which is a member
of T and such that P(x). In later chapters we will see how this specification
can be expressed in real formal specification languages. For the moment we
will content ourselves with a semi-formal presentation, that is, a mixture of
formulas (especially in line 4) and informal text.

1 T: set (read: T is a set)
2 P: predicate defined for all elements of T
3 table-search-program
4 x E T and P(x)

Introductory Exercise 17

In line 3 we have the unknown: the expected program. In lines 1 and 2 we
have two assertions stating what we know before the execution of the program:
they are called the preconditions. In line 4 we have another assertion, the
postcondition, to describe the result. The desired program is then specified
by a pair (precondition, postcondition). This is one of the basic principles of
formal specification.

What does it meaning? In a real-life (and complete) formal specification,
assertions would be logical formulas, that can be assigned a mathematical mean
ing - a semantics. For the moment let us content ourselves with their intuitive
meaning, as we stated previously. This specification is concerned with the state
of the world, or merely that tiny part of it we are interested in here. In con
crete terms, it is just computer memory, or at least an abstract version of
it. The precondition2 states here that the state has two components, a set T
and a predicate P, whereas the postcondition states that it contains an ad
ditional component, the element Xj moreover, T, P and x must satisfy the
aforementioned conditions. The meaning of a specification expressed in this
form (precondition, postcondition) is then:

If the program is executed from a state satisfying the precondition,
then, after execution, the state reached satisfies the postcondition.

Remark. The properties of T and P are actually invariants of the program
we desire: the latter should return x without changing anything about T and
P. Otherwise R. could plainly return a table containing just 0, the predicate
''null'' and x = o. In order to prevent this, let us rephrase the lines 3 and 4 in
the form:

program ... returns x with postconditio~

and we agree that everything outside returns and with is invariant.

1 T: set
2 P: predicate defined for all elements of T
3 table-search-program returns
4 x with x E T and P(x)

Our new specification indicates what is necessary at this stage and nothing
more. No premature design decisions involving a specific representation are
made. However, this is more precise than the informal text as a result of the
use of mathematical concepts - albeit elementary ones. R. can take advantage
of it so long as the implementation data structures faithfully represent sets,
elements or predicates. For example, it is easy to convince oneself that a list,
an array, or a tree, can represent a set.

This intuition can be rigorously confirmed by assigning a mathe
matical meaning to programming statements. This is the topic of

2The reader having some knowledge of logic may be somewhat reluctant to consider
the declarations (e.g. in line 1) as components of logical formulas. This is, however,
legitimate in some powerful logics, such as the ones we consider towards the end of
this book. For the time-being, it is easier to interpret this as a slight abuse oflanguage.

18 Understanding Formal Methods

semantics, particularly denotational semantics. We return to this at the end of
the chapter.

In summary, in order to eliminate the original dilemma, the trick was to con
sider the correct level of abstraction. One of the main assets of logic and related
mathematics is their provision of a large palette of abstraction mechanisms.

2.3 Is There a Solution?

We still did not answer R. 's last question. Let us reformulate it as follows: what
happens if there is no member x of T such that P{x)? Several approaches can
be considered.

2.3.1 Doing Nothing

Let us first analyze the meaning given to the specification above
(precondition, postcondition):

If the program is executed from a state satisfying the precondition,
then, after execution, the state reached satisfies the postcondition.

For this discussion we just need to recognize its logical shape: it is an implica
tion, A:} B.

IB"'!e.l A formula such as A :} B means "if A then B" and is read A implies
~ B. Here A represents the assertion "initially, T is a set, P is a predicate
and P is defined for all elements of T"; B represents the assertion "after execution
x satisfies x E T and P(x),,; to be more rigorous we should repeat the constraints
of A as part of B: see Remark on page 17. This omission has no consequence in
what follows.

The use of "after" could suggest that time plays an important role
~ here. On the contrary, we must forget about time because we want
to retain the usual framework of plain logic, which is sufficient for our current
needs (time will be considered in Chapter 8). We then adopt the viewpoint
of an omniscient creature able to consider simultaneously all past, present and
future events. Whether this event occurs before that event is no more important
than whether this value is smaller than that one.

How can we formalize B, which has two components, "after execution" and
"x satisfies xET and P(x)"? The first term raises a problem because a program
may well not terminate its execution - we say that it loops - or may terminate
its execution in an abnormal way, for instance as the result of an interrupt. This
can happen, for example, if there is an attempt to divide a number by zero.
A possible interpretation of "after execution" which takes this into account is:
''if the execution of the program terminates, then ... ". This is called partial
correctness.

Let us investigate the consequences of this interpretation. Formally, B can
be decomposed into Bl :} B2 •

Introductory Exercise 19

We take here as B 1 : "the execution of the program terminates" and as
B2 : "x satisfies x E T and P(x)".

It matters little that we don't know whether the postcondition B2 is false
or true: if Bl is false, B is true whatever the truth value of B2 - we return
to this basic fact in § 3.4.2. As a consequence, R. has the freedom to provide a
program which loops or aborts if there is no x in T such that P(x). Actually R.
even has the freedom to exaggerate this problem: he could deliver a program
which loops in all cases. Of course this is not satisfactory.

2.3.2 Attempting the Impossible

S. could consider that the previous interpretation of B is too wide and then
add to his requirements.

''I want your program to terminate3 normally and return an ele
ment in the table satisfying P."

This is called total correctness. Formally, S. suggests Bl A B2 (read A and B)
instead of Bl => B2 • However R. can quite reasonably reply:

''That's impossible: you might as well ask me for the moon on a
silver platter!"

Indeed, there are specifications which are unfeasible. Again, division by zero is
another example of this kind: ''find x such that ax = 2" is impossible to realize
when a = 0 is allowed. In each of the above examples something is required
which may not exist. There are more subtle cases of unfeasible specifications.
Take a program P, written in the language of your choice and containing a
numerical variable. Now ask the question: ''will the value of this variable be
null during execution?" There is an answer, either yes or no. But in general
there is no program for computing it.

_~ It is not sufficient to execute P and to test the value of the variable
~ at each execution step. The program may well perform many, many

computations before finding an assignment to zero. How can we be sure that
the next step will not be the last one in this seemingly endless execution?

These somewhat tricky issues are the concern of computability theory, which
we tackle in § 3.3.4.

2.3.3 Weakening the Postcondition

Our current specification is unsatisfactory, but we can still try to modify it
rather than completely reject it. Total correctness is preferable, so we start with
our second interpretation. As the specification is unfeasible, that is, too strong,
we will weaken it. The first thing we can do is to weaken the postcondition.

3lmplicitly: "I want the execution of your program to terminate." In the following,
"program termination" always refers to the termination of executions of that program.

20 Understanding Formal Methods

In other words, we will ask that the program returns an x which does not
necessarily satisfy (x E T) 1\ P(x}. But, for the program to be useful, we will
ask for an additional piece of information that tells us whether x satisfies the
required property or not. More precisely, we ask the program to return not only
x, but an ordered pair (b,x) where b is a Boolean which is true if (xET}I\P(x)
and false otherwise.

It is clear that the postcondition on x is weakened. What about b, which
was not even mentioned before? For the sake of comparison, we can suppose
that the previous specification asked also for a fake b without any constraint.
The last line of the specification would then have been:

(b,x) with (x E T) 1\ P(x).

As the new specification puts a constraint on b, we conclude that the postcon
dition on b is stronger.

IB"'te.I The set of Booleans is a set with exactly two elements representing the
~ truth values true and false. This set is denoted by IB = {true, false}.
More generally one can define a set E by listing its elements in any order. We use
the notation E = {el' e2, ... en}. This kind of definition is called by extension.
Only finite sets can be defined in this way. The empty set is often denoted by {21

instead of D.
A number of programming languages such as Pascal have a built-in

boolean datatype. In other languages. such as C. the values true and false are
encoded by the integers 1 and O. respectively.

Here is the new specification:

1 T: set
2 P: predicate defined for all elements of T
3 table-search-program returns
4 (b,x) with b E {true,false}
5 and (x E T) 1\ P(x) if b=true
6 and (V x E T) ~P(x) if b=false

This possibility, the most satisfactory for S., will be investigated in § 2.4.4
under a somewhat different, but equivalent, form.

IB"'te.I The formula at line 6 (literally: for all x in T. not P(x}) means that no
~ x in T satisfies P(x}. The set of ordered pairs (a, b) where a E A and
bE B is denoted by A x B. it is the Cartesian product of A and B. Be warned
that order matters: (a, b) ::j:. (b, a). The other important set-theoretic constructs
involving two sets A and B are the intersection AnB and the union AUB; AnB
is the set of elements which are both members of A and B. while AUB is the set
of elements which are members of A or B (or both).

2.3.4 Intermezzo: Sum of Sets

Here we have the opportunity to present a simple and key concept, which is
ubiquitous in computer science, but often in a hidden form and then, unfortu-

Introductory Exercise 21

nately, largely underestimated: the sum of two sets,4 also called their disjoint
union.

The ordered pair (b, x) is not quite so simple. We could consider it as a
member of $ x T. This is not very accurate. When b = false, nothing is known
about x, so we have no reason to suppose that x E T, especially not when
T=0!

Let us temporarily forget our previous implementation of the result by the
means of an ordered pair. The key idea is that the result is either an element
of T or the representation of a failure. Let us call R its domain. Can we take
R = T U {failure}, where failure is a value as well as true, false and elements
of T, rather than R = $ x T? Almost: it works on condition that failure
is not already a member of T, otherwise nothing could distinguish it. This
can be handled at the level of the precondition, but we often prefer to avoid
additional constraints. We then introduce a construct combining two sets A
and B and providing a way of recognizing where an element comes from. In
particular, common elements of A and B will be distinguished. Such a set is
called the sum of A and B and is denoted by A + B. Let us illustrate the idea
on R = T + {failure}, which is relevant in our example. Only lines 4 to 6 of the
previous specification are modified:

1 T: set
2 P: predicate defined for all elements of T
3 table-search-program returns
4 r with rET + {fai lure}, such that
5 P(x) if r comes from (element x of) T
6 (V x E T) ,P(x) if r comes from {failure}

The sum is not a primitive concept in set theory; it is built upon other
constructs. The most natural way to proceed is to tag elements of A and B
with different tags. Let us call the tagged sets AT and BT. Then we take
A + B = AT U BT. The tagging operation maps an element x to an ordered
pair c = (t, x), where t is the tag chosen for x, e.g. true if x is taken from A or
false if x is taken from B.5 In order to know where c comes from, we just have
to check its first component t. Then we again get our specification (page 20).

In summary, A + B is a subset of $ x (A U B):

A+B=({true} x A) U ({false} xB) .

It is easy to generalize this construct to multiple sums and it turns out to
be quite useful when one needs to describe data that can take several different
formats.

4Later we consider the sum of two types, but the basic idea is the same.
5The choice of true and false is completely arbitrary, but it happens to be consistent

with the specification on page 20.
Note also that, an x of A n B yields two distinct elements of A + B, (true, x) and

(false, x).

22 Understanding Formal Methods

2.3.5 Strengthening the Precondition

Besides weakening the postcondition, there is another way to weaken a specifi
cation: strengthening the precondition. It makes R. 's job easier if he is a priori
guaranteed that there is an element in the table satisfying the required prop
erty. Formally, we use the symbol 3 (read: there exists). We get the following
specification:

1 T: set
2 P: predicate defined for all elements of T
3 (3 x E T) P(x)
4 table-search-program returns
5 x with x E T and P(x)

It is up to the engineer in charge of the integration of that piece of software
in its environment to ensure that it will be used correctly, that is, that the
precondition is satisfied on each occasion that it is used.

Otherwise, he runs the risk of losing control of execution. In partic
ular, the piece of software under consideration can not only abort

(which at least can be noticed), or loop, but it could also return a fanci
ful result without warning. Indeed, recall that the meaning of a specification
(precondition, postcondition) is roughly precondition=*postcondition: if the pre
condition is false, this implication is true even if the postcondition is not satisfied.
It is therefore better to avoid strengthening the precondition; this is particularly
the case when using assertions which are not easy to verify.

How can we actually use an abstract specification to direct the construction
of a correct implementation? This is our next topic. We start with the last
specification, which is the easiest version of it to implement.

2A Program Development

In order to implement the previous specification, the obvious intuitive idea is
to examine every element of T until a suitable x is found. Until now the set
T that we used as a model for the table was left undetermined. For a simple
program we need to be more specific. We take here T = N.

~ N is the set of so-called natural integers 0, 1, 2 ... Other important
~ sets of numbers are Z (positive and negative integers, and zero), Q
(rationals, i.e. quotients of integers) and IR (reals). The latter can be constructed
from the natural numbers.

Confusing mathematical integers with the integers of a programming
language is slightly improper: generally the latter are bounded. However this issue
has no consequence in our example.

The property P will be left abstract. We only assume that there is an
expression in the programming language under consideration which computes

Introductory Exercise 23

P(x) for all x of T.6 The specified problem then becomes the search for an
integer x satisfying P(x). It is at least as general as the search for an element
in an array.

2.4.1 Prelude: Correctness of a Loop

The programs we are interested in are made up of a loop allowing a simple
operation to be repeated while traversing the table - for us, elements of N.
We write it:

while test do body done

2.4.1.1 Partial Correctness. In order to show that a postcondition Q is true
after the execution of a loop, the simplest way is to prove that Q is kept true
at each iteration of the loop! More precisely, if Q is true at the starting point
of the loop, and if executing the body preserves the truth of Q, it is clear that
Q is still true after any number of iterations. Such an assertion is called an
invariant of the loop. Beware: the invariant can be temporarily violated inside
the body; only its status before and after every iteration matters.

This technique is evidently incomplete: if we are interested only in things
which do not change, what is the point of executing the body of the loop?
Actually the invariant provides only an abstract, partial, view of the state of
the program. The state is supposed to change on every iteration; however, this
is precisely what we forget with the technique of the invariant.

Surprisingly, a very small addition turns out to be sufficient to derive a
proof method which is powerful enough for our needs, at least with partial
correctness issues. We just have to take into account the failure of the test
which is necessary for exiting the loop. Let C be the assertion corresponding
to this test; we decompose the postcondition Q into I 1\ ..,C, where I is the
invariant of the loop. We can also take advantage of the truth of C at the
beginning of an iteration. This yields the following reasoning scheme:

if I is true at the starting point of the loop
and, if the body of the loop establishes I from I 1\ C,
then we have I 1\ ..,C at the exit point of the loop.

(2.1)

In order to have total correctness, we still have to ensure that exiting the
loop will actually occur. Here again we need to study (an abstract version of)
state changes during execution. Somewhat strangely, the key concept is again
the concept of invariant.

2.4.1.2 Termination. For the sake of simplicity we exclude abortion or ex
ception mechanisms. We can then informally represent the behavior of our
looping program by a sequence

6 In the pseudo-language we employ here we retain the notation P(x). In languages
without Booleans, one can use a function f returning 0 or 1, such that P(x) is
represented by the test f(x)=1.

24 Understanding Formal Methods

true, body, true, body, ... true, body, false , ,
'" n iterations

(n may happen to be zero) if it terminates, or

true, body, true, body, ... true, body, ...

if it does not terminate. In order to ensure total correctness of the program,
we have to prove that the second case does not occur.

The technique that can generally be used is to identify a value v, called the
loop variant, which depends only on the state, and which satisfies the following
conditions:

v is a natural number (a non-negative integer),

v decreases at every iteration.

Indeed, each iteration step results in a distinct value of v; but we have

a strictly decreasing sequence of non-negative integers
is necessarily finite. (2.2)

As a passing remark, (VN) provides an assertion which must be integrated
into the loop invariant. For example, the program

while x,eO do x:=x-2 done

does not terminate if the initial value of x is odd. This problem becomes ap
parent if, in an attempt to prove the termination of this loop, we choose the
value of x as the variant v: the input condition C in an iteration ensures only
v ,e 0, which, using the invariant (VN), yields v E {I, 2, 3, 4 ... }; after x: =x-2 we
would have v E {-I, 0,1,2, ... }, and the allowed value -1 would violate (VN).

Assuming that the initial value of x is different from 1 would not solve the
problem for a similar reason.

I8"'ie.l This would amount to taking I ~f vE {a, 2, 3, 4 ... } as the invariant (~f
~ means "is defined as"). At the starting point of an iteration we would
have Il\v,eO, hence v E {2, 3, 4 ... }; after x: =x-2 it becomes vE {a, 1,2 ... }, which
is unfortunately different from the invariant I we expect.

By contrast, if the initial value of x is even, we can take I ~f v E {a, 2, 4 ... }
as the loop invariant. At the starting point of an iteration we have 11\ C, that
is v E {2,4 ... }; after x:=x-2 it becomes v E {a, 2 ... } which does indeed conform
to (VN).

The behavior of a correct loop can then be roughly summarized as follows:

while the state is not satisfactory, change it in a way such that
the invariant is kept true and the variant decreases.

The concept of a variant can be stated in a much more accurate manner using
well-founded relations; we return to this in § 3.5.

Introductory Exercise 25

2.4.2 Linear Search

We assume here that there is at least one natural integer satisfying P. The
search is performed by attemping different integers one by one, hence the term
linear.

1 P: predicate defined for all elements of N
2 (3 x E N) P (x)
3 integer-search-program returns
4 x with (x E N) /\ P(x)

The proposed program is of course:

1 x:=O;
2 while ~P(x) do x:=x+l done

The following reasoning may help to convince ourselves that the above program
is correct.

Partial correctness (if the program terminates, then the postcondition is
satisfied):

- x, initialized to 0, is incremented by 1 at every step; then we have always
x E N, this invariant is still true at the exit point of the loop;

- ~P(x) forces the next execution step to be in the loop, then P(x) is neces
sarily satisfied at the exit point of the loop.

Total correctness (the program terminates).
Let N be an integer such that P(N) is true (the precondition ensures the
existence of such an N), and let us take v = N - x as the variant:

(VN) N - x is an integer because N E N and we know (see the above on partial
correctness) that x E N. We still have to show that the property v 2: 0,
which is true after x: =0, is left invariant; let us rephrase this as x :::; N
(since v = N - x). At the beginning of an iteration step, we necessarily
have ~P(x) which yields x =1= N, since N satisfies P(N); hence x :::; N
boils down to x < N; after the assignment x: =x+1, this yields x :::; N as
expected, since N and x are integers.

(Vd N - x decreases at every iteration because x increases.

In the above reasoning, N is not necessarily the integer that will be
I.~ returned by the algorithm: the latter is actually the smaller integer
satisfying P. We need an N such that P(N) holds only for purposes guaran
teeing termination.

2.4.3 Discussion: Reasoning Figures

The above reasoning is not that long, but that would be the case with more
complex specifications and programs. Therefore it is desirable to be able to
check a proof in a systematic way. To this effect one reduces this checking
to the successive application of primitive reasoning steps, that is, reasoning

26 Understanding Formal Methods

steps simple enough that we can have no doubt about their validity. Logicians
formalize them in a deduction system. A great advantage then is that the process
can be aided by automated tools. Let us make an inventory of the ingredients
needed in the above proof.

2.4.3.1 Logical Laws. A number of steps are purely logical steps: the ones
related to connectives such as V (or), A (and), => (implies), ..., (not). For exam
ple, from v>O V v=O (which was written N - x ~ 0) and from v~O (coming
from x ~ N) we deduced v > O. More formally, from A V B and from ...,B we
deduced A. Such a deduction principle is written in the same way as a fraction,
where premises take the place of the numerator while the conclusion takes the
place of the denominator:

AVB ...,B
A

(2.3)

The following formula contains a similar idea:

(A V B) A...,B => A . (2.4)

However, the latter must be regarded as an ordinary logical expression, in the
same way as (a + b) x (-b)/a is aI). arithmetical expression. In contrast (2.3)
denotes a deduction step that yields the conclusion A from hypotheses A V B
and ...,B. A complete reasoning consists of a combination of similar steps. This
can be viewed as follows:

hypotheses
.!. .!. .!.

reasoning

.!.
conclusion

Formulas such as (2.4) allow us to represent the hypotheses, the conclusion, or
the fact that the former entails the latter, but not the proof itself. We will see
in Chapter 9 how the box "reasoning" can be formalized using rules analogous
to (2.3).

Other issues will be tackled, for instance:

- what is the precise link between (2.3) and (2.4)?
- how can we check the validity of a formula like (2.4)?

2.4.3.2 Manipulation of Equalities. Aiming at deducing x ~ N from ...,P(x)
and from P(N), let us suppose that x = N and derive a contradiction. We can
then replace x with N in ...,P(x), which yields ...,P(N), in a contradiction with
the second premise. The general line of reasoning (reduction to the absurd)
is a matter for the previous subsection. However, we also used the principle
of substitution of equals by equals, which is very important in spite of its
simplicity.

Introductory Exercise 27

2.4.3.3 Proper Laws. We also employed laws which are specific to the do
main of the model, for example arithmetic rules, allowing us to transform
N - x =I 0 into N =I x, or laws about assignments. The behavior of a piece
of a program 5 is described using the notation {P} 5 {Q}, which means that
starting from the precondition P, executing 5 establishes the postcondition Q.

{P} 5 {Q} is itself a logical formula, just as are P and Q. The latter two
are logical formulas about the state that we get from the variables of the pro
gram, whereas {P} 5 {Q} is about its execution. The reasoning scheme (2.1)
for verifying the partial correctness of a loop, given on page 23, can also be
formalized by means of a premise/conclusion rule:

{I 1\ C} 5 {I}
(2.5)

{I} while C do 5 done {I 1\ ...,C}

If"Ie.I The formula {I}lwhile C do 5 donel{II\...,C} is made up offormulas
~ such as I and C, and of pieces of programs such as 5 and the part that
is framed. In a similar way, an assertion such as P 1\ (1 + 1 = 2) is made up of
another assertion (P) and of integers.

2.4.3.4 Reasoning by Induction. There is a particularly powerful means
for proving that a property Q is true for all natural integers n. We proceed in
two steps:

1. we show that Q is true for n = 0 ;
2. we show that if Q is true of an arbitrary integer, then Q is kept true

for the next integer.

This principle, called induction, can also be written in the previous format:

Q(O) Vn n E N 1\ Q(n) :::} Q(n + 1)
Vn n EN:::} Q(n)

(2.6)

Reasoning by induction is ubiquitous, though sometimes in a hidden format.
The principle of induction allows us to justify that a loop invariant is true after
any number of iterations given that it is initially true and that it is preserved on
every iteration. It is also required to prove that a strictly decreasing sequence
of natural integers is necessarily finite (which is in turn the key argument for
justifying the technique of loop variants, see (2.2) on page 24). All important
properties of integers and data structures such as lists or trees require a form
of induction. An automated environment for formal methods must support this
kind of reasoning; simply handling logical connectors is far from sufficient.

2.4.4 Bounded Linear Search

If no integer satisfies the property P, it is clear that the program on page 25
does not terminate.

28 Understanding Formal Methods

I8""e.I If this were the case, we know from partial correctness that, at the
~ exit point of the loop, x would satisfy P{x), in contradiction with the
previous hypothesis.

2.4.4.1 Specification. We use the specification given in § 2.3.4 on page 21.
With T = N we can write it as:

1 P: predicate defined for all elements of N
2 table-search-program returns
3 r with r E N + {faHure} , such that
4 P(x) if r comes from (elt. x of) N
5 (V x E N) .,P(x) if r comes from {fai~ure}

But this is too difficult, mainly because of line 5 where we have a quantification
over an infinite number of elements.

If a general program solving this problem could exist, for an arbitrary
P, it could in theory be used to solve conjectures or difficult problems

of arithmetic. For example, let us consider Fermat's last theorem (recently
proved by Wiles): for any n greater than 2 we cannot find three integers a, b
and e such that an + bn = en. We would take, for P{x):

3n 3a 3b3e
(n<x) 1\ (a<x) 1\ (b<x) 1\ (e<x) 1\ an+3 + bn+3 = en +3

Here we limit ourselves to finite tables. They are modeled as an interval of
integers. We use [p .. q[to denote the set of integers greater or equal to p and
strictly smaller than q. In particular, if p = q, the interval [p .. q[is empty.

1 (p E N) 1\ (q E N) 1\ p~q
2 P: predicate defined for all elements of [po .q[
3 table-search-program returns
4 r with r E [po .q[+ {fai ~ure}, such that
5 P(x) if r comes from (elt. x of) [p .. q[
6 (V i E [p .. q[) .,P(i) if r comes from {fai~ure}

In the present situation we can take advantage of the structure of the table to
avoid the introduction of the Boolean b (see page 20): we simply represent the
lack of an element satisfying P(x) in the table by returning a value of x such
that x = q. In other words, for T = [p .. q[, we can model {failure} by {q} and
T + {failure} by [p .. q[u {q} = [p .. q]. Thus we get the following specification:

1 (p E N) 1\ (q E N) 1\ p~q
2 P: predicate defined for all elements of [p .. q[
3 table-search-program returns
4 x with x E N 1\ p~x 1\ x~q
5 and P (x) if x<q
6 and (V i E N) (p~i 1\ i<q) ::} .,P(i) if x=q

2.4.4.2 A Naive Attempt. We could try the following program:

1 x:=p;
2 while x~q 1\ .,p (x) do x: =x+l done ;

Introductory Exercise 29

Aiming at a correctness proof of this program, we consider the loop invariant
I that simply tells us that, on the one hand, x is kept confined to the expected
domain (It) and, on the other hand, values of x investigated so far do not
satisfy P (I2):

I ~f It 1\ 12 ,

II ~f X E N 1\ P ~ x 1\ x ~ q ,
.. I ...

domain of x

12 ~f ViEN(p~i 1\ i <x)=*-,P(i)
... ,

'" unsuccessful exploration

This invariant is established before the loop: It comes from the precondition
and, with regard to 12 , p ~ i 1\ i < x is necessarily false because x = p.

The partial correctness criterion of while tells us that the negation of x :f.
q 1\ -,P(x) is verified after line 2 of the program. A logically equivalent formula
is

x = q V P(x) . (2.7)

In the case where x = q, the invariant 12 can be written Vi E N (p ~ i 1\ i <
q) =* -,P(i), which agrees with line 6 of the specification. If x :f. q, the exit
condition (2.7) forces P(x); with It we then get all the ingredients of lines 4
and 5 of the specification.

We still have to examine total correctness. But ...

2.4.4.3 Beware of Limits. There is a well-known snag for the experienced
programmer. If there is no element of [p .. q[which satisfies P, the exit test
of the loop of line 2 is performed for x = q, which means that the condition
q :f. q 1\ -,P(q) is computed. The inequality q :f. q is quietly evaluated to false;
but what about -,P(q)? P is not supposed to be defined at q. The precondition
of line 2 has been designed intentionally, because it is a typical programming
problem: array overflows.

Let us first remark that usually, in logic, an expression having the form
b 1\ anything evaluates to false if the value of b is false. From this point of view
we don't hesitate: the assertion q :f. q 1\ -,P(q) has a value which is false.

We will see in Chapter 5 that, in usual logic, all functions are total
and predicates are defined everywhere. When we want to model a

partial object f (predicate or function), we have to extend it in an arbitrary
way over the whole domain under consideration, and to introduce an additional
predicate characterizing the elements where f is defined. The expression f (x)
is then defined, even if x is outside the expected domain of f (the domain of
a function is the set of elements where it is defined). In our case the assertion
P(q) has a value, but it is arbitrary and unknown: hence q :f. q 1\ -,P(q) takes
the value false.

30 Understanding Formal Methods

However, the very fact that this assertion has a value does not mean that
at the level of the program the corresponding computation succeeds. It is a
well-known fact that when executing, a program fragment may starve (hang)
in a loop, abort, or raise an exception. This is typically what may happen in the
case of an array overflow.7 Modeling these phenomena requires the introduc
tion of an additional value which represents the indefinite. The mathematical
representation of the evaluation of a Boolean expression by a program compu
tation is then more complex than the evaluation of the corresponding logical
assertion.

In order to take this into account, a number of programming languages
make it explicit that the computation of A 1\ B starts with the computation of
Aj if A = false the result false is directly returned without evaluating B. In our
example this works quite well. In the general case, if B cannot be evaluated,
then B I\A cannot either, according to this evaluation strategy. Hence a property
as simple as A 1\ B = B 1\ A is lost, and actually many common properties
of logical connectors are invalidated at the level of programs. This can make
reasoning more complicated.

Another possibility is to ensure that evaluating P(x) is performed only for
values of x which are strictly smaller than q. Thus we can content ourselves with
the two normal truth values. But, obviously, the previous program needs to be
modified. Let us investigate this idea. rugor would require that we indicate for
mally that each evaluation of P(x) is performed under good circumstances. To
this effect we should insert the assertion x < q before all instructions contain
ing P(x), and prove that those assertions are true in the indicated places. This
leads us to mix specifications and programs. Appropriate syntactic means will
be presented in Chapter 4. Here we simply follow this approach in an informal
manner.

The issue raised here is not a limitation of formal methods but a
~ subtle point related to the semantics of programs: in spite of appear
ances we have to be careful not to confuse Boolean expressions occurring in
tests with logical expressions occurring in assertions. Therefore in the follow
ing, we distinguish the logical constants f and t, used in formulas, and the
Booleans false and true, used in programming.

2.4.4.4 Another Program. Since the occurrence of P(x) in the exit test of
the loop is harmful, let us remove it. What is left is while x =I- q do body to be
determined. But, when exiting the loop we would necessarily have x = q, which
is not what we expect.

A basic technique which turns out to be useful in this kind of situation is
to replace a constant (the only one we have in the test is q) by a variable, say
y. When exiting a loop while x =I- y do etc. we have x = y, and we want one
of the following assertions to be true:

TIt is at least the most meaningful behavior (except when we only want to read
a value for which we proved, as here, that its value is irrelevant). In most cases,
allowing the execution to continue leads to unpredictable results often difficult to
analyze. Languages such as C make this unfortunate choice.

Introductory Exercise 31

- either x = y < q, if P{x) (line 5 of the specification),
- or x = y = q, if there is no satisfactory element in the table (line 6 of the

specification) .

We will naturally test P(x) in the body of the loop, with the intention of
exiting the loop in the case of success; then we have to equate x and y, without
modifying x since x contains the value we are looking for: hence we consider
y: =x. If the test fails, x is incremented as in the previous program. If the
successive tests always fail, y must behave like q in the previous program, q
is then a good candidate for the initial value of y. Hence we have an elegant
program which may escape even our experienced programmer:

1
2
3

x:=p ; y:=q ;
while x=f.y do

if P(x) then y:=x else x:=x+l done ;

The correctness proof is performed as above. We just have to add in the
invariant, that y is between x and q (see II) and that x satisfies P when y is
strictly smaller then q (13):

I ~f II /\ 12 /\ 13 ,

II ~f X E N /\ yEN /\ P ~ x /\ x ~ Y /\ Y ~ q , , ,
" domain of z and of 11

12 ~f Vi EN (p ~ i /\ i < x) ~ ...,P{i) , ... ,

'" unsuccessful exploration

13 ~f Y < q ~ P(x) , , ..
success

Now we can check that at the entry point of the loop body, we have x =f. y,
hence x < q because of II' Then P(x) can be easily computed.

For loop termination concerns, we can take y - x as the variant; details are
left as an exercise.

2.4.5 Discussion

This little example illustrates a tricky point that occurs in programming, in
formal specification, and in logic as well: handling partial functions.

IB""ieI A partial function is a function which is not defined everywhere. For
~ example. if we consider functions over real numbers. l/x is not defined
for x = O. and Vx is not defined for x < O. For an example over N. the square root
function is only defined over {O, 1,4,9 ... J. Basic notions of functions are recalled
in § 3.4.3 on page 48.

An array can be regarded as a partial function which is defined over an
interval of integers, i.e. a (special) subset of N. It may happen that computing
a function which is described in a programming language either loops or aborts
for particular values of its arguments; then we still have a partial function.

32 Understanding Formal Methods

We already have a problem at the notation level: what is denoted by f(x)
when f is partial and is not defined for x? The matter would be simpler if we
could tell in advance whether or not f is defined for x. But in the general case
such knowledge cannot be provided by mechanical methods, if x is the result of
a computation. We will consider three main approaches to this issue, one based
on classical two-valued logic, one using a third truth value and one based on
types.

It is important to keep in mind that notations coming from mathematics
often take a slightly different meaning in programming. This was illustrated in
§ 2.4.4.3 on P A Q and on P (x). 8 There is another pitfall with the concept of a
variable. The concept we use in a programming language like C is quite different
from the concept we use in mathematics: it is essentially a memory address, and
generally corresponds to values that are difficult to predict because of aliasing
phenomena, that is, when two names refer to the same piece of memory.

2.5 Summary

Considering the right abstraction level is essential for writing precise specifica
tions without getting lost in the details. Logic turns out to be an excellent tool
in this area. This chapter also introduced, in a semi-formal way, a specification
technique based on logical assertions as well as simple reasoning about them.
Reasoning obviously lies within the realm of logic.

We also observed the ambiguity of informal text, and that such ambiguities
can be overlooked at first sight: recall the two interpretations proposed on page
17 for a specification based on a precondition and a postcondition. Moreover,
similarities between mathematical notations and programming languages may
cause a number of confusions: program variables are not exactly mathematical
variables; Boolean expressions cannot always be considered to be predicates;
partial functions have a somewhat different status.

Our example for illustration purposes was very simple. What happens when
we consider real large-scale software? The risk of lapses, ambiguities and in
consistencies increases dramatically. Formalizing (parts of) the specification
becomes more difficult. However, it should be noted that, during the lifecycle
of a software, we always have at least one formalization step: encoding in a
programming language. Moreover it is better to formalize our knowledge as
early as possible, so we can then derive information about the behavior of the
system under consideration, compare the latter with desired properties, and
make more accurate design decisions. At the same time, it is important not
to freeze implementation choices too early. In this respect, good abstraction
mechanisms are essential.

Hence, powerful and expressive languages endowed with a precise seman
tics turn out to be very useful. Again, logic provides essential tools. However,

8Recall how P (x) was introduced in our toy programming language on page 23.

Introductory Exercise 33

they have to be chosen very carefully. The difficulty of this task should not be
underestimated.

2.6 Semantics

Real software is written in programming languages, then compiled
and executed on real (or virtual) machines. A complete guarantee Qf

their behavior would require exhaustive verification right down to the hardware
level. This is of course a gigantic task, but one against which we are not,
however, entirely powerless. We will not consider here the application of formal
methods to hardware specification and verification, although they are used in
that arena at least as much as for software.

In contrast let us say a few words on programming languages. Rea
soning about concrete programs is legitimate provided that the language used
is endowed with a well-understood formal semantics. There are several kinds
of semantics. Among them, the most important are denotational semantics,
axiomatic semantics and operational semantics.

Denotational semantics aims at giving programs a mathematical
meaning which is independent from computations on particular machines, in
cluding abstract machines. In most cases this mathematical meaning takes the
form of a function covering an appropriate domain. In contrast, operational se
mantics defines the behavior of a program by its effect on an abstract machine.
Finally, axiomatic semantics tells us the effect of each program statement on
assertions over the state of an abstract machine.

Each semantics has its uses. Denotational semantics provides a better
representation of the very nature of a program. Operational semantics may form
the basis of the design of a compiler. Reasoning rules to be applied to concrete
programs are based on axiomatic semantics. The preferred situation is when
all three type of semantics are available and when each one is consistent with
the others.

2.7 Notes and Suggestions for Further Reading

Many textbooks on formal specification techniques (e.g. [PST91, Jon90, Mor90,
Wor92, WL88]) provide an easy-to-read introduction to logic and set-theoretic
concepts used in techniques such as Z, B or VDM.

The idea of reasoning about programs seems to be as old as programming
itself. It was mentioned in the 1940s by the logician Alan Turing, who invented
the concept of a universal machine (a machine where the program is regis
tered in memory). Logical assertions were introduced in flow charts in 1967 by
Floyd [Flo67], then in structured programming languages following the seminal
work of Hoare [Hoa69] and Dijkstra, we return to these in Chapter 4.

34 Understanding Formal Methods

There are several introductory textbooks on programming language seman
tics. Hanne and Flemming Nielson's book [NN92] present the main approaches
clearly. The short book by Gordon [Gor79] and the reference book by Stoy
[Sto77] are more specifically devoted to denotational semantics. One may con
sult [Sch88] for a further study.

The bounded linear search algorithm comes basically from textbooks by
[Coh90] and [Ka190] on Dijkstra-style approaches. The starting point of the
authors is a specification similar to the last one in § 2.4.4.1, where x = q
encodes the failure of the search. This specification is simple to understand
and perfectly relevant if the problem to be solved is the search for an element
in an array. Why did we dismiss T U {failure} in a first stage and fiI.ally come
back to it? Precisely because our initial problem was to search for an element
in a table, whatever the actual detailed structure of the table. The concept
of sum introduced in § 2.3.4 perfectly fits our requirements for a high-level
specification. Actually, most implementations considered in programming turn
out to use data structures with two distinct variants.

3. A Presentation of Logical Tools

Mathematical logic has spread out in a variety of ways - model theory,
proof theory, set theory, computability - according to Barwise's classifica
tion [Bar77]. To this taxonomy we can add type theory, which has become
more important since the time of Barwise's overview. From our point of view,
the importance of logic can be summarized as follows:

- it provides a natural framework for precisely constructing and expressing
various concepts in computing;

- it lends itself well to formalization.

The first of these points has been described in Chapter 2. The properties
of a program are quite naturally expressed in logic. The language of sets also
finds many applications in this domain. Variables manipulated by programs
range over a state space that is nothing more than a set defined by compos
ing particular basic sets (specifically, integers, characters, etc.) by means of
set operations (for example, the record construct of the Pascal language or the
struct construct of C are both a form of Cartesian product). In other respects,
computability theory makes us aware of the existence of unrealizable specifica
tions.1 Finally, type correctness makes programming more accurate and more
secure.

Returning to the second point, above, our interest in formalization is twofold.
On the one hand, the rigor of our specification texts and our reasoning about
them is increased, since this is based on the manipulation of symbols that may
be easily verified; on the other hand, the effort may be automated, or at least
aided, by computer. It must be noted that the complete formalization of proofs,
whether in software development or in a mathematical context, has a tendency
to submerge the principal ideas under a plethora of more or less trivial lemmas.
For such an approach to be viable, at least a partial automation proves to be
indispensable in practice.2 Proof theory provides essential tools in this respect.

On a practical level, mathematical logic aids in developing specification
languages. An intuitive understanding of concepts, such as we acquire in school
and in college, is often sufficient. Certain specification languages such as Z or
B transform the language of sets and logic to accommodate the organizational
needs of computing by means of adequate structuring mechanisms.

INot because they are contradictory, but more subtly because no program can be
derived to compute the desired function.

2 An alternative point of view is presented in § 9.6.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

36 Understanding Formal Methods

Knowledge of certain more advanced aspects of logic is often very useful.
This will be illustrated in § 3.1. Section 3.2 will give an overview of the historical
context of mathematical logical. We will describe the different branches in § 3.3.
Basic mathematical terms will be recalled in § 3.4. We will end with more
technical discussions on well-founded relations and ordinals from § 3.5 - these
concepts playa key role in issues of termination and computability in § 3.7.
The last two sections may be omitted on a first reading.

3.1 Some Applications of Logic

3.1.1 Programming

Let's take a piece of paper on which are drawn some ordinary figures, and
try to determine if a given point is inside this figure, or if a given line cuts
that figure. In three dimensions, this presents a very concrete problem of aerial
control. The reader is invited to spend a few minutes considering a solution in
the programming language of his or her choice.

Do we, for example, construct some form of structured variables for each
basic form? Do we try to combine everything into a tree structure? We must
consider every possible interaction.

It's much more simple: we use the characteristic function of the figure under
consideration, that is a function that for every point returns the value true
if the point belongs to the figure, and the value false otherwise. The reader
should be able to easily express the characteristic function of basic figures (discs,
rectangles, etc.) in the programming language of choice. But this representation
doesn't really catch our interest unless we can construct new figures from known
figures. For example, the intersection of two figures represented by f and 9 is
a function which, when applied to the point p, returns true if and only if
f(p) = true and g(p) = true. The function that computes the intersection is
very general, and makes a total abstraction from the particulars of the figures
themselves. Other forms of composition (complement, union) are also easy to
obtain, as are transformations such as translations, symmetries or rotations.

Everything rests on one essential ingredient: the ability to pass functions
as parameters and return functions as a result. What programming language
should we choose? At first sight we find the concept of a pointer to a function,
widely used in the C programming language, to be convenient. In reality, this is
only sufficient to cover the case when the functions used are finite in number and
are known in advance. The problem with not perceiving these limitations is that
we may hope to be able to resolve the problem by taking a sufficiently shrewd
approach. In reality, only the functional languages, based on the A-calculus (see
later) such as Scheme, ML or Haskell, provide a sufficiently general mechanism.

The underlying problem is to know if functions are considered as objects
that can be manipulated in the same way as data structures. This is not a

A Presentation of Logical Tools 37

trivial question. We will see that in set-based specification techniques, we regu
larly manipulate binary relations, functions being a particular case of relations.
These relations are intended to be implemented with data structures (tables,
pointers, etc.) or algorithms (procedures, functions). Choosing the right solu
tion is delicate. If the development is undertaken unadvisedly, or rashly, it may
well end up with an inefficient or overly complex implementation - or just fail.

3.1.2 Sums and Unions

Let us examine some other constructs used in formal languages. The reader
probably knows already how to use symbols such as U and can associate it

. with a simple intuitive interpretation - combining the elements of two sets.
This notation is generally used to combine sets of the same "kind". For example
we can state:

{x E IR 11 $ x $ 11"} U {x E IR I 2 $ x $ 211"}
={xEIRIIx211"} .

We don't feel the need to combine dissimilar sets, for example a set of integers,
a set of couples and a set of sets:

{I, 2, 3}, {(I, 2), (3,4)} and {{I, 3, 4}, {I, 5}}

which would yield:

{I, 2, 3, (1,2), (3,4), {I,3,4}, {I,5}}

but after all, nothing is impossible. We actually often need to mix heterogeneous
data in computing. For example, in protocols, when we want to manipulate
messages having different formats in a uniform way. Or in parsers, when we
construct a syntax tree: a node corresponding to a statement can have two
children if it represents the sequential composition of two statements, three
children if it represents an if-then-else statement, etc.; moreover we see that
nodes can represent statements or expressions. A data structure representing
elementary geometric figures, say circles or triangles, would have, respectively,
two fields (the center, which is a point, and the radius, which is a distance) or
three fields (the vertices, which are points). A more elaborate example is the
set of finite integer sequences, which can be seen as an infinite union:3

{,,} U N U (N x N) U (N x N x N) ...

However, mixing heterogeneous objects is not harmless. It is plainly mean
ingful to reject, at compile time, a test like a = b if a and b have different types.
The usual interpretation is that a and b take their values from two different

3We need a singleton for representing the empty sequence. The usual set
theoretical trick is to take {0}.

38 Understanding Formal Methods

sets A and B, say floats and strings. But we could just as easily agree that a
and b take their values from the same set: A U B! And let us stress that we
cannot just disallow A U B, as this notion is needed in the previous examples.

How can we get the flexibility that we need while simultaneously controlling
the coherency of data and operations? The concept of sum introduced in 2.3.4
is just the ticket. In a good type system, A, B and A + B can be distinguished.

A sum is dealt with using an operator able to check whether a given element
s comes from an element a of A or from an element b of B, and then to direct the
computation appropriately; the computation depends on a in the first case and
on b in the second case. Such constructs are available in modern languages like
ML. In Pascal (or C) it is possible to emulate a sum using a record construct
with variants and a switch field, but it is the responsibility of the programmer
to ensure that a variant is always used in a way consistent with the switch
field. Note that during the initial design of ASN1, a standardized language for
describing the format of data exchanged in protocols, sums were not recognized
as a primitive concept, leading to many complications.

In ASN1, the expression CHOICE { a A, b B } yields a value whose
type is either A or B. Switch fields (like a or b) are mandatory only

since 1994. Before this date, they were confused with labels, which are integers
encoding the type of the fields of a compound value. They are clumsy and
cannot solve the ambiguity which appears if A and B happen to represent the
same type.

3.1.3 Chasing Paradoxes Away

Let us again consider the example of sequences. They can be characterized by
the following property: ''to be empty or an integer or a pair of integers or etc.".

We often need to form sets from elements satisfying a given property - such
a set is defined by comprehension. In this way we enter into the realm of the
first version of set theory, where every collection made of objects characterized
by a given property is a set. This so-called ''naive set theory" turned out to be
inconsistent! Technically, an inconsistent system is a system where one thing
and its contrary can be proved (formally: P /I. ..,P) or, equivalently, everything
can be proved.

Let us consider one of the simplest paradoxes, called Russell's paradox. In
general, a set is not a member of itself. For instance, we have ..,(~ E ~) because
~ is not a Boolean. Could we imagine a set which is a member of itself? Yes,
though we have to think a bit.4 Anyway, what matters is not whether such sets
exist or not, but that we consider the property x E x and its negation.

Let us define by comprehension R cIJf {x I ",(xEx)}. If RER, R must satisfy
the characteristic property of members of R, that is, ..,(R E R). If ..,(R E R), R
possesses the characteristic property, hence R E R. If we define P cIJf R E R,
we have P and ..,p at the same time, which is inconsistent.

4 Consider , for instance, the set of sets which can be defined with less than a
hundred English words.

A Presentation of Logical Tools 39

~ Formally we have just shown that P ~ -,p and -,p ~ P. By the
\Ie::! equivalence (3.6) on page 47, the first implication yields P~ (P~f),
which by (3.11) boils down to (P 1\ P) ~ f, then to P ~ f which we use twice.
First, it can be written -,P, and we deduce P from the second implication.
Second, combined with P we get f.

The same paradox arises if one accepts too broad a concept of ''property''
(instead of set), more specifically if one accepts that the scope of a property
may extend to all objects, including properties. Just replace every set by its
characteristic property in the above reasoning. We then consider properties A
which are false when applied to themselves and we define: R(A) ~ -,A(A) ,
which has VA R(A) ¢:} -,A(A) as a consequence. Taking A = R we deduce the
absurd R(R) ¢:} -,R(R).

We will see in the following that several solutions have been proposed in
order to avoid paradoxes. For the moment, let us just mention that the most
celebrated in mathematics is the axiomatic set theory of Zermelo-Fraenkel.
However, as it is an untyped theory, it is not well suited to computer science.
This explains why specification languages based on set theory, such as Z and
B, introduce an additional typing mechanism.

In summary, logic provides concepts and tools that allow us to understand
the benefits, limitations and design issues of specification and programming
languages. One has to pay attention to two pitfalls:

- a lack of expressiveness may lead to complications in using a language; for
instance, it is sometimes just impossible to state the properties we wish to
verify;

- conversely, some powerful constructs which seem correct at first sight may
turn out to be much too powerful; that is, in the case of a property lan
guage, the underlying logic may become inconsistent; or, in the case of a
programming language, they may lead to run-time errors which are difficult
to analyze.

3.2 Antecedents

From an historical perspective, mathematical logic emerged a century ago for
the purposes of precisely and rigorously constructing the foundations of math
ematics. It was known, since the times of Dedekind and Cantor, that all math
ematical objects (numbers, functions, vectors and so on) could be constructed
from natural integers using only set-theoretic operations. However, those opera
tions, when defined in an intuitive way, allowed one to derive paradoxes such as
Russell's paradox. The whole mathematical edifice was threatened, leading to
the ''foundation crisis", and then to an intensive activity aiming at establishing
common reasoning principles, such as deductive or inductive reasoning, on firm
ground. This was one of the main motivations for David Hilbert to put forward
his well-known programme, that would (in principle) reduce mathematics to
finite m8l'lipulation of symbols.

40 Understanding Formal Methods

A number of techniques invented in this framework happen to fit well with
the needs of computer science, because, on the one hand, symbol manipulation
plays a central role and, on the other hand, manipulated objects (both programs
and data) are of finite or countable size (see § 3.4.6). Among theories born at
that time, and which are of interest to us, we can cite predicate logic, type
theory, axiomatic set theory, the A-calculus, and intuitionistic logic. If we add
the works of the 1930s on proof theory (Gentzen and Herbrand) we can see
that the foundations of modern programming were largely available before the
birth of the first computer!

On the mathematical side, things took an unexpected path in 1931, when
Kurt Godel proved his famous incompleteness theorem for arithmetic, sounding
the death-knell of Hilbert's programme. To put it in a concrete way, it means
that the most secure and restrictive reasoning forms are not strong enough
to justify the principle of induction, not even to mention the stronger axioms
contained in Zermelo-Fraenkel set theory. However, the latter turned out to be
sufficiently powerful to serve as a basis for all known mathematics, and it is
unlikely that an inconsistency will be discovered in it. The Zermelo-Fraenkel
system remains the most commonly used nowadays.

3.3 The Different Branches of Logic

3.3.1 Model Theory

There are basically two complementary ways of writing a specification:

- describing the properties of a system;
- providing a model of the system by means of built-in constructs.

One sometimes uses the terminology property oriented and model oriented
formal specification. Properties are expressed by logical axioms whereas models
are derived with the help of set-theoretic operations. This duality is already
present in mathematical logic, where we have a syntax for expressing logical
properties and a semantics describing what we are talking about. This aspect
oflogic is called model theory. One distinguishes, on the one hand, the concept
of a logical statement built upon a formal language, for example:

Vx3y(y > x) , (3.1)

and on the other hand the concept of a model satisfying this statement; for in
stance, (3.1) admits, among other models, N endowed with the relation "greater
than", lR endowed with the relation "less-than" and N endowed with the relation

. ''is-a-multiple-of''.
A fundamental concept of model theory is the relation called logical conse

quence or semantic consequence. A sentence E is a semantic consequence of
the sentences A, B, C ... if every model having the properties A, B, C ... has also
the property E. This is a very concrete relation. Let us consider, for instance,

A Presentation of Logical Tools 41

the three properties "every terminal is a piece of equipment", "every piece of
equipment possesses a registration number" and ''this phone is a terminal". A
practical consequence, of interest to the department in charge of inventories,
is that in any situation where the above three properties hold true, we have,
systematically, ''this phone possesses a registration number". The concept of
model is represented here by what we just called a situation.

3.3.2 Proof Theory

However, the concept of semantic consequence suffers from a big handicap: it is
very difficult or even impossible to check it directly, because we must consider
every possible model and there is, in general, an infinite number of them. This
is why one may prefer to use another relation called provability. We say that
a sentence E is provable from the sentences A, B, C ... if we can construct a
formal proof of E using only hypotheses A, B, C ... in combination with axioms
and the rules of logic. E is refutable if its negation is provable.

Of course, the logician must ensure that those formal manipulations respect
the semantics, hence the concept of soundness. The converse property (every
semantic consequence is provable) is a form of completeness. Another kind
of completeness relates a collection of formulas r with one intended model
M, stating that the latter is completely characterized by r, i.e. every true
(respectively false) formula in M is provable (respectively refutable) from r.

If we consider the formal specification of a piece of software, we can easily
admit a specification to be incomplete at a high level stage. We only expect that
the operations of our software respect a number of constraints, expressed by
the means of logical formulas, but we may want to leave several options open.
For instance, if we specify the calculation of .J2 with a tolerance of 10-3 , the
programmer is free to provide an implementation computing any result between
.J2 - 10-3 and .J2 + 10-3 . In many protocol specifications, some messages
have to be answered in a very precise manner while others are considered less
important. Sometimes we cannot afford incompleteness: in security software,
all possible cases must be handled.

Apart from the links between semantic consequence and provability, there
are interesting issues concerning provability alone. For example: if we know
that E is provable, can we find a proof of E using only sub-formulas of E?
If the answer is yes, the proof search space can be significantly restricted.
This is especially important for automated proof tools. The study of axiom
sets and logical rules, seen as formal calculations (by this we mean purely
syntactic manipulations where we forget how formulas are interpreted) and
their relationship with the concept of semantic consequence are the realm of
proof theory.

In model theory, the semantics of logical sentences is provided by truth
values. This is sometimes called the Tarskian tradition, in honor of the logician
Tarski who deeply clarified its basis. Proof theory provides a different semantic
perspective, which is in some sense more accurate, where logical sentences are

42 Understanding Formal Methods

associated with a set of proofs that conclude to these sentences, instead of to
a simple value (true or false). This set of proofs can also be seen as a set of
algorithms. This tradition is sometimes called Heytingian [GLT89].

The aim of Heyting was to interpret intuitionistic logic invented by Brouwer
in a formal manner, during the foundation crisis. (At the same time normal
logic was termed classical logic.) Intuitionistic logic contests the validity of
a number of laws. The most well-known of these is the law of the excluded
middle, which is formally stated as p V -'p. Let us first point out that some
consequences of this law are somewhat unexpected, for instance: ''when you
cast a dice, if you get an even result then it is smaller than three, or conversely".
Formally, p~t V t~p is accepted by classical logic but rejected by intuitionistic
logic. We will see in § 3.7.3 another surprising example which is related to
recursive functions. More deeply, the excluded middle is rejected because of a
new interpretation of disjunction: in order to accept p V q, intuitionists want
to know which proposition is provable amongst p and q. More precisely, it is
enough for them to have the capability to compute the answer to that question.
Then they can accept some instances of p V "'p, but not anyone.

In order to illustrate the difference in points of view, let us take a situation x
in a game of chess and let r (x) denote the fact that the black king is in check and
in the situation x. An intuitionist can accept the sentence r(x)V-,r(x) because,
by a mechanical application of the rules of the game (the explicit definition of
rex)) we can know whether the black king is in check in the situation x. Such
reasoning remains valid in classical logic, of course. But in this framework we
can also conclude this immediately using the law of the excluded middle. We
can see that the explanation required by the intuitionist provides much more
information.

The existential quantifier is interesting as well. In order to prove 3x P(x),
the intuitionist wants to know, or to be able to compute a witness, x satisfy
ing P(x). A proof that the hypothesis ..,3x P{x) leads to a contradiction, for
instance, is not sufficient.

Simple common situations, where the law of the excluded middle is rejected
by intuitionists, can be expressed in the form (3n pen)) V ..,(3np{n», or, equiv
alently, (3np{n)) V ("In ..,p{n», where p is a property of natural numbers for
which it is unknown whether, or not, there exists an n such that pen). Even
if we have a mechanical procedure for deciding, for any given n, whether pen)
holds or not - formally: even if we know "In pen) V...,p(n) - the obvious algo
rithm for testing (3n p{ n» V ("In ..,p(n», which successively checks whether, or
not, p{O), pel), ... , would involve an infinite number of tests if p happens to be
false everywhere. As this algorithm may not terminate, it cannot be considered
as reliable for providing an answer to our question. Suitable properties p can
be constructed from unsolved mathematical conjectures. So-called Brouwerian
arguments use, typically, the existence of 100 consecutive '9's arbitrarily far
into the decimal expansion of the number 7r.

A Presentation of Logical Tools 43

Intuitionistic logic has important uses in computer science because of its
constructive features. In particular, there is a close relationship with type sys
tems which we consider in Chapter 11.

3.3.3 Axiomatic Set Theory and Type Theory

A real model, like the one considered above in the example of telephone equip
ment, is not quite conventional in model theory. One merely considers mathe
matical structures, that is, sets endowed with particular operations. The same
is true in computer science: in a model-oriented technique, models are written
using set-theoretical constructs, though they are much less sophisticated than
in model theory. For instance, one would consider an abstract set of equipment,
having the same relation with reality as data structures of the corresponding
software.

In order to be able to reason in a safe manner, building blocks for such sets
need to be well defined. However, we know that the problems raised are not
trivial. Several solutions have been proposed for eliminating the paradoxes of
''naIve'' set theory.

3.3.3.1 Typing Formulas. The most ambitious solution was proposed by
Bertrand Russell [vH67, p. 199]. His idea was to introduce types in order to
prohibit expressions like x E x, or any expression which would yield the lat
ter after a calculation. Actually type theory was not an attempt to save set
theory or to reconstruct it on safe ground, but rather a new approach to es
tablishing the foundations of mathematics. The first versions of type theory
turned out to be unsatisfactory because they imposed inconvenient restrictions
and some axioms were ad hoc. The idea has been significantly reshaped since
then, expecially following the work of Martin-Lof [ML84], and a fair amount of
mathematics can now be developed in a typed framework.

Ideas progressed in a similar way in computer science, and even more suc
cessfully: the first typing systems, for languages such as Pascal, proved to be
too restrictive. But, subsequent progress led to programming languages that
are both convenient in practice and strongly typed (notably, languages of the
ML family).

A number of important ideas came to light with typing, such as the idea of
stratification. Typing, at least in its most elementary form, stratifies sets (and
properties) in distinct layers: at layer 0, individuals; at layer 1, sets of individ
uals (and properties about individuals); at layer 2, sets of sets of individuals
(and properties of sets of individuals); and so on. Distinguishing first-order
logic, second-order logic, etc. (see below) comes directly from this idea. This
kind of typing is called predicative, which means that in order to define a
concept, only concepts defined in lower layers can be used.

We find something analogous in computer science, when a software system
is structured into layers. A function or a procedure which is defined using only
previously defined functions and procedures can also be qualified as predica
tive. Note that in computer science we generally use the terminology recursive

44 Understanding Formal Methods

instead of impredicative: saying that a recursive function is defined as "a func
tion of itself", a paradoxical way of stating things, is precisely recognizing that
this function has an impredicative definition. There is a clear motivation to use
only predicative definitions in logic: paradoxes like Russell's are then avoided.
Note that in our presentation in § 3.1.3, the set R is impredicatively defined.

3.3.3.2 Axiomatizing Set Theory. The other attempt to suppress para
doxes consisted of defining set theory using an axiomatic form, in the frame
work of predicate logic. The main inventors were Zermelo,5 Fraenkel and
Skolem. In Shoenfield's presentation in [Bar77, ch. B.1], the idea of stratifi
cation appears quite clearly. This can explain why the well-known paradoxes
could not be reproduced. One of the most important points concerns the def
inition of a set by comprehension, that is, by the means of a characteristic
property of its elements. An axiom, called the separation axiom, states that
we can form a set by comprehension only if we first have a sufficiently large
set where we take elements having the desired property. As a consequence, we
cannot directly define Au B as the set of elements x such that (x E A) V (x E B).

Thanks to this axiomatization, it proved possible to retrieve the ingredients
provided by the ''naive'' theory of Cantor, that were needed for developing the
desired mathematical concepts, and hence its quick operational success.

3.3.4 Computability Theory

A last part of logic is the study of computable functions, that is, functions
which can actually be defined by computations. This is an intuitive concept
which must be formalized in order to become workable. Several proposals were
made in the 1940s, among others: Turing machines, A-calculus (Church) and
recursive functions6 (G6del, Herbrand). Each of these approaches is a way of
formalizing the concept of an algorithm, and in essence, defines a primitive
programming language.

A simple reasoning on set sizes shows that many functions are not com
putable.7 Moreover, it turned out that all aforementioned formalisms represent
exactly the same class of functions: for instance we can encode any partial
recursive function with a Turing machine and vice versa. The concept of a
computational process seems then to be faithfully represented by any of these
formalisms. This postulation is known as the Church thesis. To date, it has
never been shown to be wrong.

5Zermelo's first paper on this topic was published the same year as 'the one by
Russell on type theory, cf. [vH67].

6Note that the meaning of "recursive" in logic is precise but, unfortunately, different
from its meaning in computer science. We saw that the latter corresponds rather to
"impredicative". The definition of "recursive" is given at the end of this chapter.

7If we restrict ourselves to functions over natural integers (without loss of general
ity, because all useful data structures can be encoded by integers), the set of functions
from N to {O, I} - and a fortiori to N - is not countable, whereas the set of func
tions defined by the means of a language having a finite or countable vocabulary is
countable.

A Presentation of Logical Tools 45

As a consequence, a programming language is said ''to have the power of
Turing machines" if it has the maximal expressive power we can expect - but
it does not tell us whether this language is easy or difficult to use. Informally,
a Turing machine is composed of an internal state, a tape with an infinite
number of squares, a read-write head and instructions used to move the head
and/or to write on the current square according to the current state and the
symbol present on the current square. All common programming languages,
including assembly languages, have the power of Turing machines. Among for
malisms which do not have the power of Turing machines, we can cite finite
state automata (which can parse or generate regular languages) and push-down
automata (which can parse or generate context-free languages). Roughly, in or
der to get the power of Turing machines, the key ingredients are:

- basic arithmetic operations (addition, compare to zero);
- a notion of loop where the exit condition is computed at each iteration (e.g.

the while of Pascal in comparison with the for);
- unbounded memory space; note that only a finite amount of memory is avail

able on real computers, but the difference is hardly perceptible in practice.

Once this class of functions came to light, a number of fundamental ques
tions could be asked and sometimes solved. The most well known of them is
the halting problem of Turing machines: can we mechanically and in a finite
number of steps, decide whether an arbitrary Turing machine running on arbi
trary input data will eventually reach the state "computation end"? To put it
in other words, can we know in advance - say, at compile time - whether or
not the execution of a program will end, or whether a partial recursive function
is defined on a given input data? It can be shown that this problem is actually
undecidable, which means that no Turing machine can compute the answer to
this question. As a practical consequence, a computer that could tell in advance
whether an arbitrary program "loops" or not is definitely magical.

Notes. When we try to prove the correctness of algorithms, proving their
termination is a crucial issue. The aforementioned result does not prevent us
from doing it, it just states limitations on the extent of the help that we can
expect from automation.

Note that this undecidability result came after the incompleteness theorem
of G6del; it is, moreover, proven along similar lines. Decidability and complete
ness are actually strongly related questions.

Computability (or recursion) theory comprises many other technical results
that are not covered in this book. Their impact on formal methods is, in any
case, quite weak nowadays.

3.4 Mathematical Reminders

We recall here useful basic concepts of set theory, logic and algebra.

46 Understanding Formal Methods

3.4.1 Set Notations

00 In the following, A, B, C ... denote "sets" whereas a, b, c ... denote
8A " " " tJ ~ elements; we use quotes because the concepts of elements and sets

are in fact relative, the members of a set can quite acceptably be sets themselves.

If'lf.:'j A singleton is a set having exactly one element, such as {a}. An un-
~ ordered pair is a set having exactly two elements, such as {a, b}. The
set with no elements is denoted by 0. Two sets are disjoint if their intersection is
empty.

If'lf.:'j We say that A is included in B, and written A c B, if every element of
~ A is also an element of B. In particular, we have A C A and 0 C A for
any set A. If A is included in B, we also say that A is a subset of B and that B
is a superset of A. Two sets A and B are equal if they contain exactly the same
elements. Hence A = B if and only if A c Band B C A. A is strictly included
in B if A c B and A -:j:. B. Then A is also called a proper subset of B. The set
of subsets of A is called the powerset of A, it is denoted by peA) or 2A.

If'lf.:'j The union, the intersection and the Cartesian product of two sets were
~ previously introduced on page 20. The Cartesian square of A is A x A.
The difference A - B is the set of elements which are members of A but not of
B. The symmetric difference A \ B is the set of elements which are members of
either A or B (but not A and B). Thus A \ B = (A U B) - (A n B).

If'lf.:'j The set An denotes the Cartesian product A x A . .. x A (with n occur-
~ rences of A), i.e. the set of n-tuples (ai,'" ,an) such that ai E A. Ai
is identified with A. We agree that AO is the singleton {0} - another singleton
would do the job just as well, this one is the most simple we can construct in a
universe where no element is known a priori.

If'lf.:'j Besides definitions by extension introduced on page 20, it is possible to
~ define a set by comprehension, i.e. by providing a characteristic property
of its elements. We use {x I P(x)} to denote the set of elements x such that P(x),
and {x EEl P(x)} to denote the set of elements x which are members of E and
such that P(x). The second form is better because the first can lead to paradoxes.

3.4.2 Logical Operators

If'lf.:'j Tables 3.1 and 3.2 summarize the intuitive meaning of logical operators
~ as well as their relation to set-theoretic operations. These intuitions will
be developed and explained in subsequent chapters.
The meaning of conjunction A. and of negation.., is just the one you would expect.
The same is true of disjunction V as well, but be aware that we have a non exclusive
or. Interpreting implication P~Q must be done with greater caution: nothing tells
us that there is an actual causality relation between P and Q. We can only say

A Presentation of Logical Tools 47

Table 3.1 Table 3.2

t true E xeE
f false
..., not
A and
V or
=> implies
{::} is equivalent to

A,B P,Q
AnB inter PAQ
AUB union PVQ
A-B minus PA...,Q

A\B ~mmetric ...,(P {::} Q) ifference
V for all f2J empty set f
3 exists

. that Q happens to be true when P is true. Thus Vx R(x) => S(x) means that
all x verifying R verify S as well. If no x verifies R, we agree that the formula
VxR(x)=>S(x) is true. We have, therefore, in this caseVxf=>S{x) and, as S(x)
may be true or false, we see that both r => t and r => f are true.

i""re.I The logical equivalence P <=> Q is an abbreviation for the conjunction
~ (P => Q) A (Q => P). It behaves like an equality; hence we can replace
P with Q when P {::} Q. Table 2 above can read: x e An B {::} x E A A x E B,
etc., x E 0 {::} f.

Numerous logical laws can be stated using equivalences. For instance,
consecutive conjunctions can be reordered with PAQ {::} QAP and (PAQ)AR {::}
P A (Q A R). The same is true for disjunction. We have also P A -,p {::} rand
Pv...,p {::} t.

The constants t and f can be eliminated using PA t {::} P, Pvf {::} P,
PAf {::} rand Pvt {::} t. Hence we see that xE 0 {::} r boils down to xE 0=>f.

Here are other very useful identities:

P V (Q A R) {::} (P V Q) A (P V R)

P A (Q V R) {::} (P A Q) V (P A R)
-,-,p {::} P

P => Q {::} -,p V Q
P => r {::} -,p

-,(P A Q) {::} -,Q V -,P
-,(P V Q) {::} -,Q A -,p
-Nx P(x) {::} 3x -,P(x)

...,3x P(x) {::} Vx -,P(x)

(P A Q) => R {::} P => (Q => R)
(P A U) => Q {::} P => (-,U V Q)

(3.2)

(3.3)

(3.4)
(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

For example, using (3.6), the last line of Table 2 is equivalent to -,x E 0: as
expected, no element can be a member of 0. The laws (3.7) to (3.1O), called De
Morgan's laws, allow us to distribute negation across other connectives. The

48 Understanding Formal Methods

equivalence (3.11) provides two ways for expressing "if I have P, if I have Q
then I have R". This can also be written P => Q => R. Using (3.5) we get the
equivalence (3.12) that allows us to move a formula U to the opposite side of
an implication at the price of a negation.

EXERCISE. Show the equivalence (P V Q) 1\ -,(P 1\ Q) {:::> -,(P {:::> Q).
Justify A \ B {:::> -,(P {:::> Q), where P 1;f x E A and Q 1;f X E B, from
A \ B = (A U B) - (A n B).

EXERCISE. Find the logical laws used in the reasoning on page 29 for proving
partial correctness of the first bounded linear search program.

3.4.3 Relations and Functions

I8"lf.:J A (binary) relation R from A to B is a subset of Ax B. Its elements,
~ which are ordered pairs (a, b) with a E A and bE B, are also denoted
by a t-+ b. Then we say that a is related to b or that a maps to b by R. We often
use the infix notation aR b instead of (a, b) E R .
A simple example of a relation is the identity relation on a set A, which is the set
of all ordered pairs a t-+ a such that a E A.
A relation R on A is reflexive if for all x in A, xRx.
It is symmetric if '<ix, YEA, xRy => yRx.
It is anti-symmetric if '<ix, yEA, (xRy 1\ yRx) => x=y.
It is transitive if '<ix, y, z E A, (xRy 1\ yRz) => xRz.
An equivalence relation is a reflexive, symmetric and transitive relation. An order
is a reflexive, anti-symmetric and transitive relation. An order is total when two
elements can always be compared: '<ix, yEA, xRy V yRx. In the opposite case
(or if we don't know) we have a partial order.
If R is an order on A and if B is a subset of A, an element m of A is a lower bound
(respectively an upper bound) of B if'<ibEB mRb (respectively '<ibEB bRm).

I8"lf.:J A relation R from A to B is defined at a with a E A, if there exists an
~ ordered pair a t-+ b in R, i.e. if a is mapped to an element of B by R.
The domain of R is the set of elements a such that R is defined at a. R is a total
relation if its domain is A. In the opposite case (or if we don't know) we say that
R is partial. The set of total functions from A to B is denoted by A -+ B.

~ A function I from A to B is a relation such that if x t-+ YI and x H Y2
~ are members of I, then YI = Y2 (intuitively, applying a function to a
given element always yields the same result). If x E A and if x is in the domain of
I, we denote Ix or I(x) the unique element y of B such that x t-+ y is a member
of I.

The composition of two functions I and 9 from B to C and from A
to B, respectively is the function from A to C denoted by 9 0 I such that
(g 0 1) x = g(fx). This definition generalizes if I and 9 are relations. In that case
x t-+ z is a member of 9 0 I if and only if there exists a y in B such that x t-+ y
is a member of I and y t-+ z is a member of g.

A Presentation of Logical Tools 49

IB"'Ie.I The first projection PI is the function from A x B to A defined by
~ PI (a, b) = a. Similarly the second projection P2 is defined by PI (a, b) =
b. More generally, the ith projection is the function from Al x ... Ai X ••• to Ai
defined by Pi{al, ... ai, ...) = ai.

IB"'Ie.I A function is injective if distinct elements are mapped to distinct ele-
~ ments. A function / from A to B is surjective if all elements of Bare
mapped by /. A bijection is a total, injective and surjective function.

3.4.4 Operations

IB"'Ie.I An operation * on the set A is a total function from A x A to A. It is
~ commutative iffor all X,y of A we have x*y = x*y. It is associative
iffor all x,y,z of Awe have (x*y)*z = x*(y*z).

IB"'Ie.I The element e is called an left identity element of * (respectively a
~ right identity element) iffor all x in A we have e * x = x (respectively
x * e = x). The element a is called a left absorbing element of * (respectively
a right absorbing element) if for all x in A we have a * x = a (respectively
x*a = a). The element x' is called a left inverse (respectively right inverse) of x
if x' *x = e (respectively x*x~ = e). An identity element (respectively an inverse,
an absorbing element) is a left and right identity (respectively inverse, absorbing)
element.

IB"'Ie.I Notation: when the underlying operation * is clear from the context, it
~ is often omitted: one writes xy instead of x*y. If * is associative, one
also writes xn for x * ... * x (with n occurrences of x). The inverse of an element
x (when it exists) is denoted by X-I.

IB"'Ie.I Example: given a set A, let 'RA denote the set of relations on A. Then 0

~ is an operation on 'RA, with the identity relation as an identity element.
The inverse of a relation R (written R-I) is then the set of ordered pairs y t-+ x.
such that x t-+ y is in R. A function is injective if and only if the inverse relation
is a function. A function is surjective if and only if the inverse relation is total. A
function is bijective if and only if the inverse relation is a total function.

An element x is said to be idempotent if x * x = x. The operation * is
idempotent if all elements of A are idempotent.

EXERCISE. The connectives 1\, V, => and <=> can be seen as operations on
B (see § 5.1.3). Which of them are commutative? Associative? Idempotent?
Which ones possess an identity element? An absorbing element? Invertible
elements? Do not neglect <=>.

50 Understanding Formal Methods

3.4.5 Morphisms

Let us consider the set of natural integers endowed with addition and the
identity element 0 on the one hand, the set of natural integers endowed with
multiplication and the identity element 1 on the other hand. The function <p
which maps n in N to 3n preserves the identity element and the operation in
the following sense: <p(0) = 1 and <p(m + n) = <p(m) x <pen). We say that <p is
a morphism from (N, +, 0) to (N, x, 1).

Let us consider a more general case. We take a set E endowed with a
function I, an operation *, and a relation R. This structure is denoted by a
4-tuple: (E, I, *, R). Let us take a similar structure (E', f', *', R'). A morphism
of (E, I, *, R) to (E', f', *', R') is a function <p from E to E' which preserves
the structure in the following sense. Let x, y, z be arbitrary elements of E and
let x', y', z' their respective targets by <p: thus we have x' = <p(x), y' = <p(y)
and z' = <pC z). The function <p is a morphism if:

- <p preserves the function: if y = I(x), then y' = f'(x');
- <p preserves the operation: if z = x * y then z' = x' *' y';
- <p preserves the relation: if xRy then x'R'y'.

An isomorphism is a bijective morphism. Two structures are isomorphic if
they are related by an isomorphism. Intuitively, we can to a fair extent agree
that they are identical because they have exactly the same properties.

3.4.6 Numbers

Common number sets (N, Z, Q and IR) are recalled on page 22. Natural numbers
can be generated from the empty set using the following encoding: 0 is encoded
by {} = 0, 1 is encoded by {OJ = {0}, 2 is encoded by {O, I} = {0, {0}}, ...
n is encoded by {O, ... n - I}.

It is not as obvious as it may seem to define what is a finite or an infinite
set. A first idea could be to count its elements and to say that the set E is
infinite if there is an injection (an injective function) from N to E. In fact, the
"axiom of infinity" stated in Chapter 7 says that there is a set containing N. We
can avoid the reference to N in the following way: a set E is said to be infinite
if and only if there is a bijection from E to a proper subset of E.

A set E is countable if there exists a sequence (un) of elements of E covering
E, or, equivalently, if there exists a surjective function from N to E (intuitively:
we can count the elements of E). For example, finite sets, N itself, Z, Q Pp(N)
(the set of finite subsets ofN) are countable. Among sets that are not countable
we have lR. and peN) (the set of all subsets of N). Here is an important example
for computer science: a set whose elements can always be denoted by a finite
sequence of characters taken in a finite alphabet is countable. In particular, the
set of programs defined in all programming languages is countable, whereas the
set of functions on natural numbers is not countable.

A collection where the element can be repeated is called a family or a
multiset. Formally, if E is a set, a family of elements of E is a total function
from E to N.

A Presentation of Logical Tools 51

3.4.7 Sequences

~ A sequence Uo, Ul, .•. Un. ••• of elements Ui of E is a total function
~ from N to E: Un is just another notation for u(n). A sequence can be
defined directly (for example Vn = n 2) or by induction. by providing the value of
Uo and a function yielding the value of Un+l from Un (for example Uo = 0 and
Un+l = Un + 2n + 1). The typical way of proving properties of such sequences is
through proof by induction. On the last example it is easy to prove: 'tin Un = Vn .

_~ We sometimes need to talk about sequences that are finite or infinite.
~ We mean, total functions from A to E, where A is either a subset of
N of the form {n E N I n < a} for a given natural number a, or N itself. We will
then use the explicit terminology ''finite or infinite sequence", ''finite sequence"
when A has the first form and ''infinite sequence" when A has the second form.
In other contexts "sequence" will always denote an infinite sequence.

3.5 Well-founded Relations and Ordinals

3.5.1 Loop Variant and Well-founded Relation

We have seen in § 2.4.1.2 that the termination of a program can be studied
by considering a quantity v that decreases at each step while staying in N. Let
us emphasize the last point. It is not enough to ensure that the variant v is a
decreasing number:

- an integer can decrease ad vitam reternam by taking arbitrarily large negative
values;

- a positive rational or real number can decrease while approaching a lower
limit without reaching it.

The point is that v must take a finite number of values. Reasoning with a "de
creasing number" is of course an incorrect wording, which has to be formalized
with a finite or infinite sequence Vo, Vl, .•. Vn , ... as we will see below.

In order to model the problem of termination, let us first consider the set
S of the values that can be taken by the state of a program.s The change in
this state is observed at certain points between which we admit that nothing
important can happen.9 Each execution step corresponds to a state transition
which is modeled as an ordered pair (Si' S I) where Si and S I, the value of
the state respectively at the beginning and at the end of the transition, are

8For the sake of completeness we should include in the state a component for the
program counter and another for the execution stack. We proceed in this manner in
order to define an operational semantics.

9We can choose fine grain observation, corresponding to elementary instructions
or large grain observation, corresponding to blocks of such instructions: the point is
that executing those "grains" always terminates.

52 Understanding Formal Methods

members of S. We then introduce the set of transitions 7, which is a relation
on S.

When we reason with a variant v, the latter is a function of the state s. Each
transition (Si' sf) at the level of states corresponds to a transition (V(Si), v(s f))
at the level of the variant. The general situation is then captured by a set S
endowed with a relation T.

The changes of the state during an execution beginning at initial state
So are then modeled by a finite or infinite sequence So, SI, ... Sn, ... such that
two consecutive elements Sk and SkH are always related by 7. Ensuring the
termination of the program boils down to prohibiting the sequence from being
infinite. For example, in the case of natural integers, there is no infinite sequence
Vo, VI, ... Vn , ... such that Vo > VI > ... > Vn > ... , which allowed us to justify
the technique of the variant on page 24. When no such sequence exists the
relation is said to be Noetherian. We can similarly consider the inverse relation
(recall that, for instance, < and> are inverse relations). We then have a well
founded relation. Let us develop this concept.

Let E be a set and R a relation on E. Let x and y be two elements of E, we
say that x is a predecessor of y for R if x R y. When there is no ambiguity we
simply say that x is a predecessor of y. A chain is a finite or infinite sequence
eo, el, ... en , ... of elements of E such that enH is always a predecessor of
en: Vn E N enHRen. R is a well-founded relation if R contains no infinite
chains. 10

The concept of predecessor that we use here generalizes from the
L~ usual one on integers: just take for R the relation noted Rl below.
For an arbitrary relation R, the predecessor of an element, when it exists, need
not be unique.

In summary, expressing that a program terminates boils down to saying
that the underlying transition relation 7 is Noetherian, or that the inverse
relation 7-1 is well founded. In practice, instead of reasoning directly on the
set of states S endowed with 7-1 , it is worth considering a simplified view E
of S endowed with a corresponding relation R, which must be well founded as
well. The loop variant presented in the above example amounts to taking N for
E and < for R.

3.5.2 Exalllples

The relation < is well founded on N, but is not well founded on Il, nor on any
interval of IR or of Q. Any relation included in a well-founded relation is also
well founded. Hence all sets of ordered pairs of natural integers (m, n) verifying
m < n are well founded. Here are three examples:

Rl ~f {(n,n+l) I n E N}

lONothing prevents the repetition of an element in a sequence. If x is such that
xRx, the sequence x, x, ... x, ... is then an infinite chain. If x and y satisfy xRy and
yRx, the sequence x, y, ... x, y, ... is an infinite sequence as well.

A Presentation of Logical Tools 53

R2 ~ {(n,2n+e) I nEN /\ n>O /\ (e=OVe=l)}

R3 ~ {(n,n+2) I n E N}

The relation > is not well founded on N, but it becomes so on a finite subset
of N. As a consequence, relations having the form R4(q) are well-founded:

R4(q) ~ {(n+1,n) In E N /\ n<q}

Here is a very important example. Let R be a well-founded relation on E and
let S be a well-founded relation on F, the relation defined over E x F by

R5 ~f{«x,u),(x',v» Ix,x'EE /\ u,vEF /\ xRx'} u
{((x,u), (x,u'» I x E E /\ u,u' E F /\ uSu'}

is well founded. This construction corresponds to the lexicographic ordering
used by all of us when consulting a dictionary.u This example is more subtle
than the previous ones. If we consider the relation < on N (or its subsets R I ,

R2 and R3), we have already observed that all decreasing sequences are finite.
But additionally, we know an upper bound on the length of such sequences
as soon as we know the first element (the latter is such an upper bound). In
contrast, if we take the structure (N, <) or even (N, R I) for (F, S) in R5 , it
is no longer possible to give an upper bound for decreasing sequences starting
from (xo, no) if there is no Xl in E such that Xl R Xo. In that case there exist an
infinite number of finite decreasing sequences starting from (xo, no), and their
length is arbitrarily large.

The lexicographic ordering on the Cartesian product of two or of
any finite number of well-founded sets is well founded. Note however,

that the lexicographic order on words, that is, arbitrarily large finite sequences
of elements of a well-founded set E, is not well founded. For instance, with
E = {O, I} and 0 < 1, we have the infinite decreasing chain 1, 01, 001, 0001,
etc.

Generalizing the technique of loop variants with well-founded relations can
be useful in two ways:

1. We can acquire a knowledge of the number of iterations performed
when executing a loop.

2. We can cope with more complex situations involving several loops,
whether embedded or not.

3.5.2.1 Counting Iterations in a Loop. First recall that the number of
iterations ni depends on the initial value Vo of the variant. In general, the
latter depends in turn on a preliminary computation or on an external event
- reading a number for example - and is then essentially unpredictable. In
contrast we can ask how ni depends on Vo.

llOne should pay attention to the following technical point: a well-founded relation
like R or S is not an order because it cannot be reflexive. We come back to the links
between these concepts in § 3.5.4.1.

54 Understanding Formal Methods

Let us take N as the domain of the variant. If the well-founded relation at
hand is <, we only know that ni :::; Vo. If the relation is RI , we have ni = Vo.
If the relation is R2, we know that ni is close to the base 2 logarithm of Vo.

3.5.2.2 Using more Complex Well-Founded Relations. In order to
study the termination of programs composed of several loops using only one
well-founded relation, the domain E we have to consider for the latter has to
be largerl2 than N. Here we content ourselves with the simple case of a pro
gram made of a first loop, followed by the computation or the reading of an
arbitrarily large positive integer L and finally a second loop.

Let us first consider each loop separately. Assume that the variant of the
first is v in N endowed with RI whereas the variant of the second is w also in
N endowed with RI • For all initial values Vo and wo, it is intuitively clear that
the program terminates since each loop terminates. If we knew in advance the
value of wo, we could take u = v + w as the global variant, in the same domain
N endowed with R I • To be more precise, u would be defined as v + Wo in the
first loop, as Wo between the two loops and as w in the second loop. But we
cannot proceed in this way if the value L taken by Wo is unknown in advance
and arbitrarily large.

A satisfactory solution is to take for E the sum of two copies of Nor,
equivalently, the Cartesian productl3 {O, I} x N. The variant u is (1, v) in the
first loop, (1,0) between the two loops (let us call this element w) and (0, w) in
the second loop. Our well-founded relation RI,1 is defined by (i, n)RI,1 (i, n+ 1)
(intuitively it behaves like RI on each copy of N) and (0, n)RI,1 w. RI,1 is
contained in the relation R5 above, where we take E = {O, I}, R = {(O, I)},
F = N and S = RI .

Let us point out that, in contrast with most relations presented so far,
the element (w) admits an infinite number of predecessors in RI,I. However, a
decreasing sequence starting from any element of {O, I} x N is necessarily finite.

A relation like R4(q) can be convenient in practice. For instance, R4(N) may
be used for a direct termination proof of the bounded linear search program
instead of reasoning on the difference N - x, as we did on page 25.

We also remark on R2, R3 and R4 that it is not required that only one
value (0) has no predecessor, even if we consider only natural (Le. non-negative)
numbers:14 in R2, we have ° and 1; in R3 we have ° and all odd natural numbers;
in ~(q) we have all numbers greater or equal to q. This is reflected in the loop
invariant and in the exit test. For example, with~, we have to ensure that, at
the beginning of the loop, the variant v is strictly less than q (condition (Vd
on page 24, reshaped with ~, tells us that during an iteration v is necessarily
incremented by 1); in this situation, we are led to put v ~ q in the invariant,

l2In a sense coming from the theory of ordinal numbers, see below.
l3Technically we can also represent N + N by N (consider even and odd numbers).

But it would only make the definition of the well-founded relation more complicated
with no compensation in the reasoning. The concept of ordinal presented below clar-
ifies the situation. .

l4We choose to keep 0 ~ v in the invariant.

A Presentation of Logical Tools 55

and then to take v = q as the exit condition. With Ra the exit test would
correspond to v = 0 and the invariant would entail that v is even.

3.5.3 Well-founded Induction

Given a well-founded relation R on a set E, we can prove that a property P is
true on all elements of E by showing the following proposition (H) which tells
us, in familiar terminology, that P propagates:

given any element x of E,
if P is true on all predecessors of x,
then P is true on x.

(H)

In particular, we have to show that P is true on all x without a predecessor,
which corresponds to the base cases.

This kind of reasoning is called well-founded induction. Usual induction
on N is a (simple) special case of well-founded induction, where the relation
considered is R I . Assume that, despite the fact that (H) has been shown, we
have an element eo where P is not true; eo has at least one predecessor, since
P is true for all elements without a predecessor; by (H) we also know that P is
false on at least one of the predecessors of eo; let el be one of them. Repeating
the process would then yield an infinite decreasing chain eo, el, ... en, ... , which
is impossible because R is well-founded.

The previous reasoning implicitly uses a principle called the axiom
of choice, which will be introduced in Chapter 7. Indeed, in order

to construct the chain eo, elo ... en, ... we simultaneously construct the infinite
family Po, PI, ... Pn , ... where Pi is the non-empty set of predecessors of ei. At
each step, we have to choose ei+1 in Pi.

The rule of the loop is an application of well-founded induction. Let us
illustrate what happens with the relation Rs. This corresponds to a loop B
where the initial value of v is even:

while v#O do ... v:=v - 2 ... done

We then have to show the property P(n) defined by {v = n A I} B {I}, where I
is the loop invariant. We distinguish the ''true'' base case n = 0 (corresponding
to a successful exit test) from the ''false'' ones (odd values of v). In the latter
cases P(n) is trivially true by reduction to the absurd, provided we put "v is
even" in the invariant.

3.5.4 Well Orders and Ordinals

We can present well-founded induction from special order relations. Here are
some preliminary definitions. The main point to remember is that two isomor
phic ordered sets are essentially the same up to the name of their elements. A
set E endowed with an order R will be denoted by a 2-uple (E, R).

56 Understanding Formal Methods

Let (E, R) and (F, S) be two ordered sets. A function f from E to F is
monotone if the order is preserved by f:

'r/x,yEE xRy ~ f(x)S f(y) .

An isomorphism is a monotonic bijection. Two ordered sets (E, R) and (F, S)
are isomorphic if there is an isomorphism from (E, R) to (F, S).

3.5.4.1 Well Orders. Let E be a set endowed with an order R. Given a
subset A of E, a minimum of A, if it exists, is an element a of A such that
there is no predecessor different from a in A: if xRa A x E A then x = a (R is
reflexive!). IT R is total, a minimum of A must be unique.

We say that R is a well order if R is total and if every subset of E possesses
a minimum. Note that E possesses a unique minimum m in that case.

Let us note R,#, the relation defined by xR,# y if and only if xRy and x "# y.
IT R is a well order, ~ is a well-founded relation. Conversely it is possible to
construct a well order from a well-founded relation. But beware: a given well
order can come from several well-founded relations.

The concept of a well-founded induction is defined as in § 3.5.3 if we replace
R with ~. The base case concerns only m. This principle can be justified as
follows. Suppose that the set A of elements e which do not verify P is not empty,
A possesses a minimum a which must be different from m; the predecessors of
a are not members of A, hence they verify P, but with (H) we then have that
P is also true of a, so a cannot be a member of A, a contradiction.

Some well orders are especially important: ordinals.

3.5.4.2 Ordinals. Let E be a set endowed with the well order R. The section
Xa determined by an element a of E is defined as the set of elements x which
are smaller than a:

Xa ~f {xEElx~a}

E endowed with the well order R is an ordinal if for all a of E we have Xa = a.
Thus, to verify that 3 is an ordinal, we just have to remember that in set theory
3 ~f {a, 1, 2}, which actually yields 2 ~f {a, I} = X 2 • The first ordinals are
exactly 0, {0}, {0, {0}}, etc., where the order is inclusion or, equivalently,
membership (the two relations happen to coincide on ordinals).

Given an arbitrary ordinal x we can construct its successor x U {x}. We
then start from 0 and we construct all natural numbers step by step. The next
step consists of taking N itself (it can be shown that N satisfies the required
properties). N is traditionally noted w in this context.

The process carries on in the same way: w, wU{w} (noted w+l), etc. Apart
from ° only two cases can occur for an ordinal: either it contains a greatest
element, it has then the shape x U {x} and it is called a successor ordinal; or,
it does not contain a greatest element and it is called a limit ordinal.

The first limit ordinal is w. The next one, noted 2w, is the limit of {a, 1, ... w,
w + 1, ... }. Carrying on this process we define 3w, ... nw, ... w2 , ••• wW , ••• ww'" ,

A Presentation of Logical Tools 57

... until a new limit ordinal EO which verifies w'o = EO. There are still many
other ordinals. Ordinals up to EO are used in the automated proof assistant of
Boyer-Moore and in PVS in order to formalize termination arguments [Rus93].

An important theorem about ordinals states that a well order is always
isomorphic to an ordinal. Ordinals can then be used for measuring the com
plexity of termination proofs of algorithms. Let us also remember that the most
general form of induction is well-founded induction, because the concept of a
well-founded relation is finer than the concept of well order.

3.5.4.3 Ordinals and Cardinals. Cardinals are another concept of set the
ory that can be used for measuring the size of a set. We will not go into detail
here. We say that two sets have the same cardinality if there exists a bijection
between them. Finite sets have a cardinal 0, 1, 2, ... n with n E N.

Next we have N itself, whose cardinality is denoted No (pronounced aleph
zero). We already know from § 3.4.6 that many infinite sets are countable: in
other words, their cardinality is No.

Another important point is the following. If the cardinal of a set E is 0:,

then the cardinal of peE) is strictly greater than 0:.

All ordinals presented so far are countable. A better wording is: the un
derlying sets of those ordinals are countable. We must remember that what
matters in an ordinal is the corresponding order. Indeed, there are many (non
isomorphic) ways to order the elements of N, and each of them corresponds to
a different ordinal.15 However, the order is completely irrelevant for cardinals.

In contrast to ordinals, cardinals don't seem to have applications in formal
methods. Note, however, that they play an important role in set theory.

One of the first questions raised at the very beginning of development
in set theory was the following: let c be the cardinal of lR; c is also the

cardinal of peN), thus we have c > No; but is there an intermediate cardinal?
Cantor thought that the answer should be no - this is called the continuum
hypothesis - but the question turned out to be arduous. G6del showed in the
1930s that this hypothesis is consistent with (i.e. cannot be disproved from)
the axioms of set theory, while conversely Cohen showed in 1963 that it cannot
be proven in set theory. This reveals the somewhat arbitrary character of set
theory. We come back to this point at the end of Chapter 7.

3.6 Fixed Points

Let £ be a set and I be a function from £ to £. A fixed point of I is an element
x of £ such that x = I(x). For example 1 and 5 are fixed points of the function

15For example, if the order we consider is <, the corresponding ordinal is w. How
ever, let us consider the order R, defined by xRy if x < y and x =f:. 0, and by x < 0
for all x: the corresponding ordinal is w + 1. Intuitively, in the latter case, natural
integers are put in the following order: 1, 2, ... o. The two relations < and R are not
isomorphic since only the second one possesses a greatest element.

58 Understanding Formal Methods

on R that maps x to (x2 + 5)/6. The theorem of Knaster-Tarski states that
under quite general conditions, f is guaranteed to have a least or a greatest
fixed point. This allows us to define x by a fixed-point equation.

We suppose that (1) £ is ordered by a relation ~j (2) f is monotone,
that is, x ~ y~ f(x) ~ f(y)j (3) all non-empty subsets A of £ have a

greatest lower bound glb(A) (it is not necessary that glb(A) is a member of A)j
and (4) post, = {x E £ I f(x) ~ x} is non-empty (elements of post, are called
post-fixed points of I). In our example we have 4 E post,. Then f possesses a
least fixed point which is p., = glb(post,).

Indeed - let us remove the index f - as p. is a lower bound of
post-fixed points, we have p. ~ x for all x such that f(x) ~ x, then, as f is
monotone: f(p.) ~ f(x) ~ Xj then f(p.) is also a lower bound of post. As p. is
greater than all lower bounds, we get f(p.) ~ p.. By monotony f(f(p.» ~ f(p.),
hence f(p.) E post, then p. ~ f(p.) since I' is a lower bound of post. By anti
symmetry of ~ we have that I' = f (1').

Symmetrically, if all non-empty subsets A of £ have a least upper
bound lub(A) and if the set pre, = {x E £ I x ~ f(x)} of pre-fixed points of f
is non-empty, then f possesses a greatest fixed point v, = lub(pre,).

The least fixed point can also be reached from below when £ possesses
a least element .1 (take £ = [0, +oo[in the previous example): we construct
the monotonic sequence (u)a with '1£0 = .1, Ua+1 = f(ua) and Ulim(a,,) =
lub{u(an)}. The process ends at the first limit ordinal w if f is continuous, i.e.
f(lub{xi}) = lub{J(xi)} for all monotonic sequences (Xi)iEN. For the greatest
fixed point, one would proceed symmetrically from a greatest element Tin E.

The relation ~ is not required to be total here. We can then apply the
previous results with the inclusion relation on a set of sets, for example £ =
P(E): 0 plays the role of .1, glb(A) is the intersection of elements of A, lub(A)
is the union of elements of A and E plays the role of T.

3.7 More About Computability

Here we give more precise definitions for the concepts of computability men
tioned above [Gir87b, Bar90]. Here, unless we explicitly write partial recursive
junction, a recursive junction will mean a total recursive junction, according to
the original definition of Godel and Herbrand. Note that, following the work of
Kleene, many textbooks use the opposite convention.

Let us consider a problem P. If we have a search process for solutions
of P at our disposal which (i) succeeds if a solution exists, and (ii)

answers ''no'' in the converse case, this process is called a decision procedure.
If condition (i) only is satisfied, i.e. if the process may go on looking indefinitely
for a solution where no solution exists, it is called a semi-decision procedure.
To summarize what follows, a decision algorithm is a recursive function, while
a semi-decision procedure is a partial recursive function.

A Presentation of Logical Tools 59

~ For the remainder of this chapter, the functions considered are arith-
'8 metic functions. By that we mean functions that take natural integers
as input and that return a natural integer. For the sake of uniformity, constants
are considered to be functions of arity O. In order to lighten the notation, ap
plying a function f to n arguments Xl ... xn is denoted by f (l), where l is seen
as the n-tuple (Xl, ... , Xn) - the value of n is the arity of f.

In order to formalize the concept of an algorithm, we need a formal
language capable of expressing algorithms, and we have to stipulate

the computations associated with legal expressions. This can be done with very
low level constructs, but it is more convenient to use functions directly. It is easy
to understand, for example, how to compute the composition of two functions
provided one knows how to compute each of them separately. We proceed by
introducing primitive recursive functions, then recursive functions and finally
partial recursive functions, which correspond to progressively larger classes of
algorithms.

_~ It is important to keep in mind the distinction between the function
... ~ which is computed, that is, a set of ordered pairs (the extension of

the function), and the algorithm which performs the computation: two different
algorithms may independently and correctly compute the same function f;
for example one of them could be primitive recursive while the other is not.
According to the following definition, f is then considered as primitive recursive.
Indeed, the word function below takes its extensional meaning - though the
underlying computation remains crucial in the rules (~) given below.

It may transpire that the most efficient algorithm that computes a
given primitive recursive function is not primitive recursive. For instance, the
obvious primitive recursive way for computing the minimum of two integers
m and n is not symmetrical: it takes e.g. m steps, while a better algorithm
would take min(m,n) steps. Indeed, a result due to Loic Colson shows that
the latter algorithm cannot be encoded using primitive recursion. Recursion
theory is then an important theoretical tool, but the light shed on the concept
of expressivity is limited.

3.7.1 Primitive Recursion

The initial functions are:

- the constant 0;
- the successor function S(n) = n + 1;
- the projections prf(xl, ... ,xn) = Xi, 1 ~ i ~ n.

We then consider the formation rules:

(Rl) composition rule: take k + 1 functions hl' ... hk and 9 already constructed
and construct the function f defined by f(X) = g(hl (l), ... , hk(l»;

60 Understanding Formal Methods

(R2) primitive recursion rule: take two functions 9 and h already constructed
and construct the function I defined by

{ I(x, 0) = g(x)
I(x,n+ 1) = h(x, n,/(x, n)) .

A primitive recursive presentation or, a primitive recursive algorithm, is an
expression constructed only from initial functions and by application of rules
(Rt) and (R2). A function I is primitive recursive if there exists a primitive
recursive presentation which computes f.

The occurrence of I on the right of "=" in (R2) is not that prob
lematic. Indeed it is clear that l(x,O) is defined for all X, then l(x,I), and
so on. The function I can be regarded as a sequence defined by induction but
parameterized by x: I(x)o, . .. I(x)n, l(x)n+1, ...

Examples. Addition is primitive recursive, as it can be defined by add(m, 0) =
m and add(m,n + 1) = S(add(m,n)). Multiplication is defined in a similar
way. We can then define the factorial function (fact(O) = 1 and fact(n + 1) =
mult(n + 1, fact(n))) subtraction (see below), the exponential function, and
many other functions over integers. The linear search of an integer n such that
pen) = 0, is not primitive recursive even if Pis:

R = R'(O)

R'(n) = if pen) = 0 then n else R'(n + 1)

There is no way to define this function using only the previous rules. By con
trast, there is a primitive recursive presentation of bounded linear search be
tween p and q similar to the program given in § 2.4.4.

R=R'(q-p)

{ R'(O)=q
R'(n + 1) = h(n,R'(n))
hen, r2) = tzer(q - (n + 1), r2, pen + 1))

{ tzer(rl,r2,0) = rl
tzer(rl,r2,n + 1) = r2 .

Note that testing the equality to zero, realized by tzer, makes use of rule (R2),

with 9 = prr and h = pri·
In a programming language like Pascal, we get primitive recursive

functions if we restrict iterative control structures to for loops (general while
loops have to be prohibited16): in for loops, the number of iterations is com
puted (at run-time, however) belore the loop. One of the main properties of
primitive recursive functions is that they are total, in other words the corre
sponding programs terminate in all cases.

16goto statements and "recursive" (!) procedures must also be prohibited, as it is
clear that such mechanisms are at least as powerful as the IIhile loop.

A Presentation of Logical Tools 61

_~ A number of functions over natural integers, like subtraction, are
. ~ usually not defined everywhere. As a consequence of the last remark,
their primitive recursive presentation extends them over the whole set N. The
default value is often o. Thus the usual primitive recursive definition of the
predecessor function is P(O) = 0 and P(n + 1) = n - using (R2) with 9 = 0
and h(n, a) = n, that is, h = pr~. We get subtraction by iteration of P.

There are total functions that cannot be defined by a primitive re
cursive presentation, but they are not that easy to find. One of the

simplest is the Ackermann function:

{
A(O,n) = n+ 1
A(m + 1,0) = A(m, 1)
A(m + 1,n + 1) = A(m,A(m + 1,n» .

It can be shown that this function grows faster than all primitive recursive
functions. Its termination can be proven by well-founded induction using a
lexicographic ordering based on relation Rs of § 3.5.2, with E = F = N and
R=S=R1 ·

3.7.2 Recursion, Decidability

The previous examples clearly show that primitive recursive func
tions do not exhaust intuitively computable functions. In order to

enrich our set of functions, let us introduce the following rule:

(R3) minimalization rule: take a function 9 already constructed such that

Vx3mg(x,m) = 0 (3.13)

and construct the function f that maps x to the smaller m such that
g(x,m) = 0, denoted by f(x) = JLm[g(x,m) = 0).

Intuitively, a way to compute this function is by a linear search program: suc
cessively try m = 0, m = 1, etc. until an m satisfying g(x, m) = 0 is found.

A recursive presentation, also called an algorithm, is an expression
constructed only from initial functions and by application of rules (Rd, (R2)

and (R3). A function f is recursive if there exists a recursive presentation
which computes f.

For example, the linear search program R given on page 60 is encoded
by a trivial application of (R3): by hypothesis there exists an n such that P (n) =
0, where P is primitive recursive; then we take simply R = JLm[P(m) = 0).

Again, recursive functions are total functions: requiring condition
(3.13) amounts to ensuring a priori that the previous linear search program
terminates. In other words, intuitively, an algorithm is a program which pro
vides an answer for all input data. We then get a precise formal definition for
the intuitive concept of an algorithm. This formal definition may be considered
as arbitrary. However, as in physics, experience decides the matter.

62 Understanding Formal Methods

Here we encode a predicate P by a function f p from tuples of integers
to {O, I}. A predicate is recursive if the corresponding function f p is

recursive. We can also define a recursive set E as a set (of integers, or of tuples
of integers) having a recursive characteristic function. It means that we have at
our disposal an algorithm for deciding, given any tuple X, whether or not P(x},
or equivalently, whether or not x is a member of E. We say that a problem is
decidable if the corresponding predicate is recursive. In the opposite case we
say that the problem is undecidable.

3.7.3 Partial Recursion, Semi-Decidability

In practice and in logic as well, we need to consider programs which
do not always terminate. Thus we are led to weaken the rule (R3)

by relaxing condition (3.13).

(R3') partial minimalization rule: take a function 9 already constructed and
construct the function f such that, if there exists an m such that g(x, m} =
0, returns f(X) = J,tm[g(x,m} = 0], or else is not defined.

The new rule (R3') allows one to construct partial functions. Therefore, we now
agree that our rules construct partial functions from partial functions.

A partial recursive presentation is an expression constructed only
from initial functions and by application of rules (Rl), (R2) and (R3'). A func
tion f is partial recursive if there ~xists a partial recursive presentation which
computes f. Here is another definition: a partial recursive function is a function
which can be encoded using a Turing machineP The Church thesis for par
tially computable functions states that the class of partial recursive functions
formalizes the intuitive concept of program.

Roughly, we can say that a recursive function is a partial recursive
function whose termination is proven in all cases. Let us consider the linear
search program given on page 60, where we add an integer parameter x in the
search criterion P:

R(x) = R'(x, 0)
R'(x,n) = if P(x,n) = 0 then n else R'(x,n + 1)

In general, the search succeeds only for special values of x. For example, if we
want to search the smaller n such that 2n = x, we can choose for P(x, n) the
expression (x - 2n) + (2n - x) (pay attention to the definition of subtraction!);
then it is clear that the computation terminates for even values of x and for no
others.

Here is another example of a partial recursive function, sometimes
called the Syracuse function. It can only return 1, and in all known experiments

17We don't present a formal definition of Turing machines here: it is a bit long but
raises no difficulty.

A Presentation of Logical Tools 63

it does return. But termination for all inputs remains an open problem so far,
thus we don't know if this function is recursive.

{
U(O) = U(l) = 1
U(n) = U(~) if n is even and n > 1
U(n) = U(3n + 1) if n is odd and n > 1

What is the status of the function tu that returns 1 if U is total
~ and otherwise returns 01 This presentation of tu is not recursive.
However, the function ki' which returns a fixed i, is recursive; then tu is recur
sive as well, since tu is either ko, or klo though we don't know which one. We
conclude that a computable function, as formally defined in recursion theory
- a classical theory admitting the excluded middle principle, is not quite the
same as a function we know how to compute.

The last important basic concept we present here is the concept of a
recursively enumerable predicate or set. As suggested by the name, it

is a set which can be completely covered by application of a calculable function
on 0, 1,2, etc. Equivalently, we can say that membership of this set is a semi
decidable problem.

We say that a set is recursively enumerable if it is the domain of a
partial recursive function. We say that a predicate P is recursively enumer
able:

- if it is the characteristic predicate of a recursively enumerable set;
- or, equivalently, if the function 9 defined by g(x) = 0 for all x such

that P(x), and undefined elsewhere, is partial recursive;
- or, equivalently, if there exists a recursive function I such that, for

all y verifying P(y), there exists x such that y = I(x).

Let x be an integer and let P and Q be partial recursive predicates. The
functions computing P(x)I\Q(x), P(x)VQ(x) and ...,P(x) are partial recursive.
H P and Q are recursive, these functions are recursive as well, which allows
us to determine if P(x), Q(x), P(x) 1\ Q(x), P(x) V Q(x) and ...,P(x) are true.
H P and Q are only recursively enumerable, we are only able to determine if
P(x), Q(x), P(x) 1\ Q(x) and P(x) V Q(x) are true. We have also the following
theorem:

Theorem 3.1
A predicate (respectively, a set) is recursive if and only if itself and its negation
(respectively, its complement) are recursively enumerable.

3.7.4 A Few Words on Logical Complexity

H the predicate P is recursively enumerable, then so are the pred
icates P(x) 1\ Q(x), P(x) V Q(x) Vx < n P(x), 3x < n P(x) and

3x P(x). However, ...,P(x) and Vx P(x) are not always recursively enumerable.

64 Understanding Formal Methods

The intuitive idea is that it is possible to encode the search for an x satis
fying P(x) by pseudo-simultaneously checking P(O), P(l), etc., but checking
Vx P(x) would in general require an infinite number of verifications. As a con
sequence, a formula including unbounded quantifiers and (partial) recursive
predicates specifies a relation between its free variables, but we may not have
any algorithm for computing it. A relation thus specified is called arithmetical.

Kleene established that arithmetical relations can be classified ac
cording to the arithmetical hierarchy, which measures their logical complex
ity. Formulas are put under the form VXn3Xn-l"'~ or 3xn VXn-l ... ~, where
the predicate ~ is primitive recursive. Each class is characterized by the first
quantifier and the number of quantifier alternations. Formulas of the first
kind are designated by n~, formulas of the second kind by !:~. For exam
ple 3n n 2 = 25 is !:?, while Vc3r r2 5: c A c < (r+I)2 is ng. The reader can
consult [vL90a, Cou91, Sho93] for a rigorous definition.

There is a tight link between complexity of program termination
proofs, ordinals and logical complexity [Gir87b, CW97, Wai91, Wai93].

3.8 Notes and Suggestions for Further Reading

The reader interested in the sources of mathematical logic can find the texts
of founding fathers edited and commented on by J. van Heijenoort in [vH67].
The Handbook 0/ Mathematical Logic [Bar77) is a reference book for specialists.
However, a number of chapters are very accessible, notably: the first, which is a
good introduction to model theory; the chapter written by Shoenfield is a good
introduction to set theory; and the chapter written by Rabin includes many
decidability results.

The example of geometric figures comes from a contest organized by the
US Air Force. Two teams, championing a functional language (Haskell, in fact),
submitted similar solutions based on the principles18 indicated in § 3.1.1. There
are many introductory books on functional programming, for instance [Pau9I],
[BW88], [CMP02] and [CM98].

18They beat all other approaches hands down, which came as a surprise because
traditionally favorite domains for functional languages were compilation or theorem
provers.

4. Hoare Logic

The techniques to be discussed in this chapter are aimed at reasoning about
algorithms. We first introduce the traditional notation for annotating a pro
gram with assertions. This yields a special kind of proposition and we give the
logical rules which govern them - specifically, Hoare logic. Finally, we show
another interpretation of these rules, due to Dijkstra, which leads to a technique
allowing one to calculate a program that establishes a given assertion.

4.1 Introducing Assertions in Programs

Chapter 2 showed how to specify what we expect from a program or from a
piece of code, using assertions which are logical formulas over the input and
output data of this program. It turned out to be useful to put assertions inside
a program, because (among other reasons) instructions sometimes make sense
only if they are executed from a suitable state. This state is itself defined by
the value of all program variables at a given time.

For instance, let us suppose that the state is defined by three numerical
variables x, y and z, and that the program consists of a sequence of instructions:

51 ; 52 ; 53 ; z:=2/(y-x) ; 55

Just before the fourth instruction, x has to be different from y. Such conditions
are traditionally inserted at the relevant point in the code between curly (or,
set) brackets:

51 ; 52 ; 53 ; { ,(x=y) } z:=2/(y-x) ; 55

We could then complete the table search program of page 31 as follows:

1 x:=p; y:=q ;
2 while xi-y do { p::;x<q }
3 if P(x) then y:=x else x:=x+l done;

Here is the program together with its complete specification, derived from the
last specification (page 28). Recall that line 8, which is in the form A =? B =? e,
reads A=? (B =? e), that is, "A implies that B implies e", or in other words,
''if I have A and I have B then I have C".

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

66 Understanding Formal Methods

1 (p EN) /\ (q EN) /\ p~q ,
2 P: predicate defined for all elements of [po .q[}
3 x:=p; y:=q ;
4 while x=j;y do { p~x /\ x<q }
5 if P(x) then y:=x else x:=x+l done
6 {x E N /\ p~x /\ x~q
7 /\ x<q => P(x)
8 /\ x=q => ('V i E N) (p~i /\ i<q) => -.P(i) }

We have to deal with two concepts of a variable. The concept we use
~ in programming is a name that concretely denotes a piece of memory,
or, more abstractly, a portion of the state whose contents varies in t,he course
of execution. This is, for instance, the case with x and y in the above program.
In addition, we have logical variables which are used to construct logical for
mulas. Such variables were used informally throughout Chapter 3, for example
x on pages 42 and 44. They will be formally introduced in Chapter 5. They
represent a value that does not depend on execution but rather on external
considerations. However, we need to mention program variables in logical for
mulas - assertions - and consequently mix these two kinds of variables! We
already did that with x and N on page 25. Any effective use of rule (4.4) below
mentions program variables within I and the logical variable V.

Fortunately, the confusion can be tolerated to an extent. The key
~ point is not to fall into the pitfall of aliasing, as mentioned on page 32.
In brief, we can agree that the state assigns a value to logical as well as pro
gram variables, but that logical variables can be considered as constants during
execution. Note that, in our table search program, p and q are also arbitrary
constants. We consider this point again in connection with the semantics of
logical formulas (see § 5.2.3).

In Chapter 8 we will take an additional view point, where the semantics of
program variables itself is manipulated: they are regarded as fields (or more
mathematically: projections) of the state.

4.2 Verification Using Hoare Logic

The correctness proof of a program will be structured according to the structure
of the program itself. Let us first analyze the latter. A program is composed
of program elements (sequence, alternative constructs, loops) which are them
selves composed of smaller and smaller elements, until we have the simplest
ones, that is, assignment. Each program element (including the whole program
itself) can be considered separately: it performs its own action on the state,
which is also formalized by a relation between a precondition and a postcondi
tion. For example, the above program is the sequential composition of:

- line 3, which is itself the sequential composition of:
- the assignment x: =p,
- the assignment y: =q,

Hoare Logic 67

- lines 4 and 5: a loop whose body is:
- line 5: an alternative between

- the assignment y: =x,
- the assignment x:=x+1.

4.2.1 Rules of Hoare Logic

The relation between the precondition and the postcondition of a compound
element depends only on the components and on the kind of composition. Hence
we can construct the proof incrementally. The simplest examples are the empty
statement skip, which establishes the postcondition P from the precondition

. P, and the sequential composition 5 j 5'.
On page 27 we introduced the notation {P} 5 {Q} for "5 establishes the

postcondition Q from the precondition P". The effect of skip is then axioma
tized as

{P} skip {P} . (4.1)

On the other hand, it is clear that, if {Pd 5 {P2 } and if {P2 } 5' {P3 } then the
sequence 5 j 5' establishes the postcondition P3 from the precondition Pl - This
deduction rule is given as:

{Pd 5 {P2 } {P2 } 5' {P3 }

{Pd 5 j 5' {P3 }
(4.2)

The rule for alternation, the ''if-then-else'' statement, is not very difficult
either. Premises read:" 51 (respectively 52) establishes Q from the precondition
P in the case when C is true (respectively false)":

{P A C} 51 {Q} {P A ..,C} 52 {Q}
{P} if C then 51 else 52 {Q}

(4.3)

The rule for the loop involves an invariant denoted by I, which occurs in
the precondition and which must be preserved by the body of the loop when
the input condition C is true, and a natural integer v - the variant - which
decreases at each execution of the body of the loop « can be replaced with
another well-founded relation). Then termination is guaranteed and both I and
..,C are true at the exit of the loop:

{IAC)=*VEN {IACAv=V}5{IAv<V}
{I} while C do 5 {I A ..,C} (4.4)

We have another useful rule, which tells us that we can strengthen the
precondition and weaken the postcondition:

P'=*P {P}S{Q} Q=*Q' (4.5) {PI} 5 {Q/}

68 Understanding Formal Methods

We are left with the rule for assignment, which may seem surprising at first
sight because it works backwards. It is actually an axiom, that is, a rule without
a premise, since an assignment is not composed of simpler program elements:1

{[x := ElP} x:=E {P} . (4.6)

The formula [x := ElP represents P where E is substituted for x. This axiom
goes from the postcondition to the precondition: it states that every property
which is true for x after the assignment must be true for E before the assign
ment. For example, if x > 5 is the postcondition of x: =x+l, Intuitively, we had
x > 4 before this assignment; we get an equivalent precondition if we replace
x with x + 1 in the postcondition: x + 1 > 5.

An axiom such as {P} x:=E {P 1\ x = E} would be unsatisfactory for at
least two reasons:

1. x may occur in P, then we cannot keep the same P in both the pre
condition and the postcondition;

2. x may also occur in E; for example x: =x+l certainly does not establish
the postcondition x = x + 1.

4.2.2 Correctness of the Bounded Linear Search Program

Now we have all the ingredients we need for concocting a formal correctness
proof of the program on page 66. Five formulas (not counting the specification
itself) to prove the correctness of a three-line program may seem like rather a
lot. However, our example happens to concentrate all fundamental constructs
into a small space.2 Rules (4.1) to (4.6) are sufficient for proving the correct
ness of arbitrarily complex algorithms. Of course, we also need normal laws of
logic, for example the laws recalled in § 3.4.2 or others which are explained in
forthcoming chapters.

Let us now show that our program is correct. We analyze its structure. First
we have a sequential composition of two consecutive assignments followed by
a loop. Then we apply rule (4.2), where P1 and P3 are, respectively, the pre
condition and the postcondition of the specification. We have to find P2 , which
is also the loop invariant 1 according to (4.4). Following the idea explained in
our informal reasoning on pages 29 and 31 we consider:

1 ~f It 1\ 12 1\ 13 ,

It ~fxENl\yENI\P:Sxl\x:Syl\y:Sq, .. ,
v

domain of x and of y

h d~f Vi E N (p :s i 1\ i < x) => -,P(i) , .. ~ ...
unsuccessful exploration

IFor the sake of simplicity, we agree that expressions on the right-hand side of an
assignment don't have side effects.

2The programming language we consider here has the power of Turing machines.

Hoare Logic 69

13 ~f Y < q => P{x) .
, #

success

Rule (4.5) is often used in the following way: in order to prove {PI} 5 {Q},
take a precondition P such that {P} 5 {Q} is easy to show, and verify that P
is a consequence of P'. This strategy works when 5 is an assignment and Q is
known: a simple reading of (4.6) provides a good candidate for P.

We verify easily that I is true after the two assignments of line 3, by an
application of (4.6), and taking the precondition into account. Indeed, the latter
entails [x := p] [y := q]I.

The loop variant is v = y - x. We still have to verify

{I 1\ xi=y 1\ y-x= V} 5 {I 1\ y-x<V}

where 5 is an alternative. Note that the assertion we introduced in line 4 of
the program is a consequence of I 1\ x i= y. We apply rule (4.3). It is easy to
verify that the variant decreases in the two branches; we now consider invariant
preservation.

In the first branch, after simplification, [y := x]I1 yields x E Nl\p :s; xl\x :s; q
which is a consequence of 11; [y := x]I2 yields exactly 12; [y := x]I3 is in the
form A=> P(x) which is satisfied since P{x) plays the role of C in (4.3).

The precondition oBhe second branch contains 11 and x i= y, thus it implies
x < y; that is (in N) x + 1 :s; y, hence [x := x + 1]11 is satisfied. On the other
hand, as -,P{x) is initially true, we also have -,y < q taking 13 into account;
then [x := x+ 1]13 is in the form A=>P{x+ 1) where A is false. We are left with
[x := x + 1]12 which can be decomposed in 121\ -,P(x) and is clearly satisfied.

Finally, the postcondition we look for is a consequence of I 1\ -,C, that is,
I 1\ x = y here: we just use ordinary logical manipulations.

4.3 Program Calculus

The use of Hoare logic we just considered requires that we look a posteriori for
intermediate assertions, such as loop invariants. This may turn out to be crip
pling. Other researchers, notably Dijkstra, advocate a different, constructive,
approach whereby a program is designed together with its correctness proof.
In short, one has to start from a given postcondition Q and then look for a
program that establishes Q from the precondition. Often, analyzing Q provides
interesting hints to finding the program.

4.3.1 Calculation of a Loop

Let us again consider bounded linear search. The postcondition is:

xEN I\p:S;x 1\ x:S;q
1\ x < q => P(x)
1\ x = q => Vi EN (p :s; i 1\ i :s; q) => -,P(i)

(4.7)

(4.8)

(4.9)

70 Understanding Formal Methods

Our idea is, of course, to use a loop. Its postcondition, given (4.4), is a con
junction I A ..,C. The first strategy we can try is to share out the conjuncts
(4.7) to (4.9) among I and ..,C. Assertions about the domain of x in (4.7) fall
clearly within the invariant. The assertion (4.9), which involves a quantifier, is
too complicated for a test. Let us then envisage ..,C = x < q ~ P(x), that is
C = x<q A ..,P(x). This leads us to a program having the following shape:

1 x:=p;
2 while x<q A ..,P(x) do ... done ;

The body of the loop - x: =x+l - can be guessed at without calculation. We
then get a variant of the first algorithm for linear bounded search given on
page 28, as well as a good approximation to the invariant to be used in its
correctness proof. This is not so bad, although this program requires P to be
defined over q. A derivation of the second program is explained in [Coh90].

4.3.2 Calculation of an Assignment Statement

A striking example for the synthesis of an assignment statement, inspired by
[Coh90], is the computation of the cube of a natural integer N where the only
allowed arithmetical operation is addition. The first postcondition we consider
is c = N3.

Aiming at a loop, a technique already mentioned (page 30) consists of re
placing a constant with a variable. The effect of this transform is to put the
postcondition in the form I A -,C. Here the only available constant is N, hence
we put the postcondition in the form c=x3 Ax=N. Then we look for a program
having the following shape:

1 establish I ;
2 while x#N do
3 preserve I while making x closer to N done ;

where the loop invariant is I ~ c=x3 •

An obvious way to establish I at the beginning of the loop is to take x =
c = O. We can partially guess the body of the loop: increment x, with the aim
of successively computing 13 , 23 , 33 , etc. The loop variant is N - x, and we will
leave this unchanged.

The loop body contains x: =x+ 1 and an assignment to c such that the invari
ant is preserved. Here reasoning is made easier if we consider a simultaneous
assignment: the sequential composition ofx:=x+l and C:= ... would introduce
a cumbersome intermediate state. The shape we envisage for line 3 is then:

3 x,c := x+l,~ done ;

where ~ is an expression that is yet to be found, and we want (invariant
preservation and assignment rule):

I Ax#N ~ [x,c:= x + 1,~]I (4.10)

Hoare Logic 71

We get an equation where the unknown is the program, or at least a part of the
latter: the expression E. In order to solve (4.10) we calculate:s

[x, c := x + 1, E] I
= {definition of I}

[x,c:= x + 1,E](c = xS)

= {simultaneous substitution}

E = (x + l)s
= {arithmetic}

E = xS +3x2 +3x+ 1

= {use ofthe hypothesis I, that is c = XS}

E=c+3x2 +3x+l.

The expression 3x2 +3x+l raises a problem: it is not a sum of known quantities.
Let us introduce d and assume, at the same time, that d = 3x2 + 3x + 1. We
can complete the previous calculation:

E=c+3x2 +3x+l
= {use of the hypothesis d = 3x2 + 3x + I}

E=c+d.

To summarize, we have:

(c = xS A d = 3x2 + 3x + 1) ~
[x,c:= x + l,c+ d)(c = XS) ,

(4.11)

to be compared with (4.10). Then we actually consider I ~f 11 A 12 with
11 ~f c = xS and 12 ~f d = 3x2 + 3x + 1. The implication (4.11) can then be
written

I ~ [x,c:= x + l,c+ d)I1 .

Note that, if [8] is a substitution, [8](11 A 12) = [8]11 A [8]12, we still have to
establish that 12 is invariant; that is, to find an appropriate assignment for d.
Then we calculate (E' is an expression to be found):

[x,c,d:= x + l,c+ d,E'] 12
= {definition of 12 , substitution, arithmetic}

E' = 3{x2 + 2x + 1) + 3(x + 1) + 1
= {use of the hypothesis 12}

E' = d+6x+6
= {invention of e satisfying Is ~f e = 6x + 6}

3The format we use is explained in § 9.6.2.

72 Understanding Formal Methods

E'=d+e.

We repeat the process in order to make 13 invariant:

[x,c,d,e:= x + 1,e + d,d + e,E"] 13
= {definition of 13 , substitution, arithmetic}

E" = 6(x + 1) + 6
= {use of the hypothesis 13 }

E" =e+6 .

We just have to initialize the loop by means of a simultaneous assignment, that
is, to (easily) find C, D and E such that:

[x,c,d,e:= O,C,D,Ej1 .

This leads us to the following nice program:

1 x,c,d,e:= 0,0,1,6 ;
2 while x¥=N do
3 x,c,d,e := x+l,c+d,d+e,e+6 done

4.3.3 Weakest Precondition

Given two assertions A and B, we say that A is stronger than B, and that B
is weaker than A, if A => B.

The process illustrated in § 4.3.2 rests on a calculation of expressions having
the shape [S]P where S is a substitution and P is a predicate - an assertion
which depends on a number of variables. This process can be generalized if, for
each program element 5, we have at our disposal a simple means to calculate
the weakest precondition P such that {P} 5 {Q}. The latter is denoted4 by
[5]Q.

[5] is called a predicate transformer: when applied to Q, it returns the
weakest P such that {P} 5 {Q}:

{P} 5 {Q} <=> P => [S]Q

We have for example :

Q, [skip]Q ~

[x:=E]Q ~r

[5 j 5']

[x:= E]Q

~ [5] 0 [5'] .

(4.12)

(4.13)

(4.14)

(4.15)

It turns out to be convenient to generalize the classical construct if Bl then
51 else 52 to a non-deterministic choice:

4This notation, used in the B language (see Chapter 6), is inspired by the notation
of substitutions. Dijkstra's original notation is wp.S.Q .

Hoare Logic 73

where B2 does not need to be the negation of Bl. The corresponding weakest
precondition is:

(4.16)

This construct fits better with program calculation, as well as multiple as
signment with relation to sequential composition of assignments. Note that it
is easy to translate an algorithm written with non-deterministic choices and
multiple assignments into a programming language with usual alternative con
structs and sequential composition of single assignments. We don't give further
details here; the ideas are explained and illustrated with many examples in
[Dij76, Coh90, Kal90]. The above constructs (sequential composition, multi
ple assignment, skip, loop, choice expressed with D) make up the language of
guarded commands devised by Dijkstra.

4.4 Scope of These Techniques

Hoare logic has been used in a number of industrial projects, to provide guar
antees on critical programs following their realization. A notable example is the
railway signaling software for line A of RER in Paris. However, it turned out
to be difficult to transfer the results to versions of the software implemented
for other towns. I)

The techniques d la Dijkstra allow skilled people to design algorithms which
can be surprisingly subtle and elegant. Large-scale programming, however, is
not within the scope of these techniques. Structuring mechanisms, such as
subroutines, modules and so on are needed for more realistically sized systems.
Normal programming languages include somewhat complex features, such as
recursive procedures with side effects, pointers, dynamic data structures, etc.
But it is not that simple to define and to use an axiomatic semantics for them.
Apart from algorithm design, the techniques considered in this chapter apply
mainly to small subsets of common programming languages. It is interesting
to remark that such subsets fit well with the programming standards used
for critical software. Moreover, recall that "complete" C and languages derived
from it are seriously disadvantaged compared to languages provided with a
clear formal semantics, such as Ml.

In any case, methods and techniques introduced in this chapter are useful for
everyday programming. Even an informal use of invariants and variants makes
the design of a loop significantly easier. For example, who never hesitated when
considering initial or terminal values of a loop index?

5Development teams decided then to switch to B, which is quite similar in some
respects, but offers techniques and tools that are useful for maintenance.

74 Understanding Formal Methods

Let us also remark that in a programming language, such as Eiffel [Mey88],
using assertions is explicitly and strongly encouraged. They can be checked at
run-time and are linked to the exception mechanisms, providing a valuable aid
to debugging. Similar features are also available in Objective Caml (a version
of ML) and even, to some extent, in C. Note that only computable assertions
(in particular, without unbounded universal quantifiers) make sense in this
context.

4.5 Notes and Suggestions for Further Reading

Introducing assertions in programs is an idea dating back at least to Floyd
[Flo67]. It has been structured under what is now called Hoare Logic in [Hoa69],
and applied to Pascal in [HW73]. The language of guarded commands and
Dijkstra's approach to the design of correct-by-construction sequential pro
grams are both presented by their author in [Dij76], and in various textbooks,
e.g. [Kal90] and [Coh90].

Among recent innovations, a number of researchers have provided auto
mated support for Hoare-style proof of imperative programs in a general frame
work. For example, such ideas are developed and implemented by J.-C. Fillia.tre
[Fil99] for Coq - the version of type theory that we consider in Chapter 12 -
and PVS - which is also discussed in this chapter.

As mentioned earlier, the techniques considered in this chapter are essen
tially relevant when one considers programming-in-the-small. An important
technique for dealing with larger-scale software development is refinement. The
basic idea consists of relating concrete specifications to abstract specifications,
so that we can reason about high-level properties of a system without be
ing hampered by unnecessary low-level details. We will say more about this
in Chapter 6. The interested reader may also consult the article by Gardiner
[GM91] and the book by de Roever [dRE98].

5. Classical Logic

Logic provides a syntax for expressing properties. A ''meaning'' of these expres
sions and their compositions is defined by the concepts of an interpretation
and of a model. We begin by introducing the most simple of these expressions,
called propositions. We then present the general case of formulas, which are
expressions that depend on the value of parameters called variables, or which
can themselves be variables. These formulas may be quantified using V (for all)
and 3 (there exists).

In this chapter we examine different logics: the logic of propositions (§ 5.1),
first-order logic (§ 5.2), and higher-order logic (§ 5.5), along with a variant
of first-order logic, which we will examine as part of a dil;lcussion of partial
functions (§ 5.4). Equality and arithmetic are tackled in § 5.3. We conclude
with basic concepts of model theory (§ 5.6).

5.1 Propositional Logic

5.1.1 Atomic Propositions

We assume a collection of elementary expressions called atomic propositions,
which are application dependent. These atomic propositions may then be com
bined by means of logical connectors (and, or, not, etc.). There are two possi
bilities:

1. We do not need to break down these expressions. In this case we represent
them by a letter identifier (for example, P, Q, etc.)j if we need to better
express the ideas we are trying to represent, we may use a longer identifier,
for example i t_is_sunnYj these symbols are called proposition symbols;

2. The atomic expression is structured. In this case the interpretation de
pends on the subject and there are as many possible interpretations as
there are subjects. For example, we can consider the individuals denoted
by Claudio, Elliot, John, and construct three expressions stating the fact
that Claudio, Elliot and John are telephone subscribers in the same way
as follows: is_a_subscriber(Claudio). We employ a functional notation
that is justified by the fact that is_a_subscriber will be interpreted by a

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

76 Understanding Formal Methods

function from the set of people to {true, false}. We call is_a_subscriber
a one-place predicate symbol, or simply a one-place predicate.1

Similarly, we can introduce predicates with any number of places. For example,
to express that Claudio rents a given telephone we introduce the constants
tell, tel2, etc., as well as a two-place predicate rents; now we can write:

rents(Claudio, te127) . (5.1)

Then, an individual can be expressed as a function of one, or several, other in
dividuals. For example, we can introduce the functions denoted by father_of,
which allows us to express the fact that Elliot's father (the father of Elliot)
rents telephone number 5:

rents(father_of(Elliot), tel5) (5.2)

Note. The first situation is a particular case of the second: the proposition sym
bols (P, Q, it_is_sunny) can be considered to represent zero-place predicates.
On the other hand, the difference between the first type of expression and the
second is superficial for now. For example, the collection of expressions above
can be replaced by Claudio_is_subscribed, ... , Claudio_rents_ te127,
father_of_Elliot_rents_teI5, etc. The advantage of a structured represen
tation of atomic propositions is that it allows for the synthesis of a great number
of them in a systematic way.

This comment suggests that the predicate calculus can be reduced to
the propositional calculus (see the definitions below) provided that

quantifiers can be eliminated. In fact, Herbrand showed that every first-order
logic proof, within a sufficiently general class of formulas, may be transformed
to a proof in the logic of propositions; Herbrand even provided an algorithm
to perform this transformation. This has had important consequences in au
tomatic programming and the development of Prolog. We will return to this
in Chapter 9. Henkin also used processes aimed at reducing propositions to
first-order, thereby establishing results of completeness.2 See [Bar77, ch. 1] and
[GaI86].

5.1.2 Syntax of Propositions

Atomic propositions are the building blocks of propositions. It is convenient to
have two predefined atomic propositions, t and f, representing the proposition

1 It should be noted that this is an abuse of terminology. This will be made more
clear when we address semantics.

2It is a little unusual to present propositional logic by introducing function and
predicate symbols straightaway. These symbols are essential only in first-order logic.
They are already useful, however, and we can see a continuity between propositional
logic and first-order logic. Really what distinguishes between them is the use of vari
ables and quantifiers.

Classical Logic 77

that is always true and the proposition that is always false, respectively. To
illustrate the terminology, consider expression (5.3):

rents(father _of(Elliot), te15) 1\ rents(Claudio, te127) (5.3)

In this example:

- (5.3) is a proposition;
- rents(father_of(Elliot),te15) and rents(Claudio,te127) are also propo-

sitions, more precisely atomic propositions;
- father_of(Elliot), Elliot, te15, Claudio and te127 are terms, the last

four being simply constant symbols; as no variable is used so far they are, in
fact, constant terms;

- rents is a predicate symbol;
- father _of is a function symbol.

Propositions are defined as follows:

1. Every atomic proposition is a proposition;
2. If A is a proposition, its negation, written -.A (pronounced ''not A") is a

proposition;
3. If A and B are propositions, Av B, AI\B, A::} B and A -¢:? B (pronounced

" A and B", "A or B", "A implies B" and "A equivalent to B", respectively)
are propositions;

4. There are no other propositions other than those constructed via the pre
ceding three rules.

Notes.

(1) This definition gives only the essentials of propositions, the abstract syntax
in computer science terminology. To reduce ambiguities in a concrete ex
pression such as P 1\ Q V R, it is convenient to introduce priority levels for
the operations 1\, V, etc., as well as parentheses when necessary. In this
book, we use conventional parentheses "(" and ")" for this, as well as square
brackets "I" and "l"

(2) Often the symbols "-t" and "J" are used in place of "::}", and "=" in place
of "-¢:?".

Atomic propositions are formally constructed by combining two ingredi
ents - predicate symbols and constant terms, the latter being themselves
constructed by means of the constant symbols (such as te12) and the function
symbols (such as father _Of) that we assumed initially:

1. A proposition symbol is an atomic proposition;
2. If P is an n-place predicate symbol, and if tl, ... tn are constant terms,

then P(tl' ... tn) is an atomic proposition;
3. Every constant symbol is a constant term;
4. If I is an n-place function symbol, and if tl, ... tn are constant terms, then

l(tl, ... tn) is a constant term;

78 Understanding Formal Methods

5. There are no other atomic propositions or constant terms other than those
constructed via the preceding four rules.

A zero-place predicate can be viewed as an atomic proposition, in
which case the first rule is a special case of the second. Similarly, a

given symbol can be considered to be a zero-place function symbol, in which
case the third rule is a special case of the fourth.

5.1.3 Interpretation

The approach to interpreting the preceding notions is as follows. First we as
sume the set B = {true,false}; true and false are called truth values. We then
consider a universe of discourse V (more formally, a non-empty set of constants
called a domain), satisfying certain properties. We then establish a correspon
dence between the symbols, individual people, and these properties.

In our example we create a correspondence between given names and real
people, let's say Claudio with Abbado, John and Elliot with Gardiner,3 the
symbols tell, te12, etc. with actual telephones and the symbol father _of
with the function that associates an individual with his/her father. To every
atomic proposition we attach a truth value; for example truefor P, it_is_sunny
and Claudio_is_subscribed, false for Q, John_is_subscribed and Elliot_
is_subscribed; if we prefer the structured representation, this amounts to as
sociating the function {Abbado J-t true, Gardiner J-t false} with the predicate
symbol is_a_subscriber.

The general case offers no surprises: constant symbols represent constants,
function symbols represent functions, and so on. The only point that warrants
particular attention is that all represented functions are total (they are defined
for all values of the domain). We will return to this later.

An interpretation I, therefore, is a correspondence that assigns:

- an element CI from the domain V to every constant symbol C;
- a total function h from vn to V to every n-place function symbol f;
- an element PI of B, t and f being necessarily interpreted by true and false

respectively, to each proposition symbol P;
- a total function PI from vn to B to each n-place predicate symbol.

tr'\\ If E is a set, by convention EO denotes a singleton, let's say {I}; that
'-8 allows us to identify EO+n to En by means of a natural bijection
(l,x) J-t x. Then every total function from EO to F may be identified as an
element of F (the image of 1). Taking E = V and F = B (respectively, F = V)
the assimilation of propositions as zero-place predicates (respectively, constants
as zero-place functions) is justified.

3Every constant symbol must correspond to an individual, but there is nothing to
prevent two different symbols from relating to the same individual.

Classical Logic 79

We see that an interpretation allows the assignment of a value in V to each
constant term tj it is sufficient on each occurrence of a function symbol f in t,
to apply the corresponding function h to the value of its arguments. Similarly,
every atomic proposition P(...) has a truth value obtained by applying PI to
the value of its possible arguments.

The same approach allows for the assignment of a truth value to all propo
sitions. The connectives -', V, /I., :::} and {:::} are associated with B to Band
B x B to B functions defined via well-known truth tables (Figure 5.1).

P Q PVQ P/\Q P:::}Q P¢:::?Q ...,Q
false false false false true true true

false true true false true false false

true false true false false false
true true true true true true

Figure 5.1: Truth tables.

Observe that P /l.Q is true if and only if P andQ are both true. Nevertheless,
it is unsatisfactory to present the semantics of /\ based solely on the usual
meaning of the word and, because there are many such meanings! We can see
three here:

- I took my hat and my coat
(concept of a collection or grouping)

- I took my hat and I left
(close to logical conjunction but with a concept of a temporal ordering) and

- See Naples and die
(concept of a permission and of a succession).

The other connectives present similar ambiguities. The use of truth tables
avoids this pitfall by invoking a clear mathematical concept, the application
of a function to arguments.

5.2 First-order Predicate Logic

The language we've considered thus far, the propositional logic, doesn't allow
us to express relatively simple facts, for example:

- if Claudio rents telephone 2, then Claudio is a subscriber.

It is clearly desirable to be able to capture more general properties, such as:

- every individual who rents a telephone is a subscriber.

80 Understanding Formal Methods

To this effect, we first need parameterized propositions, for example:

- if x rents telephone y, then x is a subscriber.

A parameterized proposition is called a formula. The next step consists of
quantifying formulas. Universal quantification over x in

- if x rents a telephone, then x is a subscriber

expresses:

- for all x, if x rents a telephone, then x is a subscriber.

In plain English:

- every individual who rents a telephone is a subscriber.

This expression can be viewed as a potentially infinite conjunction:

- if Claudio rents a telephone, then Claudio is a subscriber and if John rents
a telephone, then John is a subscriber and etc.

Finally, existential quantification of y in

- x rents telephone y

is:

- there exists y such that x rents telephone y.

In plain English:

- x rents a telephone.

In the same way, this expression can be viewed as a disjunction:

- x rents telephone 1 or rents telephone 2 or ... etc.

The logic employed here is predicate logic, or more precisely first-order
predicate logic because the variables considered throughout are drawn from a
domain of constants, V, and cannot represent functions over V nor propositions.

5.2.1 Syntax

We need to complete the notions of a term and of a proposition that we intro
duced earlier. We introduce into the language a set of variables V = {x,y, ... }
and two symbols V (for all) and 3 (there exists), also called quantifiers (re
spectively, the universal and existential quantifiers). The constants, functions,
variables and predicates that we assumed form what is termed a first-order
language.4

Terms, atomic formulas and formulas are then defined by replacing con
stant term with term, atomic proposition with atomic formula and proposition
with formula in the previous definitions. We add the following rules:

4What we often call a language is really a set of terms and formulas. That amounts
to the same thing since the language here is completely determined by variables and
the constant, function and predicate symbols.

Classical Logic 81

- every variable is a term;
- if P is a formula and if x is a variable then \lxP and 3xP are formulas. x

need not occur in P, although in practice this is often the case.

By convention, a quantifier extends as far as possible, taking any parentheses
into account. For example, \Ix P ~ Q does not represent (\lxP) ~ Q, but rather
\lx(P~Q). .

Example. Every x that rents some thing (y) is a subscriber:

\lx[3y rents(x,y)] ~ is_a_subscriber(x) . (5.4)

Comment. The expected interpretation here is that every person who rents
a telephone is a subscriber, but in the given formula there is nothing that
requires that x must denote a human being and that y must denote telephone
equipment. In contrast to college mathematics, quantifiers are not constrained
to a domain of definition (i.e., the set of human beings or the set of telephones,
in the previous example):

\Ix E humans, (3y E tels, rents(x, y)) ~ is_a_subscriber(x) .

Writing the formula in such a way uses the concept of sets within the lan
guage, something that we have carefully avoided in this section. That doesn't
constitute a reduction in the expressive power of the logic, as the same ef
fect is obtained by representing not sets (such as humans) but characteristic
predicates:

\Ix is_a_human(x)~
[(3y (is_a_tel(y) 1\ rents(x,y))) ~ is_a_subscriber(x)]

(5.5)

The concepts of a set, a function, etc., have only been used in an
informal manner and in the metalanguage, so that the syntax and

the necessary material for interpretation could be described. The syntax of
logic itself does not include the symbol E. There is, however, an important first
order language that uses E - axiomatic set theory. We note that the use of a
symbol denoting a set is subject to certain restrictions.

In set-based specification languages, quantifiers are necessarily con
strained: quantified formulas are of the form (\Ix E E)P or (3x E E)P, (also
written \Ix E E. P or 3x E E. P), and the rules employed guarantee that E
exists. But to justify the correctness of mechanisms employed, a well-developed
theory of sets must be available beforehand.

5.2.2 Example of the Table

In the example of searching for an integer between two bounds, terms repre
sent natural numbers. These are constructed from a constant symbol 0 and a
one-place function symbol S. The latter represents the successor function; for

82 Understanding Formal Methods

example, the integer 2 is represented as S(8(0)). Other symbols representing
addition, multiplication, and other operations on integers are useful but not
necessary.

An almost omnipresent predicate is that of equality. We introduce the two
place predicate (symbol) equal, but we will use the usual infix notation x = y
instead of equal(x, y). Similarly, for comparisons, we will write the predicates <
and $ in an infix manner. Moreover, we will consider the three-place predicate
between, the intended meaning ofbetween(a, b, c) being: b is contained between
a (inclusive) and c.

Let us suppose that we wish to find an element divisible by 37 in the interval
[p .. q[, where p and q are variables.5 We introduce the predicate symbol div37j
the integer x to be found must satisfy the formula:

(between{p,x,q) " div37(x))
V (x = q " 'Vi between{p, i, q) => ...,div37(i»

(5.6)

5.2.3 Interpretation

How do we interpret a formula depending on x? Consider, for example, the
formula is_a_subscriber(x). It is clear that its value, true or false, depends
a priori on the value of x. We had a sUnilar situation for is_a_subscriber
(without "(x)"), which was interpreted by a function from V to B. Here, we in
troduce the concept of an assignment, which is a function from a set of variables
V to V. Let us fix an assignment r, the value given to is_a_subscriber(x)
is then is_a_subscriberz(r(x)). More generally, the value of a term and the
truth value of a formula over V depends on the interpretation I and on the
assignment r.

To interpret a quantified formula such as 3y rents(x, y), it should be noted
that its truth value depends only on x and not on the quantified variable y:
suppose that V contains only two constants Cl and C2, this formula has the
same value as rents(x, Cl) V rents(x, C2). Note that we could just as easily
have written 3z rents(x,z). We have uncovered the phenomenon of dummy
variables, well known in mathematics, in expressions such as E;=l fey) or
f fey) dy.

In logic, we use the term free or bound variable. For example, in the formula
3y rents(x, y), x is free while y is bound. Only free variables can be viewed as
parameters of a formula.

One must be conscious of the fact that in the same formula a vari
able x can have both free and bound occurrences; for example x in

P(x, y) " 'VxQ(x, y). The free occurrences of x are defined by: (1) everyoccur
rence of x in a term or an atomic formula is free; (2) every free occurrence of
x in P is also free in ""Pj (3) every free occurrence of x in P is also free in
P V Q, p" Q, P => Q,P {::> Q; idem for every free occurrence of x in Q; (4) no
occurrence of x in 'VxP or in 3xP is free.

5Following the convention of Chapter 2, the value returned is q if no value divisible
by 37 is contained in [p .. q[.

Classical Logic 83

The substitution of c for x in R, where R is a term or a formula, is defined
by replacing all free occurrences of x in R with c. We will write this [x := c]R. In
the following definition, c will represent a constant and we will assume without
loss of generality a constant symbol Cv for every value v of the domain V. When
c is not a constant but rather a term possessing free variables, we must first
rename all quantified variables of R - [x := y](3y(y > x» is not 3y(y > y)
but 3YI (YI > y).

To be completely rigorous it is necessary to mathematically define
the concepts of a term, of an occurrence and of a substitution. That

is done by defining a concept of a tree domain - intuitively, an address space
structured in the form of a tree; a term is defined as an application of such a
space to the set of constant and function symbols used. That is purely tech
nique, and gives the results one expects for justifying practical manipulations.
The reader seeking a more rigorous exposition is directed to [GaI86].

We can now give the definition of the interpretation I of a formula in the
assignment r:
- the interpretation of constant, function and predicate symbols is the same

as in the propositional case (assignment makes no change);
- if x is a variable, its interpretation XI is r(x) ;
- the connectors ..." /I., etc. are interpreted as before;
- VxP is interpreted by true if for every value v of V, [x := cv]P has the value

true, and by false otherwise;
- 3xP is interpreted by true if there exists a value v of V for which the formula

[x := cv]P has the value true, and by false otherwise.

Overall, the truth value of a formula containing n free variables Xl, •.. Xn

depends on r(xd, ... r(xn). It may be useful to consider that this formula is
interpreted by a function from V to lm.

We already pointed out in § 4.1 that the variables used in programs
represent "state portions" whose value varies during the course of an

execution. Let us fix a program with its variables Yi; we can formalize it by
the means of a set of states S and of an appropriate projection PYi for each
variable Yi of the program, provided there is no aliasing. The value represented
by the variable Yi in the state s is then PYi (s). We will proceed in this way in
Chapter 8.

Symmetrically, we can consider that in each state s, we have a func
tion rs such that rs(Yi) provides the value ofthe variable Yi in the given state.
Indeed, r s is an assignment in the sense given above. Then we can reason in a
formal way about a program by representing its variables by logical variables
and each state by an assignment defined over these variables and over other
regular logical variables as well.

Let us for instance interpret the formula x ::; N of page 25. We
represent an execution by a sequence of assignments r o, r l , ... where ri(X)
varies according to the evolution of x allowed by the program, whereas ri(N)
remains fixed: N is not part of the program.

84 Understanding Formal Methods

The expressive power of first-order logic is considerably greater than that
of the propositional logic, because one can potentially achieve infinity using a
finite number of formulas. For example:

int(O) A (\Ix int(x) :::} int(S(x)))

has as a consequence

int(S(... S(0) ...))
"-v-"

n

where n is arbitrarily large. To obtain the same result in the propositional logic,
we would straightaway need to express an infinite number of propositions such
as

int(S(S(O))) .

Note: as soon as we have at least one constant symbol and one function
symbol, the possible combinations enable us to conceive of an infinite number
of propositions, even if we cannot express them explicitly.

5.3 Significant Examples

Most applications require the use of at least integers and equality. For this
reason, we introduce the necessary symbols and what we refer to as their theory,
made up of logical formulas called axioms. The interested reader may wish to
refer to more precise definitions of these concepts in § 5.6.1.

5.3.1 Equational Languages

A language £. is said to be equational if it contains the binary predicate =.
This predicate, if it is to behave as equality, must always implicitly satisfy the
following three axioms:

- the fact that = is an equivalence relation (3 axioms);6
- the principle of substitution of equals for equals, that is, the Principle of

Leibniz. For every n-ary function symbol!, n axioms are required:

VXl··· VXn VYi Xi = Yi:::}

!(... Xi-l,Xi,Xi+l ...) = !(... Xi-l,Yi,Xi+1 ...) ,

likewise for every n-ary predicate symbol P:

\lXl··· VXn \lYi Xi = Yi:::}

P(... Xi-l,Xi,Xi+l ...) <=> P(... Xi-l,Yi,Xi+1 ...)

This symbol is always interpreted by the equality over the domain of interpre
tation V.

6In fact, reflexivity is sufficient; it, combined with the Principle of Leibniz, allows
us to use symmetry and transitivity also.

Classical Logic 85

In fact, the axioms allow for the interpretation of = by any equiv
alence relation compatible with the operations of the language £.

(that is, a congruence). But it is also possible to consider the quotient of V
by the relation V', which provides an interpretation under which "=" is indeed
equality.

Algebraic specification languages are equational languages. Most theories of
mathematics are equational and, generally, model theory considers equational
languages. On the other hand, basic proof theory generally does not address
equality, which poses specific problems. While axioms are just equations, we
must resort to the theory of rewriting systems.

For more general axiomatizations, combining logical connectors and
equality, an important technique employed in automatic proof is

paramodulation [RW69]. We will not address that here, but the interested
reader will find a good description in [CL73].

Comment. If we consider second-order logic, equality can be defined as the
second-order predicate that expresses the fact that x and yare equal if they
have exactly the same properties:

x = Y ~f 'VP P(x) {::::} P(y)

5.3.2 Peano Arithmetic

A particularly important theory, due to Peano, is one which formalizes arith
metic. This is a first-order equational theory over the language composed of the
constant 0, the unary function symbol S (representing the successor function),
the binary function symbols "+" and ".", and the relation <. These operations
are written here in the infix form, following common usage. The integer n is
represented by S(... S(0) ...). ---..,.........

n

5.3.2.1 Axioms of Peano Arithmetic. The axioms are as follows.

No two integers are the same:

"Ix -,(0 = Sex»~ ,
'Vx'Vy Sex) = S(y) ~ x = y .

Axioms of addition:

"Ix x + 0 = x ,
'Vx'Vy x + S(y) = sex + y)

Axioms of multiplication:

"Ix x.O = 0 ,
'Vx'Vy x.S(y) = x + (x.y)

86 Understanding Formal Methods

Axioms of comparison:

Vx -'(x<O) ,
VxVy x<S(y) {::} x<y V x=y .

Note that the axioms of addition, multiplication and comparison are con
structed by systematically considering the possible patterns of the second ar
gument, which is either 0 or S(y).

Our last axiom is actually a collection of axioms, because l/J represents an
arbitrary first-order formula having x as a free variable. A collection of axioms
defined in this way is called a schema. We then have an infinite number of
possible instances for a schema. The key point is that they may be recognized
by an algorithm: we say that Peano arithmetic is recursively axiomatizable.

Induction schema:

l/J(O) A [Vx l/J(x) ~ l/J(S(x))] ~ Vx l/J(x)

We can, for example, take the formula x < S(x+ x) for l/J(x), signifying that
x is less than or equal to 2x. The principle of induction in this case is:

0< S(O+ 0) A ['v'x x < S(x+ x) ~ S(x) < S(S(x)+ S(x))]
~ Vx x < S(x+ x)

There is nothing to stop us from taking a generally false formula such as X= 0,
for l/J(x):

O=OA[Vxx=O~S(x)=O] ~ Vxx=O

but of course there is no hope of proving the second premise!
The formula l/J can be more complex, for instance it can depend on other

free variables and use logical connectors. Moreover, it is acceptable to choose
variables other than x for the induction. An interesting example is the following:

l/J(x,y) = x<y ~ S(x) <S(y) .

Taking y as the inductive variable, we obtain the axiom:

(x<O~S(x)<S(O)) A

(Vy (x<y~S(x)<S(y)):::} [x<S(y):::}S(x)<S(S(y))]) (5.7)
:::} Vyx<y:::}S(x)<S(y).

5.3.2.2 Application to the Table Example. For the table example that
we described in § 5.2.2, we use the language of arithmetic augmented with two
predicate symbols, between and div37. These symbols do not represent arbi
trary predicates, but are linked to < and =. We wish to define between(x,y,z)
by x 5 yAy < z, but 5 does not exist in our language. We can introduce it and
state the following axiom:

Classical Logic 87

VxVy x':5:.y ~ x<y V x=y .

Another possibility is to note that, thanks to the second axiom of comparison,
one can always replace x':5:.y by x< S(y). We therefore can avoid "':5:." and state
the following axiom about between:

VxVyVz between(x,y,z) ~ x< S(y) /\ y<z (5.8)

We don't really have a need to axiomatize div37, since it has no effect on
the criteria for searching in a table. If it were necessary we could introduce a
constant thirty _seven, with the axiom:

thirty_seven = S(... (0) ...)
'-v-'

37

The axiom of di v37 would then be:

Vx div37(x) ~ 3y x = y.thirty_seven .

5.3.2.3 Models of Arithmetic. This section refers to the concepts coming
from model theory as described in § 5.6.

It is intuitively clear that the set of natural numbers N together with
obvious functions is a model of Peano arithmetic, which we call the

standard model. But is it the only one? We can find others, such as the set
of even integers where +, 0 and < are interpreted without change, while Sand
"." are interpreted, respectively, by n t-+ n + 2 and m, n t-+ mn/2. In fact, these
two models are identified by the isomorphism n t-+ 2n.

We obtain a much more unexpected result by applying the theo
rem of compacity and the theorem of L6wenheim (cf. § 5.6.2) [GaI86]: Peano
arithmetic admits a countable model non-isomorphic to N. The existence of
such models, which we call non-standard models, shows that N is not entirely
characterized by the axioms of Peano. We will see in § 9.8.2 that this fact
may be established by other means, and in a stronger manner through G6del's
theorem of incompleteness. On the one hand, G6del's proof, contrary to that
of the theorem of L6wenheim, uses only the finite processes recommended by
Hilbert and accepted by the intuitionists; on the other hand, it shows that the
introduction of supplementary axioms to fill the gap serves no purpose.

5.4 On Total Functions, Many-sorted Logics

Function symbols are interpreted by total functions, whereas one might want
to model partial functions. Let's take the function father as an example; if we
interpret it over the concrete set A of inhabitants of London, it is clear that this
function is far from being total. We are then driven to taking for the interpreta
tion of father a function from A to A associating with every person a his/her

88 Understanding Formal Methods

legal father if the latter is in the set A, otherwise any value (for example, a it
self). It would be more judicious to name this predicate father_if_he_exists.
This modeling must be completed by introducing a predicate has_a_father,
which characterizes those persons whose father is also in the domain.

In general, a partial function can be modeled by a total function and the
characteristic predicate of its domain of definition. We use formulas that simul
taneously combine both of these aspects of the function, for example:

"Ix has_a_father(x)::}
[is_subscribed(father(x)) ::} is_subscribed(x)] .

The need for characteristic predicates is far more obvious when the domain
V mixes elements of different types, for example people and telephones (cf. the
comment on page 81).

The interpretation by total functions can be attacked as being artificial
and redundant. In our example, it assigns a value a priori to father(te13)
or to rents(tel1,te12), even though this value has no influence. But, blindly
replacing total functions by partial functions brings its own complications. In
particular, this can lead to the introduction of a third truth value 1., pronounced
undefined. In fact, there are many three-valued logics, which have different
properties and are less straightforward than ordinary logic. The specification
languages VDM, Raise-SL and Abel use different three-vaIued logics. Typically
it is less easy to reason with them; for example, in Abel, implication is not
reflexive; in VDM, the deduction theorem (see § 9.1) does not hold; in Raise,
conjunction and disjunction are not commutative.

There are, nonetheless, some interesting compromises, consisting of fixing
a priori the domains of definition of functions used. The most simple (multi
sorted logic) consists of decomposing the domain of interpretation V into several
disjoint domains V l , ... Vi, ... Every n-ary function symbol is interpreted by a
total function Vi! x ... X Vi" ~ Via. The key is that this partitioning of V can
be expressed in the syntax and then checked statically: for each symbol used,
we declare a signature using sorts (Le., domain symbols), father: person ~
person, for example.

The interpretation naturally assigns one Vi to each sort. Interpretations
obtained in this way are heterogeneous algebras or E-algebras, and they play
a fundamental role in algebraic specification languages.

In passing, we describe a concept used in Chapter 11: given a vo-
cabulary E offunction symbols il, h ... in, the initial algebra over

E is the set of closed terms formed with il, h ... in. To be more precise, the
concept of a morphism introduced in § 3.4.5 must be used: an algebra is initial
as long as there exists a unique morphism between it and every other algebra
over E. Every algebra isomorphic to the algebra of closed terms is initial. Let
us take, for example, Peano arithmetic omitting addition, multiplication, com
parison and induction: all that remains is the set of terms generated by 0 and
S, which signifies on the one hand that every natural number is represented by
a term of the form S(... (0) ...), and on the other hand that two terms having

Classical Logic 89

a different number of applications of S represent different integers. But if we
add an axiom such as S(S(S(O))) = 0, with the intention of defining modulo 3
arithmetic, the algebra we get is no longer initial in the class of algebras over E.

Frequently, the domains of definition of certain operations are distinct, but
not disjoint. For example, addition is defined over N x N, while division is only
defined over (N - {O}) x N j the push operation is defined for all stacks, while
the pop operation is only defined for non-empty stacks. In these two examples,
we would like to express that for two domains Vi and Vj, we have Vi C Vj.
For that, certain specification languages such as OBJ [GMOO, JKKM92] permit
the declaration of an order between sorts. The underlying theory becomes more
complex, and static verification may become impossible: determining that an
expression has a non-null value is an undecidable problem in the general case.
This leads to a restriction in the use of logical connectors.

On the other hand, these extensions do not increase the expressive power
of the ordinary (mono-sorted) first-order logic, in which all the restrictions
mentioned are expressible by well-chosen characteristic predicates. In fact, dif
ferent logical connectors offer a great richness of expression which can be used
profitably in defining a varied range of characteristic predicates.

In summary, amongst the formalisms mentioned here, first-order logic of
fers the greatest expressive power, while multi- or order-sorted languages per
mit more static checking and ease of formulation. In order to achieve IDore
expressive power, we must go beyond the first-order.

5.5 Second-order and Higher-order Logics

While expressing specifications and reasoning about their properties, we may
end up introducing mathematical functions whose logical complexity is arbi
trarily great. This is particularly the case if we wish to express general principles
in a uniform manner.

First-order quantification holds only over variables from the domain of con
stants V. This does not allow for the expression of properties or of functions
ranging over other functions or properties. Let us consider, for example, the
composition of two functions. As we all know, this is defined as (g 0 f)(x) =
g(f(x». This seems simple, yet the following assertions are not expressible in
first-order logic.

Vi Vg Vx (g 0 1)(x) = g(f(x» ,
Vi i 0 Id = I ,

VI Vg Vh h 0 (g 0 1) = (h 0 g) 0 I ,

Here are other examples:

- if a property holds for 0 and if it is true for an integer then it is true for its
successor, then it is true for all integers:

VP [P(O) 1\ VnP(n) =} P(n + 1)] =} VxP(x) .

90 Understanding Formal Methods

Similar inductive principles can be written for a large range of data types in
computer science.

- An injective function has a left inverse:

'rIf ('rIx'rly xi- y => f(x) i- f(y)) => 3g'rlx g(J(x)) = x

This property can be useful in refining to doubly-linked data structures.7

- Given P, Q, ... , properties about individuals x, y, ... , we define P&Q as
the property of x which is true if and only if x satisfies properties P and Q:

(P&Q)(x) ~f P(x) /\ Q(x) .

This concept of a conjunction is used in temporal logic, see § 8.5.1.

- If P is a hereditary property of x and if y is a descendant of x, then y also
has property P:

'riP hereditary(P) => ['v'x'rlyP(x) /\ descendant(x, y) => P(y)]

We note that 0 takes two functions as its arguments and returns a func
tion, that & takes two predicates as its arguments and returns a predicate,
and that hereditary is a predicate over predicates. This feature is extremely
interesting as it permits the expression of general reusable principles within
very varied contexts. But here we must consider Russell's paradox (see page
39, for a discussion of its second version) if we begin to write formulas such
as hereditary(hereditary). To avoid this, Russell proposed a distinction be
tween two kinds of predicates: first-order predicates over first-order terms, and
second-order predicates over first-order predicates (such as hereditary). Sim
ilarly, 0 is a second-order function.

Second-order logic introduces, in addition to first-order predicates, func
tions and variables, second-order predicates, functions and variables which may
be universally or existentially quantified. These quantifiers are sometimes writ
ten 'rI2 and 32 to distinguish them from first-order quantifiers. Second-order
variables are interpreted by functions from '[)n to '[) or from '[)n to B. Second
order predicates and functions may take first-order predicates and functions as
arguments.

Repeating this process, we derive third, fourth and higher-order logics. In
higher-order logic, we have variables, functions, predicates, and quantifiers of
order n, for every integer n. We can refine this concept of an "order" and get
type systems, as shown in Chapter 11.

7For example, in a hotel reservation system where every reservation r is for a room
f(r), one could specify that two different reservations are for two different rooms. This
fact can be used at the specification level to talk about the reservation for a given
room p, knowing that there is at most one. During a refinement, this reservation might
be named g(p), representing f by a pointer to a room and 9 by an inverse pointer.

Classical Logic 91

If Prop denotes the type of propositions, the type of predicates over,
say, the natural numbers is nat -t Prop, while the type of predicates

over such predicates is (nat -t Prop) -t Prop. Therefore, it is no longer possible
to express Russell's paradox within a typed environment. Ensuring the total
absence of paradoxes in a practical type system is not trivial, but has been
done for the most common ones.

In the semantics of programming languages, we often use higher-order func
tions or properties. This is typically the case in denotational semantics where
the meaning S p of a program, or a program element, P, is a function from the
initial state to the final state. To give the semantics of language constructors
which form complex elements E, starting with simple elements E1 , E2 , ••• , we
are naturally inclined to consider functions giving S E from S El' S E2 • •• One
can also give the semantics of a program not as a transformation of states, but
as a transformation of predicates expressed over the state. This approach, ad
vocated by Dijkstra, for the specification and construction of correct programs,
is also the basis of the B method.

These logics are considerably more expressive than first-order logic, but
certain properties of decidability, which are useful in automatic proof, are lost.
Interactive proof-assistant software has been developed using these logics, see
Chapter 12.

We mention here that second-order monadic logic (in which it is pos
sible to quantify over unary predicates) possesses interesting proper

ties of decidability relevant to computing science, especially automata theory.
In this logic, we distinguish individual variables x, y, ... and unary predicate
variables X, Y, ... which allows us to write formulas such as X(x).

Equivalently, we can consider that second-order monadic logic is first
order logic augmented with set variables X, Y, ... ; instead of X(x) we then
write x EX. These variables are interpreted by parts of V.

Weak second-order monadic logic is defined with the same lan
guage, but the variables X, Y, ... are interpreted by finite parts of V. As
a practical application, let us mention MONA [KM01], an environment using
weak second-order monadic logic as its specification language.

5.6 Model Theory

Model theory [CK90, Bar77] has seen substantial mathematical developments,
but seems to have little utility in the area of formal specification. On the other
hand, the underlying ideas are often used, and are recalled here. We are con
cerned with completing the vocabulary introduced above with the idea of inter
pretation. We conclude with an illustration of two theorems of model theory.

92 Understanding Formal Methods

5.6.1 Definitions

We are given a first-order language C (most of the following definitions apply
to languages of any order).

A given interpretation M determines if an expression without free variables
P of C is true or false. We say that M is a model of P, or that M satisfies P
if P has the value true in M. We write this I=M P.

In the following, we use the expression closed formula to refer to a formula
without free variables. We note that a proposition is a closed formula without
quantifiers. A theory is a collection of closed formulas.

Let T be a theory over C. An interpretation M is a model of T, written
1= M T, if M is a model of every formula of T. A theory T is said to be
satis:6.able if it possesses a model, and unsatis:6.able otherwise.

A key idea in logic is the relation of consequence. The fact that a closed
formula is a consequence of other closed formulas does not depend on the
interpretation.

Given a closed formula P, and a collection of closed formulas r, we say that
P is a logical consequence or a semantic consequence of r if every model of
r is also a model of P. We write this r 1= P.

The relations 1= and 1= M are easily distinguished: 1= expresses a
~ relationship between formulas, while 1= M expresses a relationship
between a (mathematical) model and a formula.

Here are several properties of 1=:
- if r 1= P, a fortiori r, Q 1= P ;
- if r 1= P, and if P 1= Q, then r 1= Q ;
- r 1= expresses that r is unsatisfiable; if r 1= P, then r, -,p 1=.

The consequences of r form a set of formulas called the theory generated
by r. The elements of r are called axioms of this theory. For example, the
theory generated by the axioms (5.1), (5.2) and (5.4) comprises the formula
is_subscribed(Claudio,te127).

A statement such as (5.4) is not true in all interpretations; however, it is
the case of statements such as:

(P /\ Q)"*P ,
(3xVyP(x, y))"* (Vy3xP(x, y))

A closed formula T which is true in every interpretation is said to be valid,
written 1= T; the intuitive meaning is that T is a semantic consequence without
assumption. A valid proposition is called a tautology. We note that a valid
formula is a semantic consequence of any theory; it is therefore not useful to
introduce valid formulas amongst axioms of a theory.

5.6.2 Some Results of Model Theory;
Limitations of First-Order Logic

Classical Logic 93

The activity of modeling, whether in mathematics or computer sci
ence, often necessitates the search for a system of axioms charac

terizing the model under consideration. Occasionally, such a system does not
necessarily exist within the given logic, typically first-order logic. Model theory
provides tools which enable the detection of this sort of situation.

To illustrate this proposition, here is a simple example drawn from
commutative group theory. We consider first the axioms, over the equational
first-order language formed from the constant 09 and the binary function +,
written in infix form:

VxVy x + y = y + x ,
VxVyVz (x + y) + z = x + (y + z) ,

"Ix x +09 = X ,

Vx3y x + y = 09 •

The following are two properties of commutative groups, based on the concept
of a divisor, that we would like to characterize axiomatically: we say that x is
a divisor of y of order n if x + ... + x = y.

... ,
n times

A commutative group is of finite order if every element is a divisor of o. A
commutative group is divisible if every element possesses a divisor of order n,
for all n. These concepts can be axiomatized in second-order logic, quantifying
over the integer n. We can take

"Ix 3n nat(n) A (times(n,x) = 09 ,

"In nat(n) => Vx3y times(n, x) = y ,

respectively for the axioms. The function times can be axiomatized by:

"Ix times(O, x) = 09 ,

"In nat(n) => "Ix times(S(n), x) = x + times(n, x) .

The problem is that the predicate nat is not first-order: the first-order axioms
nat(O) and "In nat(n)=>nat(S(n», express that 0, S(O), S(S(O», etc. are natural
numbers, but it must be added that these are the only ones. We have the
following negative results:

- it is impossible to characterize the class of divisible groups by means
of a finite number of first-order axioms;

- it is impossible to characterize the class of finite order groups by
means of a set (even an infinite set) of first-order axioms.

Moreover, we cannot axiomatize the real numbers in first-order logic.
The proof of these results (see [Bar77, Ch. 1]) involves the following two theo
rems, which no longer hold true at second or higher orders.

Theorem 5.1 (Lowenheim)
Let T be a countable set of axioms; if there is a model of T, then there is a
model of T whose set of elements is countable.

94 Understanding Formal Methods

Theorem 5.2 (compacity)
A first-order theory T admits a model if and only if every finite part of T
admits a model.

We can adapt this reasoning for various data structures of computer
science and obtain similar results of impossibility, expressing that

these structures cannot be characterized by a finite number of first-order ax
ioms. A simple example mentioned in [Jon90) is Veloso's stack. It has been
known for a long time that normal first-order logic is not suitable for systems
having only finite models [AU79). Logics with the concept of a fixed point were
conceived to remedy this.

5.7 Notes and Suggestions for Further Reading

Propositional logic, first-order logic, and other issues discussed in this chapter
are introduced in a number of texts. Particularly useful are the two volumes
by Cori and Lascar [CLOO, CLOl), which are centered around the concept of a
model. For a more detailed presentation of multi-sorted logic, see [Lal93) and
[GaI86). [GG90) address the issue from a philosophical point of view.

Reference works on model theory include [CK90). A good introduction to
this topic can also be found in the first two chapters of [Bar77).

6. Set-theoretic Specifications

This chapter is devoted to formal methods based on set theory. In set theory,
a system is modeled using sets which are either considered to be primitive sets
(for instance, sets of individuals, of books, of keyboards, etc.) or constructed
by means of combinations of primitive subsets using set-theoretic operations.
Specific languages can be distinguished from each other according to the way
set-theoretic concepts are used, their underlying logic or how they assist in the
production of programs from specifications. In this chapter we will introduce
some well-known formal notations representative of the approach: Z, which
appeared in the 1970s, VDM, which was born in the 1960s, and B, which was
developed in the 1990s.

6.1 The Z Notation

Z can be roughly described as a syntactic envelope built on top of usual clas
sical set-theoretic notations. The concept of a set is used as a universal means
of expression. A first, and distinct, advantage of this approach is uniformity:
the state space of a system is modeled as a set, types are sets, even operations
are sets. Indeed, the latter are modeled as relations, that is, subsets of the
Cartesian product of the set of states. Z provides symbols for various kinds of
relations (functions, injections, partial injections, etc.) and a number of oper
ators allowing one to construct relations from previously known relations.

6.1.1 Schemas

In Z, the state space and the operations of a system are declared by means of
tables called schema. A schema is made of two parts. In the first part, we declare
fields much as we would declare variables in a language like Pascal. Each field
has a type which is constructed from built-in sets (e.g. the set of integers) and
the usual set-theoretic operators (union, Cartesian product, etc.). The second
part of the schema states constraints on the possible values of the fields by
means of logical assertions.

A schema is surrounded with a frame. Its name is written in the first line of
that frame. A horizontal line separates the declaration part and the predicate
part. When several predicates are present, they are implicitly connected by a
conjunction.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

96 Understanding Formal Methods

.--____ Example _ schema ____ _
x,y : IE

x~O
y~5

x+y=lO

This simply denotes the definition of a set by comprehension, the usual math
ematical notation is:

{(x, y) E IE x IE I x ~ 0 1\ Y ~ 5 1\ x + y = 1O}

However, the schema notation becomes more interesting when the number of
fields and the volume of assertions increase.

Z provides mechanisms for schema composition that allow one to structure
a specification. For instance, the previous schema can be obtained through the
composition of the two next schema .

...--__ ---.first _piece---- ...--___ second _piece----
x : IE y:IE

More precisely, we get the first schema by adding a constraint on both x and y .

...--____ Schema _ example ____ _
first_piece
second_piece

x + y = 10

This schema can also be regarded as a subset of:

{x E IE I x ~ O} x {y E IE I y ~ 5} ,

that is, a relation between first_piece and second_piece. We can of course
introduce a schema that expresses the last constraint separately:

...--______ constraint ______ _
x,y : IE

x + y = 10

The conjunction of our three schema can simply be written:

Schema_example ~f
first_piece 1\ second_piece 1\ constraint.

Set-theoretic Specifications 97

Other logical operators are allowed as well. Thus

other_schema ~
(first_piece V second_piece) /\ constraint

represents:

....--_____ other schema _____ _
x,y : Z

x~OVy~5

x+y=lO

Those combinations constitute the schema calculus. If SI and S2 are two
schema and * is a logical operator (V, /\, etc.) the expression SI * S2 rep
resents the schema whose first part is the juxtaposition of declarations of SI
and S2, and whose second part is Pr * P2 where PI (respectively P2) is the
predicate present in the second part of SI (respectively S2). For the first clause
to make sense, we must have no clash between the two declarations: common
identifiers must have the same type.

6.1.2 Operations

The schema introduced up to now allow one to specify the state of a system.
In order to describe an operation, two versions of the state are related: the
state just before the operation and the state just after the operation. Z uses
the following convention: if the first state is defined by variables x, y, z ... , the
second is defined by variables x', y', z' ...

r---___ state ____ _ ..---____ state' ____ _
x : Z x' : Z

x>4 x' > 4

(Actually we don't need to explicitly write state'.) In order to relate two suc
cessive states, we naturally make use of the schema composition notation in
troduced above:

r-------an_ operation _____ _
state
state'

P(x,x')

We see that the predicate we have in the second part of a state schema repre
sents the invariant of the system we are describing: it will be implicitly respected
by all operations which act upon the system.

98 Understanding Formal Methods

We can still use the schema calculus: here a complex operation can be
decomposed into several simpler cases (using a disjunction of schema); or, it can
result from the conjunction of several constraints on before-and-after relations
on the state of the system.

6.1.3 Example

Let us try to formalize the search for an element in a table. We need a predefined
set which contains all elements that are, or could be, present in the table. We
call this set U. Formally, we declare it using square brackets:

[U].

The current state of the table is a subset of U, we represent it by a variable T
whic~ is a member of P(U).

Let us now consider the predicate P. In Z, a natural thing to do is to consider
Ptrue, the set of elements verifying P, with Ptrue E P(U). This predicate is
not necessarily defined everywhere, hence we introduce the set Pdef, which
contains Ptrue and represents the domain where P is defined. In other words,
we agree that

- P(x) is true if x E Ptrue,
- P(x) is false if x E Pdef and x f/. Ptrue,
- P(x) is undefined if x f/. Pdef.

The system state is represented by the following schema.

r---_______ Table _______ _
Ptrue, Pdef : P(U)
T : P(U)

Ptrue C Pdef
Tc Pdef

However, we have to ensure that Ptrue and Pdef are kept constant. Then we
consider only composed operations built up from the following.

r---______ Allowed_ op ______ _
Table
Table'

Ptrue' = Ptrue
Pdef' = Pdef

The operation we aim at returns an element of T verifying P if there is one. In
order to take failure into account, we use a variable b as indicated on page 20.
Its domain is {true,false}, and it is declared as follows:

bool ::= true I false .

[U]
bool ::= true I fal$e

Ptrue, Pdef : JP>(U)

Ptrue ~ Pdef

Set-theoretic Specifications 99

.--____ Table ____ _
T : JP>(U)

T ~ Pdef

.--_______ ,Search, _______ _
STable
x! : U
b! : bool
b! = true => x! E T 1\ x! E Ptrue
b! = fal$e => 'r/x E T • x ¢ Ptrue

Figure 6.1: Z $pecification of a table search

The specification of the search operation indicates the expected values of x and
b, and it states that T does not change .

.--_______ Search ___ . ____ _
Allowed_op
x:U
b : bool

T'=T
b = true => x E T I\. x E Ptrue
b = false => ("Ix E T) x rf. Ptrue

Remarks. In some cases, the actual notation in Z slightly differs from set
theory. Here P(U) and ("Ix E A) P(x) should be written IP'(U) and "Ix EA.
P(x). In Z, the symbol C represents strict inclusion, whereas we should use <;.
Moreover, lexicographic rules of Z allow identifiers to end with a question mark
or an exclamation mark. In Z, it is understood that they represent input and
output arguments of an operation, respectively. For consistency then, here we
should replace x and b with x! and b!.

It is also possible, in Z, to define constants with axioms. It is then better
to introduce Ptrue and Pde! in this way and to remove Allowed _ op. Finally,
the abbreviation :=: Table can be used for operations that do not modify the
table. This is equivalent to declaring Table, Table' and to stating that nothing
changes (that is, T' = T). A complete specification of the search for an element
in a table using this notation is given in Figure 6.1.

6.1.4 Relations and Functions

In Z, as in set theory, the concept of relation is more primitive than
the concept of a function. Let us see what happens with an assertion

100 Understanding Formal Methods

as simple as I(x) = y. Recall that, in first-order logic, I would be interpreted
as a total function, thus the expression I(x) would make sense. In Z, one often
manipulates partial functions or even relations instead of total functions.

In fact the Z type system leads one to consider I from A to B as
an element of P(A x B), i.e. a relation from A to B. The notation I(x) is
then questionable and a number of authors prefer to avoid it. For instance, the
assertion f(x) = y may be represented by another one which states that x is in
the inverse image by I of the singleton {y} - the function from P(B) to P(A)
that maps any subset Y of B to the set of elements a of A such that I(a) E Y,
denoted by I-ILl, is always total function:

The price to pay is that notations become heavy in many situations
where it is straightforward to use functions. A specification style using rela
tional combinators (operators for constructing complex relations from simpler
ones) helps to avoid this problem. But the notation becomes more difficult to
understand.

6.1.5 Typing

Z semantics are based on the Zermelo-Fraenkel system, without the
axiom of choice (which is not used here) and without the replacement

schema (cf. § 7.2) [Spi88, CGR93a]. Within ZF, the latter restriction ensures
the existence of a class of compartmentalized sets, thus providing a notion of
type.

First, we have built-in sets like Z (positive, null or negative integers)
and other sets which are application-specific. We denote these sets by B I , B 2 , •••

in what follows, and we consider that they are disjoint. Z includes appropriate
restrictions on the use of U that prevent us from forming the union of Bi and
B j with i :/; j or constructing a set made of elements taken in different built-in
sets. Then the type of a simple element x can be taken as the set Bi of which
it is a member. The type of x is also the maximal set S such that xES.

The property of compartmentalization is preserved when we intro
duce sets of subsets and Cartesian products of previously formed maximal sets.
Then Bi can be regarded as base types from which we can form composed types
P(Bi), Pi x Pj, P(Pi X Pj), etc. The type of a compound element is again the
maximal set of which it is a member. Thus it is not too difficult to check that
a Z specification is well typed. Criticisms of this type system will be addressed
in § 10.2.10.

In § 2.3.4, we showed that it is important to be able to construct sum
types. This concept is available in Z and is referred to as a free type.

We have already seen a simple example of free type: bool ::= true I false. This
statement amounts to the declaration of a set (boon, two members in this set

Set-theoretic Specifications 101

(true and false), and assertions that the latter are distinct elements and are the
sole members of bool. Let us consider a more significant example: binary trees.
This example is also more complex because it is a recursive data structure.
We declare it in Z as follows: tree ::= leaf{{N) I bin{{tree x tree». Here, leaf
and bin are injections (respectively from N to tree and from tree x tree to tree)
that have disjoint ranges and, taken together, cover tree. Simple constructors,
like true and false, can be seen as injections from a singleton set. The essential
ideas come from algebra and type theory (see Chapters 10 and 12). The point
is to guarantee that the axioms induced by a free type are consistent (they
don't entail the absurd). To this effect, constructors (i.e. bin, leaf, true and
false in our examples) must respect a number of rules. Roughly speaking, as
constructors are injections, their domain cannot have a larger cardinality than

. their range, that is, the free type we want to define; for instance their domain
cannot be the powerset of the free type. In the Z framework, there is a further
technical complication because constructors are basically relations rather than
functions.

6.1.6 Refinements

Refining a specification consists of systematically transforming abstract con
cepts (sets, relations, non-deterministic constructs, etc.) into features available
in programming languages: arrays, chained data structures, usual control struc
tures, functions, etc.

Refinement is more difficult in Z than in other formal methods because there
is no convenient notation for usual programming constructs such as loops and
recursive functions. These concepts are not very easy to handle in Z. However,
it is possible to consider data refinement, that is, to relate an abstract data
model to a concrete one closer to programming language data structures. For
example, in order to represent a set of elements of U by an array (like T in
our table example), we can introduce a function t from I to U, where I is an
interval of integers.

6.1.7 Usage

Z is above all a notation for writing specification documents. Since its very be
ginning, its development was oriented towards including richer mathematical
notations, e.g. relation combinators. It was not designed with the intention of
being supported by software tools. One may quite reasonably guess that this
would, in any case, have been beyond the capacities of technologies available
in the 1970s. Support tools appeared in the 1990s, mainly for editing and type
checking. A recent proof assistant for Z is ZjEVES [Saa97]. On the other hand,
many introductory and more avanced books are available (see the bibliographic
notes at the end of this chapter) and there is an active user community, espe
cially in Great Britain where a number of industrial projects were developed

102 Understanding Formal Methods

or re-engineered with Z. Some of these are reported in [CGR93b], [HB95] and
[HB99].

Z is mainly used for specifying data and transformations of data. In prin
ciple, we can expect to go further, thanks to general set-theoretic concepts
included in Z. For instance, can we study interactions between software com
ponents running in parallel on different machines? Trajectories of such com
ponents can be formalized in Z. However, we are still a long way from the
mathematics needed for specialized formalisms such as labeled transitions or
process algebra (see Chapter 8). Moreover, the behavior of such systems is very
complex and cannot be fully understood without automated support tools.

6.2 VDM

6.2.1 Origins

VDM (Vienna Development Method) was initially a language description
method inspired by denotational semantics. Briefly, recall that denotational
semantics interprets programs by mathematical functions (cf. § 2.6).

We know that a program may not terminate for certain input data.
In the general case, a program is then modeled as a partial function

- see the concept of partial recursive function in § 3.3.4 and § 3.7.3. On the
other hand, total functions are much easier to handle in mathematics. In order
to recover total functions, basic sets of values (integers, Booleans and so on)
are augmented by an additional value denoted by 1., which represents the
undefined.

1. can be seen as an approximation of all other values in some sense.
The rough idea is that 1. represents a value we know nothing about. To for
malize the notion of approximation, we consider a relation < such that 1. < v
for all "ordinary" v and such that two "ordinary" values are not related by <.
At the moment we have only two levels of approximation: a very bad one (1.)
and a perfect one (the value itself). But for pairs we have more possibilities:
either we know nothing «(1.,1.), which can be considered equivalent to 1.), or
we know one of the two components «(VI, 1.) or (1., V2)), or we know both of
them «(VI,V2». We have 1. < (VI'1.) < (VI,V2) and 1. < (1.,V2) < (VI,V2) but
(VI, 1.) and (1., V2) are incomparable. In the case of functions defined over an
infinite set such as N, the structure of approximations becomes richer and we
need concepts of limits coming from topology.

Spaces endowed with a relation < satisfying adequate properties are
sometimes called domains. Introduced by Dana Scott in 1969 they playa cen
tral role in denotational semantics and their theory has been studied in depth.
A pedagogical reference is the book of Stoy [Sto77]. In this book we never use
the terminology domain in the technical meaning mentioned above, but in the
ordinary sense of set.

Set-theoretic Specifications 103

The developers of VDM chose to use the usual set-theoretic concept of func
tion rather than the more complex' concept introduced in Scott domains. The
notation used in the Vienna method was first called Meta-IV, then VDM-SL
(VDM Specification Language). Nowadays, we often use VDM for both the
method and the language, and we follow this convention in what follows.

A consequence of the denotational semantics background of VD M is that the
concept of (partial) function is more primitive here than the concept of relation.
If we need a relation from A to B, we can represent it by a function from A x B to
bool. Z operators for manipulating relations (sequential composition, domain
or range restriction, etc.) are still present in VDM but apply to functions.

6.2.2 Typing

Compound objects of VDM are similar to Z schema. Typing is considered from
a different perspective, however: in VDM, a piece oflogical information declared
as the invariant of a compound object is considered as a part of its type, while
in Z the type would have been the largest set containing the object. It is
thus possible, in VDM, to construct sets having elements of different kinds as
members, but type checking is no more decidable: it yields proof obligations,
that is, assertions that can be automatically stated but that in general can be
discharged only with human support.

6.2.3 Operations

Operations describe changes in the object state. They can be specified in an
implicit or an explicit manner. The implicit manner consists of providing a
precondition! and a postcondition on objects manipulated by the operation.
This is similar to operation descriptions in Z, up to a notational variation: in
Z the new state gets a decoration (" I") while in VDM it is the previous state
("-'-"). For example, incrementing x can be specified by x = ;-+ 1. The explicit
manner for defining operations is closer to refinement than to specification. It
consists in describing an algorithm by means of usual constructions (sequence,
selection, loop, etc.). In that case, however, the computation steps should be
annotated by logical assertions.

6.2.4 Functions

In addition to operations, it is possible to define functions in VDM. In contrast
with VDM operations and with functions we find in imperative programming
languages, VDM functions do not involve any state change. In fact, we are
encouraged in VDM to generously use function definitions in specifications. As
for operations, functions can be defined in an implicit manner, by means of a

INote that preconditions have a different status in Z and YOM: in VOM they are
given in the VOM specification, whereas they are calculated in Z.

104 Understanding Formal Methods

precondition on the arguments, and of a postcondition relating the arguments
with the result, or in an explicit (algorithmic) manner. Recursive definitions of
functions are allowed.

Allowing recursive or even algorithmic definitions of functions at the speci
fication level may seem surprising at first sight. However, a number offunctions
can hardly be described otherwise: think of the factorial function or calculating
income tax.

6.2.5 Three-valued Logic

In YOM, functions are defined and then used in the specification of operations
or of other functions, including implicit definitions. In other words, a logical
assertion (an invariant, a precondition or a postcondition) can contain occur
rences of functions which are defined in another part of the specification. This
provides interesting opportunities for structuring VOM specifications. At the
same time, this has significant consequences for the underlying logical system.
Indeed, functions defined recursively or in an algorithmic way are often partial
functions. Then the usual framework of two-valued logic turns out to be too
narrow.

Let us consider for example an assertion such as:2

Va,b b>O:::} div(a , b)xb::::; a < div(a,b)xb+b, (6.1)

telling us that di v performs an Euclidian division. It is quite easy to find an
explicit definition of di v that does not terminate when b is null. In this case
di v(a, b) has no value, hence it becomes impossible to give the value true or
false to the logical expression a ::::; di v(a, b) x b < a + b. However, we feel that
(6.1) should be given the value true, since the value of b > 0 is precisely false in
the litigious case: we know that the value of f :::} P is true whichever the value
true or false of P.

In order to deal with such situations, VOM makes use of a three-valued
logic. Besides false and true, we have 1- which denotes the undefined value.
We recognize here ideas coming from denotational semantics, which are at the
roots of YOM. Truth tables are adequately extended, for example the value of
f:::} 1- is true. However, several three-valued logics are possible. Selecting one
of them was a design decision of YOM, and unusual deduction rules could not
be avoided (d. § 5.4).

6.2.6 Usage

A number of VOM applications can be found in language definitions. Despite
its name, VOM is more a notation than a method. It is supported by a num
ber of tools. An experimental proof assistant is described in [JJLM91]. Later
on, protyping and simulation tools were developed. In the family of YOM, we

20f course, x ~ y < z is an abbreviation for x ~ y /\ Y < z.

Set-theoretic Specifications 105

can cite Raise, which combines the VDM description of data, operations and
functions, with esp, a process algebra for describing message exchanges and
synchronization between parallel processes.

6.3 The B Method

The B method can be regarded, to some extent, as a descendant of Z: it was
designed by one of the founders of Z, J-R. Abrial, and it maintains the set
theoretic notations used in Z. One of the big differences is that B provides
a development process covering specification, refinement, and implementation
steps. The way data and operations are presented and structured is also quite
different: it is close to imperative programming languages such as Pascal. More
precisely, we have the language of guarded commands of Dijkstra (cf. § 4.3.3)
enriched with data structures expressed in the set-theoretic notations of Z,
providing a uniform framework for specification and development. The main
features of Bare:

- a specification language (called abstract machines);
- a refinement and implementation technique;
-- proof obligations associated with each development step;
- structuring mechanisms for decomposing abstract machines;
-- tools for supporting and controlling the different tasks.

The B method has been used in industry for several years, notably for
railway equipment and signalling [SDM92, BBFM99J.

6.3.1 Example

In Figure 6.2 we show a B specification of a variation on the problem of search
ing for an element in a table. As in § 2.4.4.1 (see the third specification on
page 28) we consider here the case of the search for an integer in an interval.
The role of U in the previous Z specification is played here by N, denoted3 by
NAT. The role of Pdefis played by the interval [minD .. maxD[and the role of
T by [min .. max[. The predicate P here is called4 Pr and the operation Search
returns two results, bb and xx. Note that in Z, P was represented by the set
Ptrue whereas here we take a predicate, seen as a mapping from [min .. max [to
]ff, (this set is denoted by BOOL in B).

Intuitively, we can imagine that the work space of this machine is an array of
Booleans (Pr) having min and max as bounds, which are themselves between
minD and maxD. The latter are fixed once and for all, while min and max

3In B, NAT actually represents a finite subset of N that can be written [min .. max]
(with min < 0 < max), where min and max are fixed parameters depending on the
hardware architecture to be used at the implementation level.

4Lexicographic detail: identifiers must begin with at least two letters.

106 Understanding Formal Methods

MACHINE table(minD, maxD)
CONSTRAINTS

minD E NAT
o < minD A

A maxD E NAT A
minD $ maxD

VARIABLES

min, max, Pr, bb, xx
INVARIANT

min E NAT A max E NAT A
minD $ min A min $ max A max < maxD A
Pr E min .. max-l ~ BOOL A
bb E BOOL A xx E NAT

INITIALIZATION

OPERATIONS

1* without interest here * /

END

Search ~
IF 3tt. tt E min .. max - 1 A Pre tt) = true
THEN

ELSE

END

bb := true II
ANY tt

WHERE tt E
THEN xx .-.-

END

bb := false II

min .. max - 1 A pre tt) = true
tt

ANY tt WHERE tt E NAT THEN xX.- tt END

Figure 6.2: Table search specification in B

could vary during allocation or disposal operations beyond the scope of this
chapter.

Here we chose a fairly low abstraction level for the specification of data
structures. But nothing is decided about the search algorithm itself.

6.3.2 Abstract Machines

In B, a specification is structured into units called abstract machines. They
encapsulate the state of a subsystem as well as operations modifying it or
returning a view of it. The idea of encapsulating data and related operations
together is well known in computer science, it has most notably been formalized
by abstract data types. The main components of a B abstract machine are:

- parameters declaration, constants declaration (none in our example) and
above all variables declaration - they constitute the internal state of the
machine;

- the statement of an invariant, a logical assertion relating the variables, pa
rameters and constants just declared; their type is included in the invariant
(the concept of type in B is the same as in Z); the part of the invariant

Set-theoretic Specifications 107

which relates only parameters and constants is declared separately (in the
CONSTRAINTS clause) and there is also a specific clause for constants only;

- the definition of the initial state;
- operations, expressed with generalized substitutions, which are a generaliza-

tion of guarded commands.

Proof obligations are automatically generated in order to ensure that the ini
tial state as well as operations respect the invariant. This is in contrast with
Z where, as a simple consequence of the schema calculus, the invariant is nat
urally included in the postcondition of operations. In some sense B seems less
declarative.5 However, the new state returned by an operation can be specified
in a fairly abstract way using logical and set-theoretic notations. Moreover, we
can say that B achieves a separation of concerns: we have the opportunity to
establish invariant preservation in abstract terms, before going into low level
details. It is indeed possible in B to adopt a specification style where the in
variant is automatically preserved. But this amounts to delaying the work until
later development steps: refinement proof obligations will be more complex. It
is far better to work on proof obligations as early as possible. They are an
opportunity to check the consistency of the specification and often to correct
it, hence the global correctness proof is divided into smaller units.

We see that design decisions for B proof obligations take the whole devel
opment cycle (from specification to implementation) into account. Generalized
substitutions have been designed with the same concern in mind.

6.3.3 Simple Substitutions and Generalized Substitutions

A simple substitution is simply an assignment x := E. Indeed we know from
§ 4.3.3 that the weakest precondition for this transformation to establish the
postcondition Q is [x := E]Q, that is, the formula Q where E is substituted
for all occurrences6 of x.

Generalized substitutions are combinations of simple substitutions. Among
these combinations we have the sequence and the loop, in the language of
guarded commands; however, these constructs are allowed only in refinement
stages. At the level of specification the following combinators are available:

- parallel composition, corresponding to simultaneous substitutions; for exam
ple x := E II y:= F corresponds to x, y := E, F;

- the selection IF C THEN 51 ELSE 52 END, which has the expected intuitive
meaning; from a logical perspective, it transforms the predicate Q into C =}

[51]Q 1\ -,C =} [52]Q;

5 A declarative language states what should be done, while a prescriptive language
states how it is done. One can consider that we have a specification in the first case
and a program in the second case. This distinction was devised in the 1970s in the
framework of programming languages, because very high level programming languages
like Prolog could be presented as executable specification languages.

6 Actually, only free occurrences, i.e. occurrences which are not in the scope of a
quantifier, see Chapter 5.

108 Understanding Formal Methods

Search deC

PRE 3tt. tt E min .. max - 1 /\ Pre tt) = true
THEN

ANY tt

END

END

WHERE tt E min .. max - 1 /\ pre tt) = true
THEN xx:= tt

Figure 6.3: Strengthening a precondition in B

- unbounded choice ANY v WHERE P(v) THEN 5 END, where 5 depends on
the dummy variable7 v, sometimes shortened in @v P(v) -+ 5. This substi
tution behaves like 5 where the choice of v is arbitrary, provided P(v) is
true. Nothing is said about the intended implementation of this statement: a
pseudo-random choice between the different permitted values of v is only one
possibility among many others, and in practice it will never be chosen be
cause it is complicated and inefficient! In fact one often refines this construct
using a loop, as would be the case in the table search example;

- introduction of a precondition P: PRE P THEN 5 END, sometimes shortened
to P I 5. This substitution is purposely defined only for states verifying P. Its
practical use is for stating conditions which guarantee that a given operation
can be performed successfully. Ensuring that the operation is called when the
aforementioned precondition is true must be done by its user. For example,
Figure 6.3 gives a weaker specification of table search, which conforms to the
suggestion of § 2.3.5 on page 22.

The construct IF C THEN 51 ELSE 52 END is described using two
primitive constructs, which are:

- the guard G -+ 5, which behaves like the substitution 5 from a state
where the property G is true;

- the choice between two substitutions 51 0 52.

Their logical definition is sLnple:

[G -+ 5] Q def G =} [5]Q
[51 0 52] Q def [51]Q /\ [52]Q

Then we take:

note that Dijkstra's non-deterministic alternative construct

(6.2)

(6.3)

7The name of this variable is of concern only inside the block ANY ... END under
consideration.

Set-theoretic Specifications 109

where B2 is not necessarily the negation of B 1 , corresponds here to

Bl V B2 I Bl -+ Sl 0 B2 -+ S2

(see equation (4.16) on page 73).

Unbounded choice ANY ... END is a generalization of 51 0 ... 5n to
an arbitrary number (it can be infinite) of substitutions. Its formal definition
is:

[@v P(v) -+ S] Q ~f Vv P(v) => [5]Q , (6.4)

which is quite natural if one regards V as an infinite conjunction.

6.3.4 The B Refinement Process

At the specification stage, abstract machines use non-deterministic constructs
and the whole power of set-theoretic notations, while algorithmic constructs
(sequences, loops) are not allowed. During refinement stages, set-theoretic data
structures are progressively replaced with data structures closer to program
ming language data structures, non~determinism is eliminated and generalized
substitutions corrresponding to sequences and loops are introduced.

REFINEMENT

REFINES

VARIABLES

tablei(minD, maxD)
table

mini, maxi, Pri, xxi
INVARIANT

mini = min A maxi = max A
Pri = Pr A xxi = xx A
mini :5 xxi A xxi:5 maxi A
xxi = maxi {:::} bb = false

INITIALIZATION

OPERATIONS

1* Without interest here * /

END

Search def

IF 3tt. tt E mini .. maxi - 1 A Pri(tt) = true
THEN

ANY tt

END
ELSE

WHERE tt E min1..maxi - 1 A Pri(tt) = true
THEN xxi := tt

xxi := maxi
END

Figure 6.4: B refinement of table search

110 Understanding Formal Methods

Data refinement is illustrated in Figure 6.4 for the example of table search.
This refinement step aims essentially at eliminating bb. In the refining abstract
machine we declare a new space of variables, whose link with original variables
is defined by the invariant. In a second stage we could refine the remaining
non-deterministic choice by a.loop, along the lines indicated on page 3l.

Refinement steps are under the control of proof obligations ensuring that
invariants are preserved and that a refining machine conforms to the more ab
stract machine that it refines. Proof obligations are completely defined in the
underlying theory of B and they can be automatically generated. The support
tools for B include syntax and type checkers, proof obligation generators, code
generators and ad hoc automated proof assistants able to deal with proposi
tionallogic, first order logic and a huge number of set-theoretic algebraic rules.

The target of code generators is a minimal and simple subset of languages
like C, Modula or Ada. Such subsets can reasonably be considered as secure,
since only the easiest parts of the compilers are concerned. Indeed, this is made
possible because high-level features of programming languages can be consid
ered as redundant here: they are the concern of the specification, whereas the B
development cycle starts from truly abstract specifications. At the implemen
tation stage, only low-level data structures and instructions are needed.

6.3.5 Modularity

If we want to develop a whole real-scale system, starting from a huge monolithic
specification would be unmanageable. In B it is possible - and recommended!
- to decompose a specification into several machines. The big win is that
refinement stages are then performed consistently and independently. In par
ticular, proof obligations become smaller, they can be dealt with separately,
and maintenance is made easier.

6.4 Notes and Suggestions for Further Reading

Many textbooks present Z and VDM in a manner that is within the reach of
everyone, for example [PST91, Wor92 , WL88] for Z and [Jon90] and [JS90]
for VDM. Mike Spivey's reference book on Z is still very useful, though the
language has evolved since its publication [Spi89]. The book Understanding Z
[Spi88] by the same author is not a pedagogical introduction, but gives an early
definition of the Z semantics. Free types of Z are described in [Spi89], [Art91]
and more recently in [Art98] and [TVDOO].

The reference book on B by J.-R. Abrial [Abr96] is both a description of
its theoretical foundations and a very detailed definition, illustrated with many
examples.

The reader interested in refinement techniques may consult the article by
Gardiner [GM91] and the book by de Roever [dRE98].

7. Set Theory

Set theory has a strong influence on formal methods. A straightforward reason
for this is that the specification languages considered in the last chapter rely
directly upon set theory. More significantly, set theory has strong links with
logic:

- as a metalanguage,l it provides a semantics for logic via the concept of a
model; as an interesting consequence for the use of formal methods, we obtain
a means of interpreting logical specifications (cf. § 3.3.1 and § 5.6);

- the axiomatized version(s) of set theory is (are) a first order theory that can
be studied as a formal system; for instance, one can try to show that it is
consistent (without contradiction). Even more important for us, formaliza
tion techniques used in the development of a number of important concepts
from set-theoretic primitive concepts can be adapted to the practice of spec
ification methods.

We concentrate here on the Zermelo-Fraenkel axiomatization of set theory.
This will be a good opportunity to present a typical technique for enriching
a language. Other techniques, e.g. for handling functions, are similar to the
ones used in Z and in B. We also comment on how we may deal with inductive
or impredicative definitions (corresponding to so-called recursive definitions of
programs or data structures).

7.1 Typical Features

7.1.1 An Untyped Theory

A number of set-theoretic operations, such as intersection and union, take ar
guments sets that, intuitively, have elements of the same kind as members. In
contrast, the Cartesian product can be constructed on sets of different kinds
and it returns a set having yet another kind. The powerset of a set is not of
the same kind as the set itself. Distinguishing the kinds - or what we call the
types - of sets or elements provides an excellent protection mechanism against
many mistakes and errors. But this would excessively hamper the development
of set theory. Just think of the way natural numbers are represented in set the
ory (we will revisit it in § 7.3.1). Moreover, what type should be given to the

lSee page 152.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

112 Understanding Formal Methods

empty set? Or to the identity function? The answers to these simple questions
are not all that simple.2 Thus set theory is essentially an untyped theory. The
development of the theory illustrates that it is actually harmful to decompose
the universe into elements on the one side and sets on the other. Any item can
occur on the left and on the right of the E symbol. Hence, it is simpler to decide
that all items are sets, jumbled together.

7.1.2 Functions in Set Theory

Recall that functions are not a primitive concept in set theory. A function from
E to F is a particular relation, that is, an element of P(E x F), satisfying a
number of properties (uniqueness of the result, and with a domain equal to E if
the function is total). To be rigorous, it raises a notational issue: if f and x are
two symbols (Le. two sets), f (x) makes sense only if we have proved beforehand
that f satisfies the necessary properties and that x is in the domain of f.

The development of set theory involves a mechanism of theory extension,
that allows one to enrich the language step by step with new function symbols or
new predicate symbols. There is a similar process well known amongst computer
scientists, viz. enriching a programming language with user-defined procedures.

7.1.3 Set-theoretic Operations

A very convenient feature of set theory is the collection of operations provided
for constructing complex sets from simple sets. Moreover, union, intersection,
set difference (symmetric or otherwise), and Cartesian product satisfy many
interesting algebraic properties: U, nand \ are commutative and associative;
U and n are idempotent; 0 is an identity element of both U and of \, and an
absorbing element of n. One can also identify (X x Y) x Z with X x (Y x Z)
by means of a natural bijection, and X x {0} and {0} x X with X, which
amounts to saying that x is associative as well as admitting {0} as an identity
element.

These identifications can be seen as abuses of notation, but they
are justified from the viewpoint of category theory: intuitively, a

product is considered as an object of the theory - a set here - endowed with
projections allowing one to retrieve the components of a tuple.

Let PI and P2 denote the two projections in the case of 2-uples (cou
pies), tI, t2 and t3 the three projections in the case of 3-uples (triples); rep
resenting X x Y x Z by (X x Y) x Z amounts to taking tl ~ PI 0 PI,

t2 ~f P2 0 PI and t3 ~f P2; choosing X x (Y x Z) amounts to taking tl ~f PI,

t2 ~f PI 0 P2 and t3 d~f P2 0 P2. The chosen representation itself matters little
because triples are manipulated only through tl, t2 and t3. We now actually
have a kind of abstract data type.

2Typing is good because it prevents us from expressing meaningless things. The
problem is that it could equally well prevent us from expressing perfectly good and
meaningful things. Designing a good type system is then a significant issue. We revisit
this question in Chapter 11.

Set Theory 113

But if we want to deal with these operations on the same footing as with
usual algebraic operations, we come up against an obstacle. Our operations take
sets as arguments and return a set. The role of the reference set would then be
played by the set of all sets, an inconsistent notion (see Russell's paradox in
§ 3.1.3).

This leads set theorists to distinguish two kinds of collections, sets and
classes. Thus the universe U of all sets is not a set but a class. Operations
can then be defined over members of a class such as U. This works, but the
distinction between class and set can be considered to be somewhat artificial.

7.2 Zermelo-Fraenkel Axiomatic System

The are quite a few Zermelo-Fraenkel axioms (ZF in the following). They are
defined over a very simple language, without symbols for the union, the inter
section, nor the Cartesian product of sets. The latter can be defined by means
of clever encodings. Apart from equality, the only primitive concept is member
ship. In summary, Zermelo-Fraenkel set theory is a first-order theory defined
over an equational language having basically only one predicate symbol (E)
apart from =, and no function symbol.

All items are taken from the same grouping. If one looks for a
model of set theory, in the sense of § 5.1.3, this grouping or jumble is

interpreted as the domain, that is a set, but at the metalanguage level. Items
in turn are interpreted as sets, as intuitively intended, only at this second level
of interpretation. This is the so-called standard interpretation, but there is
nothing to prevent us from imagining other interpretations. We even know, by
an application of Lowenheim's theorem (§ 5.6.2), that a denumerable model of
ZF exists.

We now briefly present the system of Zermelo and Fraenkel, as described
in [Sho77]. This material can be compared, for example, with the underlying
theories of Z and B, which are close to, but not exactly, ZF.

7.2.1 Axioms

First, recall that from an axiomatic viewpoint, "set" is nothing but a word, just
like ''point'' or "line" in the axiomatic presentation of geometry. Explaining the
meaning of manipulated objects is beyond the scope of an axiomatic theory; its
only aim is to let us know the consequences of formulas taken as axioms. The
relevance of an axiomatic theory to the real world is a matter of experience
and not of formal logic. Here, it is crucial to be able to express in a convenient
way that we can form a set y with the elements x satisfying a given property
P. This is not always the case, as evidenced by Russell's paradox. The axioms
aim precisely at defining when this is the case. A formula expressing this fact
is

114 Understanding Formal Methods

3yVx (x E Y ¢:> P)

and we will use the following abbreviation:

Set{x I p} .

Here is the list of axioms.

Extensionality: two sets x and y are equal if they have the same elements:

VxVy Vz (z Ex¢:> z E y) => x = y .

An important consequence of this axiom is the following: if there exists a y such
that "Ix (x E Y ¢:> P), then y is unique. Thus, as SOOn as a property Set{ x I P}
is proved, a set is defined. We say that this set is defined by comprehension,
and it is denoted by {x I p}. Most of the remaining axioms determine the
possible forms of P for which we admit that {x I p} exists.

Powerset: the set of subsets of x is a set denoted by P(x):

"Ix Set{y I Vz (z E Y => z E x)} .

Union: the union of elements of x is a set denoted by U(x) -the notation

U y would be closer to usual conventions:
yEx

"Ix Set{z 13Y(YEX /\ ZEY)} .

Schema of separation: extracting from a given set x the elements y satisfy
ing a property cp(y) yields a set:

"Ix (Vy cp(y) => y E x) => Set{y I cp(y)} .

Schema of replacement: applying an operation F to the elements of a set x
yields a set:

"Ix Set{z 13yyEX /\ z=F(y)} .

In order to define an operation F, one has to extend the language in
the following way. One must first take a formula ¢(u, v) such that for all y,
there is a unique z such that ¢(y, z). (Formally, one proves Vy3z ¢(y, z) and
Vy V zV z' (¢(y, z) /\ ¢(y, z') => z = z'.) Then one introduces a new symbol F
and adds the axiom Vy ¢(y,F(y)). A formula containing F(u), say P(F(u)),
is handled as an abbreviation for "Iv ¢(u, v) => P(v).

The two last axioms are schemas: any instance of the formula cp (respec
tively, of the operation F) provides a corresponding separation (respectively,
replacement) axiom. The separation schema can be deduced from the replace
ment schema but is very important in its own right.

Set Theory 115

Infinity: there exists a set x which has the empty set as a member and such
that for all y which are members of x, there is another member z of x containing
the members of y and y itselp

3x (0 EX) /\ ('t/y y Ex=> y U {y} EX)

This statement is easier to understand if 0 is seen as a representation of 0
(zero) and y U {y} as a representation ofthe successor of y. We will come back
to this later.

Regularity (or foundation): a non-empty set x contains an element y which
is disjoint from x:

't/x (3y y E x) => (3y y E x /\ 't/z z E Y => ...,(z EX») .

This is equivalent (given previous axioms) to stating that the relation E
is well founded. This prevents the construction of infinite chains Xo ... x n .•.

with Xi+! E Xi for all i. In particular there is no set x such that x E x. But it
would be mistaken to think that this axiom aims at avoiding paradoxes: later
in this chapter we will mention another axiomatization of set theory without
the regularity axiom, and which is just as consistent as ZF.

The system composed of the previous axioms is called ZF. It allows one
to recover usual concepts of set theory. In mathematics, a further axiom, the
axiom of choice, due to Zermelo, is needed. The ZF system together with the
axiom of choice is called ZFC. We state here an informal version of this axiom,
which first necessitates the introduction of the concept of a function.

Axiom of choice: for all families x of non-empty sets, there exists a total
function from x to U(x) mapping every element y of x to an element of y.
More simply, given a (finite or infinite) family of sets, this axiom allows one
to choose an element in each of them. This axiom played a key role in our
justification of the principle of well-founded induction in § 3.5.3.

7.2.2 Reconstruction of Usual Set-theoretic Concepts

We see that the empty set, singletons, pairs, intersection, and Cartesian product
are not primitive concepts of ZF. Even binary union is not primitive - we
have "only" the generalized union. It can of course be recovered, as can the
other concepts. Recall that the Cartesian product is needed in order to define
relations and functions.

One proceeds step-by-step in a systematic manner: one shows the existence
and the uniqueness of an appropriate set, then one introduces a corresponding
symbol (this is another application of language extension, previously described
in the replacement schema). Uniqueness is shown using the axiom of extension
ality. For existence, one almost always uses the schema of separation, which
allows us to define a set by comprehension provided we have already found one

3The following formalization uses the abbreviations 0 and U described below.

116 Understanding Formal Methods

in which it is included. This is the key for closing the door on Russell's paradox:
we come back to this in § 7.3.3.

Let us illustrate the process of finding the intersection of x and y. We can
separate (select) the elements of x which happen to be members of y, because
we have:

'v'Z (z E x A Z E y) =? Z Ex.

The schema of separation allows us to infer:

Set{ Z I z E x A z E y} .

Then we are entitled to define:

xny ~f {zIZExAZEY}

The difference can be defined in the same way, but the union cannot. Here are
the main steps, without going into the details:

- The empty set 0 is constructed through the separation of elements satisfying
f in an arbitrary existing set; then one can sequentially form P(0) and
P{P(0)) which is a 2-element set;

- given x and y, one can then form the pair {x, y} using the schema of replace
ment on P{P(0)) where the operation F satisfies F(0) = x and F{u) = y
if -.(u = 0);

- the union of x and y is defined by x U y = U{ {x, y}); it is only at this stage
that we have Set {z I Z E x V z E y},
with x U y = {z I z E x V z E y} ;

- other set operations (intersection, difference, etc.) are defined directly by
separation;

- the concept of an ordered pair is represented by an encoding:

(x,y) = {{x}, {x,y}} ;

the Cartesian product a x b is obtained by separating elements of the form
(x, y) in P(P(a U b)), with x E a and y E b.

7.2.3 The Original System of Zermelo

The first system proposed by Zermelo included all previous axioms, with one
notable exception: the schema of replacement. The construction of {x,y} was
directly postulated by the axiom of the pair.

Pair: the pair made of two sets x and y is a set {x, y}:

'v'x'v'y Set{z I z=x V z=y} .

But a number of set-theoretic developments (e.g. about ordinal and cardinal
numbers) could not be recovered in the original system of Zermelo.

Set Theory 117

7.3 Induction

7 .3.1 Reconstr~ction of Arithmetic

Peano arithmetic can be encoded in ZF. The number 0 is represented by 0, the
successor operation is represented by 8(x) = xU {x}. Then one can prove Peano
axioms. The axiom of regularity can be used to show that 8(x) = 8(y) => x = y
for arbitrary x and y (not only for sets representing natural numbers).

The case of the schema of induction is very interesting. Let us first define
N. To this effect we consider the predicate supnat defined as follows:

supnat(e) ~f 0 E e A "Ix x E e => 8(x) E e .

That is, we have supnat(e) if and only if e contains 0, 8(0), ... j intuitively, this
means that e is a superset of N. The axiom of infinity precisely states that
such an e existsj let us call it N/• In order to define N, we still have to separate
the appropriate elements of N/. This amounts to finding a predicate nat which
characterizes natural integers. We observe that the set N we want will be the
smallest (in the sense of set inclusion) e such that supnat(e). The predicate
nat turns out to be "be a member of all e such that supnat(e)":

nat(n) ~ "Ie supnat(e) => nEe .

Taking x = N' in the schema of separation, we can define:

N ~f {n I nat(n)} .

The left member of the schema of induction is similar to the definition of
supnat:

P(O) A ['v'x P(x) => P(8(x))]

Separating in N the elements x such that P(x)AXE N, we get a set e satisfying
supnat(e), that is, which both includes N and is included in N, providing a
justification for proofs by induction. In some respect, the definition of N via
supnat contains the schema of induction, while the ultimate justification comes
from the schema of separation.

In what follows, we use the notations 1, 2, 3, etc. for 8(0),8(8(0)),8(8(8(0))),
etc.

Remarks on Typing. Because of the absence of typing, one can write formu
las such as 2 = (0,0) or 3 = 1 U (0,1) without blinking an eye ... they are even
theorems! It is not difficult to find variants of the previous encodings4 that do
not satisfy these equations (but satisfy other meaningless ones).

4To be more precise, we can work with variants of the encoding of ordered pairs,
of 0, of S, and in general of constructors. Note, however, that the axiom of infinity is
formulated with a specific encoding of integers in mind.

118 Understanding Formal Methods

7.3.2 Other Inductive Definitions

We can attempt to reuse the same process for defining ''recursive'' data struc
tures of computer science - here we prefer to use the term "inductive,,:5 lists,
trees, context-free languages, etc.

Let us illustrate the idea with integer binary trees. We consider a version
of binary trees where only leaves are labelled with integers. Here is the corre
sponding inductive definition:

A = {n} I (A, A) .

Informally,

- if n is an integer, {n} is a tree;
- if al and a2 are two trees, (al' a2) is a tree;
- all trees can be constructed by application of the two previous clauses.

We represent the two first clauses by a predicate suptree(e), claiming that the
set e contains all trees:

suptree(e) def ['In n EN=> {n} E e]
1\ [ValVa2 (al Eel\a2Ee) => (al,a2)Ee] .

With the goal of formalizing the third clause, let us introduce the predicate
saying "to be in all the sets containing all trees":

tree(A) ~f 'Ie suptree(e) => A E e ,

and we would like to define:

A ~f {a I tree(a)} .

Then we come up against an obstacle: the previous version of the axiom of
infinity at our disposal does not directly provide a set A' that contains all trees.
In fact, such a set can certainly be constructed, by completing the union of
P(N), P(N) x P(N), (P(N) x P(N») x P(N), etc. Constructing A' turns out to
be complex, probably much more complex than A. On the other hand, tree,
the characteristic predicate of A, could be defined without significant problems.
This may be an argument in favor of working with predicates rather than with
sets or models. We consider below another representation of trees.

The previous problem is not raised if we consider the inductive definition of
a subset of N (for example {2n I nEN}), or the inductive definition of a function
from N to N, because it can be separated from N x N. Let us take the example
of the sequence of Fibonacci, seen as a set of ordered pairs (n, fibo(n» with
n E N. All supersets e of this set satisfy supfibo(e) with:

5Recall that the meaning of ''recursive'' in computer science differs from its meaning
in logic.

Set Theory 119

supfibo(e) def (0, I) E e
" (I, I) E e
" rvn'tlx'tly «n,x) E e " (n + I,y) E e)

=> (n + 2, x + y) E e]

By the axiom of separation we can define:

fibo ~f {c I 'tie supfibo(e) => c E e}

7.3.3 The Axiom of Separation

Observe in previous examples that for a set E to admit an inductive definition,
we make use of a quantification on a collection of sets of which E is a member.
Such a formulation is said to be impredicative. One may see that a kind of
vicious circle exists, and one must be very careful to ensure that no paradox is
generated. However, this construction process turns out to be very useful, so
useful indeed, that it is not clear we could do without it (see, for example, the
introduction to [Lei91]).

Formally, an impredicative definition follows the schema:

E ~f {x I 'tie <p(e) => 't/J(x, e)} , where <p(E) is true.

Intuitively, if t/J(x, e) is x E e, E is the smallest set satisfying <po In the previous
examples, the role of <p was played by supnat or supfibo.

We can define a finite set in an impredicative way. Here is a trivial example:

{xl'tle(IEe" 3Ee)=>xEe} ,

which is a pedantic definition of {I, 3}.
The application condition of the axiom of separation plays a key role for

avoiding paradoxes. An impredicative definition like the one given above for E
is admitted only if a set F containing all e such that <p(e) has been exhibited
beforehand. Otherwise paradoxes like Russell's can be reproduced, taking t for
<p(e) and e f/. e => x E e for t/J(x, e). Similarly, there is no set of all sets in ZFC.
If such a set U could exist, we could take e E U for <p(e) and t/J(x, e) as before.

However, the application condition of the axiom of separation implies that,
except in the special case of natural numbers, much additional work is needed
in the construction of inductive data structures.

7.3.4 Separation of a Fixed Point

Fixed points are a traditional device in computer science for explaining in
ductive definitions. Let us illustrate the idea in the case of N. Intuitively, the
inductive definition n = 0 I S(n) can be represented by:

N = {OJ U S(N) , (7.1)

120 Understanding Formal Methods

where S(X) is the set resulting from the application of S to all elements of X.
Of course replacing = with ~f in (7.1) would make no sense, since the object
to be defined occurs on the right-hand side. Hence (7.1) must be regarded as
an equation of the form x = f(x) where x is the unknown. In this situation x
is called a fixed point of f (see § 3.6). In our example N is the smallest solution
for:

X = F(X) , (7.2)

with F(X) ~f {O} U S(X)
In order to state and solve this equation, we need a reference set R where

X varies and we have to check that F is monotone, that is

X C Y =? F(X) C F(Y) .

The technique introduced in § 3.6 consists of showing that the set
of post-fixed points of F (the X of R satisfying F(X) C X) is non

empty, then that the intersection of all post-fixed points is the smallest fixed
point of F, which is the solution of (7.2) we are looking for. The reference
set we can take here is P(N'), where, as before, N' is provided by the axiom
of infinity. This axiom actually stipulates that N' is a post-fixed point, which
ensures that the set of post-fixed points is non-empty. The set N we look for
is then the smallest X of P(N') such that F(X) C X. Though it does not
explicitly appear, such a definition is in fact impredicative, because we have to
state the following when details are worked out (using the axiom of separation):

Ens{ X I X E P(N') /\ F(X) c X /\

V'Y (Y E P(N') /\ F(Y) c Y) =? X C Y}

This set is actually a singleton, which is precisely defined to be {N}. The axiom
of separation is used here in a somewhat more involved way than before, because
it acts on P(N') instead of N'.

7.3.5 Ordinals

The construction of ordinal sets was sketched in § 3.5. They playa key role in set
theory and it was absolutely necessary that the axiomatic version of set theory
should be able to recover them. Let us just add here that the replacement
schema turns out to be essential in this respect (whereas it is scarcely used
in regular mathematics, at least not directly). Let us also mention that the
axiom of infinity stated above is rich enough: combining N, the schema of
replacement and the axiom of union give all the necessary ingredients needed
for constructing ordered sets much "larger" than N.

Set Theory 121

7.4 Sets, Abstract Data Types and Polymorphism

7.4.1 Trees, Again

A model of trees more economical than the one given in § 7.3.2 can be con
structed. Instead of an infinite union of Cartesian products, we use, intu
itively, an address space that assigns the integer I (written with binary dig
its) to the root, the integer 10 to the first left subtree, the integer 11 to the
first right subtree, and so on. We define the ordering relation -< over N by
\:In (n -< 2n) " (n -< 2n + 1). A branch B is a subset of N that contains 1 and
that also contains, for all x of B, a unique y satisfying x -< y (for example
a branch can start with 1, 2, 5, 10, 20). A set of leaf addresses is a set L of
integers that contains a unique element in every branch. In order to construct
a tree of integers from a set of leaf addresses L, we map each member of L to
an integer (called its label). The set 1m of branches and the set IL of L have to
be provided by an appropriate use of the axiom of separation in P(P(N). The
set of trees is then IL -+ N, the set of total functions from IL to N.

7.4.2 Algebraic Approach

The previous model of trees is quite similar to an encoding that
would be used in a software implementation. But one needs some

convincing that it corresponds to the expected concept of tree. Of course, no
formal proof can be given for such a subjective proposition. But, admittedly,
our first (attempted) model based on suptree is much more natural.

We consider an abstract data type6 tree. This type has two con
struction operations leaf and bin; leaf constructs an elementary tree which
is just a leaf labelled by an integer, bin constructs a new tree from two existing
trees. This yields the signatures:

leaf: N -+ tree
bin: tree x tree -+ tree .

In addition, we have axioms stating that all trees are produced by repeated
application of leaf and bin, and that two trees are equal if and only if they are
constructed by application of the same constructors (on the same arguments).
Here is one of these axioms:

\:ImVn leaf(m) = leaf(n) <=> m = n .

Clearly, the representation we gave in § 7.3.2 is a model of that abstract data
type, where leaf and bin are respectively interpreted by the functions n t-+ {n}
and (al,a2) t-+ (al,a2).

6In the remainder of this section we employ the terminology introduced in § 10.3.1.

122 Understanding Formal Methods

In contrast, the second representation requires more work. The con
structor leaf is simply interpreted by the function n t-+ {(I, n)}. In

order to interpret bin, we need two functions 9 and d from N to N, that map
the addresses of a tree to addresses of a tree having the same shape, which is
the left (or right) subtree of a new tree. We know that every integer can be
written in a unique way, either 2n or 2n + 1 depending on its parity. We can
then inductively define 9 and d by

{
g(l) = 2

g(2n) = 2g(n)

g(2n + 1) = 2g(n) + 1

and {
d(l) = 3

d(2n) = 2d(n)

d(2n + 1) = 2d(n) + 1 ;

bin is then interpreted by the function from P(N x N) x P(N x N) to P(N x N)
that, given two trees al and a2 returns the tree

We still have to show that, on the one hand, we recover the same interpretation
as before (in terms of Ja and L) and, on the other hand, the axioms of leaf
and bin are satisfied. This is left as an exercise for the reader.

7.4.3 Polymorphism (or Genericity)

The concept of address we use is generic, in the sense that we say nothing about
the kind of leaves (more precisely: leaf labels). A soon as L is constructed, it
can be used for building trees that are labelled by elements of any given set
X, including a set of trees. For instance, the set of trees of trees of integers is
L -+ (L -+ N).

The importance of genericity - also called parametric polymorphism -
has been acknowledged for a long time. To define a generic concept of tree, one
would like to consider a function tree that maps every set X to L -+ X. But
tree would then be a member of U -+ U, where U is the class of all sets. Then
it is not a set. We previously had a similar remark about the operations n, U,
etc. One could look for a more astute process allowing one to interpret types
by sets, including polymorphic types. This indeed seemed almost possible to a
number of researchers, but then J. Reynolds demonstrated that the answer is
negative [Rey85]. We go back to this point in Chapter 11.

7.4.4 The Abstract Type of Set Operations

Just as for trees, one can define an abstract type for sets. This is a well-known
example, generally described using two basic constructors: the construction of
the empty set and the insertion of an element into a set. Two axioms are intro
duced in order to stipulate that inserting an element that is already contained

Set Theory 123

in the set has no effect, and the insertion order of elements is irrelevant.7 The
membership predicate and operations such as U and n are then specified using
additional axioms - intuitively, they are written with a ''recursive'' exploration
of their arguments in mind. One can then easily prove the algebraic properties
one expects on these operations (associativity, etc.).

The same ideas arise when programming with sets. However, let us point
out that only finite sets are dealt with in this way. Moreover, it is usually
accepted that elements of such sets are typed and have the same type. Then a
notion of polymorphism is needed if we want to handle Cartesian products or
powersets in a natural manner.

7.5 Properties of ZF and ZFC

From a technical viewpoint ZFC is without doubt a great success, because it
provides all of the kinds of sets, numbers and structures needed in mathematics.
Clearly, limitations coming from the incompleteness theorems of Godel cannot
be avoided. Thus, the consistency of ZF cannot be proven. But there are other
results, called relative consistency results. In particular, the axiom of choice,
which is very non-constructive, was initially the cause of many disputes. In
1938, Godel showed that if ZF is consistent, then ZFCis consistent as well. In
1963, Cohen proved that the negation of the axiom of choice does not introduce
contradictions in ZF as well. This amounts to saying that the axiom of choice,
or its negation, cannot be deduced from axioms of ZF.

Another important conjecture about the cardinality of lR, called the con
tinuum hypothesis (see page 57), was also proved to be independent from ZF
at the same time. Hence one might think of set theory as somewhat arbitrary.
In contrast with N, set theory does not have a well-understood concept of a
"standard model". For instance, the syntactic model of set theory is certainly
not the intended one, because it is denumerable.

7.6 Summary

What is the impact of set theory on formal specification and programming tech
niques? The most obvious is the universal use of the language of sets. Informal
reasoning is sometimes efficiently guided by Euler-Venn's diagrams.8 There are
several opinions regarding set theory itself. Advocates of Z may highlight that
ZF has been thoroughly tested as a foundation for mathematics, and hence is
a firm basis for designing a specification language. Other researchers prefer to
avoid the systematic use of sets, because unexpected complications spoil the
initial simplicity of basic concepts (some of them were illustrated above), or
because of the intrinsic lack of typing in this theory.

7We proceeded this way in § 10.5 for representing a table.
8The idea of representing what we nowadays call sets by circles goes back to Euler.

124 Understanding Formal Methods

Axiomatic set theory is sufficiently powerful to allow one to represent any
idea that is needed, for example the data structures of computer science. How
ever, in many cases we end up with quite an arbitrary encoding; then axiomatic
set theory may seem closer to an assembly language than to a high level lan
guage.

7.7 Notes and Suggestions for Further Reading

So-called ''naive'' set theory is developed in the book of Halmos [HaI60]. Another
well-known reference is Enderton [End77]. The axioms of Zermelo-Fraenkel are
presented and discussed in a chapter of the Handbook of Logic of Mathematical
Logic [Bar77] written by Shoenfield [Sho77].

Further developments are described in Devlin [Dev93], specifically the arith
metic of ordinals and cardinals. At the end of the book there is also a presenta
tion of non-well-founded sets, a variant of ZF without the axiom of regularity.
Non-well-founded set theory is used in computer science as a basis for bisim
ulation and co-induction, which are reasoning techniques relevant to infinite
processes and circular data structures. On this topic one may consult the very
concise and readable article by Milner and Tofte [MT91].

8. Behavioral Specifications

The table example that we used in previous chapters can be qualified as func
tional: looking from the outside, we can view it as a function that returns an
answer when it is called. We don't have any concerns or get distracted by its
internal computation and internal workings. In contrast, we can hardly under
stand systems which constantly react to their environments if we don't study
the series of actions they perform. This is the case for communication pro
tocols, operating systems or command-and-control equipment. For protocols
for instance, we have to consider synchronization, to prevent deadlocks, unde
sired arrival of messages, etc. The complexity of such protocols is by and large,
concentrated in these aspects.

Appropriate techniques consist of modeling such systems by, essentially, a
graph whose vertices and edges respectively represent possible states and tran
sitions between states, and then characterizing expected behaviors by safety
and liveness properties that are expressed over this graph - this is the realm
of temporal logic - and finally, verifying that these properties are satisfied.

The following presentation is centered on the general formalism of (labeled
or otherwise) transition systems, which will be the semantic pivot between
languages such as Unity, CCS or TLA and different variants of temporal logic,
including the J.L-calculus. At the end of the chapter we mention appropriate
verification techniques, specifically model checking.

8.1 Unity

Unity [CM89) was first designed in order to elaborate programs that could take
advantage of parallel computations that are available on non-von Neuman ma
chines. Such opportunities vary to a considerable extent from one architecture
to the other, and so it is better to make no assumptions about control. A Unity
program is essentially defined by:

- a state space;
- an initial state, or a set of initial states;
- a set of transitions between states.

Transitions are defined by simultaneous assignments, sometimes with an addi
tional condition which is true by default. Assignments are generally separated
by the symbol ~. In the original definition of Unity, the state is given by means

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

126 Understanding Formal Methods

of declarations similar to those in Pascal, but this is not essential: we could
consider variations including data types such as lists, or using more abstract
constructs, e.g. set operators or higher-order types. Here we use the term field
for components of the state rather than variable, in order to avoid any confu
sion with the logical concept of a variable.

8.1.1 Execution of a Unity program

Executing a Unity program consists of choosing in an undetermined way! one
of the assignments, then, if the corresponding condition is true, applying it to
the current state and repeating the same cycle again and again. The main idea
is that each assignment may contribute to the final result and eventually has
the opportunity to be applied. Unity stands for Unbounded Nondeterministic
Iterative Transformations. The freedom underlying the execution of Unity pro
grams gives them a specification status, all the more so since we will not refrain
from using arbitrary mathematical means for defining the space state. We will,
however, continue to call them programs.

Let us observe that a Unity program could easily be represented by a B
machine, each assignment being encoded by an operation of the form: IF condi
tion THEN multiple substitution ELSE skip. As in B, the weakest precondition
calculus introduced in § 4.3 plays an important technical role. The big differ
ence is that in B operations are macroscopic and are executed on external calls,
whereas in Unity assignments are rudimentary and they execute spontaneously
and perpetually.

Program T

end

constant p, q : integer
declare x, y : integer; t, r : boolean
initially x=p /\ y=q /\ t=false
assign

r, t := P(x), true if x f= Y /\ --,t
y, t := x, false if r /\ t
x, t := x + 1, false if --,r /\ t

Figure 8.1: Table search in Unity

8.1.2 The Table Example

Recovering strict control over the evaluation order is not very difficult: we just
have to take a field as the program counter. We proceed in this way with t
in Figure 8.1, where the table search program already presented on page 31
is written in Unity. The field t can even be given a logical interpretation: "r

lWe will see later, however, that this choice must respect a fairness condition.

Behavioral Specifications 127

contains the result ofthe evaluation of P(x)". When x = y the execution reaches
a stable state: further assignments leave the state unchanged.

But this approach is far from optimal in the spirit of Unity. Figure 8.2
proposes a solution with much more opportunities to take advantage of paral
lelism. The idea is to have a control flow (or thread) for every possible value of
the index. These threads are modeled by the array t. As soon as the result is
found, the field f is set to true, with the intention of stopping other executing
calculations - a more correct phrasing would be: in order to make the state
stable.

ProgramP

end

constant p, q : integer
declare x, n : integer; b, f : boolean;

r : array of boolean; t : array of 0 .. 2;
initially n, f = p, false A 'Vi: p :5 i < q =} t[i] =0
assign
(~'Vi:p:5i<q::

r[il, t[i] := P(i), 1 if t[i] = 0 A -.f
x,J, b, t[i] := i, true, true, 2 if r[i] A t[i] = 1 A -of
n, t[i] := n+ 1, 2 if -or[i] A t[i] = 1 A -of

f, b:= true, false if n=q

Figure 8.2: Parallel table search in Unity

A good method for designing such programs and reasoning about them
consists of considering a state that changes in such a way that it progressively
satisfies the desired properties, whatever happens. From a methodological per
spective, one distinguishes safety properties, which guarantee that every reach
able state is acceptable (in other words, nothing bad can happen) from liveness
properties, which state that a desired state is eventually reached (something
good will happen).

In the example in Figure 8.2, safety properties are similar to the invariants
h, 12 and h given on page 31: we introduce the subset C of integers i in [p, q[
yielding a negative answer (the value of r[i] is false and the value of t[i] is
2). The invariant says that the cardinality of C is n - p. The main liveness
property we expect here is f = true. This is also called a progress property.
However, we must not forget that, at a given time, the chosen assignment may
well leave the state unchanged. Assume in our example that p < q; an execution
continuously choosing the last assignment (1, b := ... if n = q) would never
progress. In order to avoid such a situation, Unity imposes a fairness condition:
each assignment is chosen infinitely many times during an execution.

Other categories of properties have been identified for qualifying system
behaviors, such as to be deadlock free, or reachability. The latter expresses
that the system always has the chance of reaching a given situation, for instance

128 Understanding Formal Methods

Program Hl

end

constant ~ : integer
declare h, dl , Vl, V2 : integer; Pl, P2 : boolean
initially h=O 1\ dl=~ 1\ pl=false 1\ P2=false
assign

h := II + 1 if II < dl
V2,P2 := h, true
dl,Pl := max(dl , Vl + ~), false if Pl
dl := max(dl,vl +~) if Pl
Pl := false

Figure 8.3: A synchronization protocol in Unity

to return to the initial state. Note that being deadlock free does not make much
sense in Unity, since executions are infinite by construction.

8.1.3 A Protocol Example

Let us consider another program that doesn't aim at computing a result, but
at providing a service. Figure 8.3 represents a small clock synchronization pro
toco1.2 Two stations endowed with a local clock ii, i E {I,2} send their own
current time through an unreliable medium (messages can be lost, duplicated
and their order is not preserved) from time to time. The protocol ensures that
the distance between the values of il and i2 is never greater than the strictly
positive constant ~. Figure 8.3 contains the assignments of the program run
ning in station 1. The medium is represented here by two Booleans Pi, i E {I, 2}
telling us whether or not a message for station i is present and by the integer
Vi which holds the value of the message if there is one. The capacity of the
medium we are considering is then just one message in each direction. Assign
ments represent, respectively, incrementing the local clock, sending the current
time, receiving the time from the distant clock, duplicating, and losing the
arriving message. We get the complete system by a parallel composition of
program PI with program P2 (written PdP2), where P2 is identical to PI up
to an exchange of indices 1 and 2. To put it another way, the state of PI ~P2 is
made up of the fields of PI and of the integers i2 and d2 ; its assignments are
the assignments of PI and the symmetrical assignments we get by exchanging
1 and 2; finally its set of initial states is the conjunction of the two clauses
introduced by the keyword initially.

If we take a version of Unity where bags are allowed, we can easily model
a medium which does not preserve message order (Figure 8.4). This program
can be composed with the program in Figure 8.5 (and its symmetrical counter
parts): we get a medium with message losses and duplications. We expect that
the protocol satisfies the following properties:

2The author of this protocol is Gerard Roucairol.

Behavioral Specifications 129

Program HMI

end

constant ~ : integer
declare h, d1 : integer; Cl, C2 : bag of integer
initially h=O 1\ dl=~ 1\ cl=0 1\ c2=0
assign

h := h + 1 if h < dl
~ C2 := C2 U {II}
~'v'Vl dl,cl:=max(dl,vl+~),Cl-{vl} if vlEcl

Figure 8.4: Synchronization protocol using an unbounded channel

Programel

end

declare Cl : bag of integer
initially Cl = 0
assign
~ 'v'Vl CI:= CI U {vI} if VI E Cl
~ 'v'Vl Cl:= Cl - {vI} if VI E Cl

Figure 8.5: Unbounded channel with losses and duplications

- safety: Ih -l21 ~ ~ is always true;
- progress: clocks increase to arbitrary large values.

In this case, progress does not express that executions get closer to a desired
situation, but that there are no deadlocks: no state is stable (~ is non-null).
We can also verify a reach ability property: from any state (derived from the
initial state) one can reach a state where h = l2. An interesting consequence
is that we can hope to augment the previous protocol with additional fields
and transitions that would model the arrival of an external request and then
constrain assignment choices in such a way that II and l2 would converge to
the same value. This is left as an exercise for the reader.

We will see in § 8.5 how to formalize all these properties in temporal logic.
We first present an elementary but very general model for describing behaviors.

8.2 Transition Systems

The systems we model are always presented, to a greater or lesser degree, in
the form of a state which changes under the effects of various actions. The
state can be thought of at different abstraction levels. It can be the colour (or
combination of colours) of a traffic light; the memory space of a real machine;
the memory spaces of several machines, with the contents of communication
channels of the network that links them together; the tuple of values taken by
the fields declared in a program - which may be written in Unity - or as a B
specification, an algebraic term, etc.

130 Understanding Formal Methods

State changes can be continuous, for analog systems, or discrete, for the sys
tems we consider here: we call them transitions. Most methods adopt a purely
observational standpoint, that is, no importance is attached to the internal or
external cause that determines the choice between transitions. However, tran
sitions are sometimes associated with events that we want to remember, e.g. a
printing request or a message. Then we give them a name, also called a label
or an action. We use the term "Kripke model" when transitions are not labeled
- we can equivalently consider that all transitions have the same label - and
"labeled transition system" or simply ''transition system" in the general case.

8.2.1 Definitions and Notations

A Kripke model is an ordered pair (5, n) where 5 is a (finite or infinite) set,
called the set of states and n is a binary relation on 5, called the transition
relation.

A transition system (or labeled transition system) Tis a triple of the form
(5, A, (na)aEA) where 5 is a (finite or infinite) set of states, A is a (finite or
infinite) set, called the set of actions and each na is a binary relation on 5.
Equivalently, the family (na)aEA can be presented as a subset n of Ax 5 x 5.
The reader may like to check that we recover the concept of a Kripke model if
A is a singleton set.

We also use the term automaton or state machine for a transition system,
especially when 5 and A are finite.

For the transition relation of a Kripke model /C one often uses an infix
notation such as ~ or more simply 4 when there is no ambiguity about /C.

1C
Similarly the transition relation labeled by a of a transition system T is denoted
by the infix symbol ~ or ~ when the context is clear. Thus s ~ t ~ u

r
simply expresses that execution goes from state s to state t using transition a,
then to state u using transition b.

8.2.2 Examples

When the number of states of the system is small, we conveniently represent it
in a graphical form. Figure 8.6 represents a transition system for a simplified
drink vending machine.

Figure 8.6: A very simple drink vending machine

Behavioral Specifications 131

The standard behavior consists of going from state S (start) to state A
(again) when a one euro coin is inserted into the machine (label 1E), then to
state R (ready) when a 20 cents coin is inserted (label 20c), then back to the
start state when the "accept" button is pressed (label ace) - and a drink is
delivered. The customer can also, from state R, push the reset button - then
the inserted coins are returned to him/her.

Figure 8.7: A filtering drink vending machine

The vending machine modeled in Figure 8.7 has an additional feature:
bad 20 cents coins are rejected. A transition 20c can then lead to state F
(failure), where the customer has no other choice but to reset. Formally,
this system is defined by the state set S = {S, A, R, F}, the action set A =
{1E, 20c, ace, reset}, and transition relations ~ = {(S, A) }, 20c) = {(A, R),

(A, F)}, ~ = {(R, S)} and reset) = HR, S}, (F, S)}.

reset

Figure 8.8: A more complete vending machine

The previous model can be augmented by further stipulating that one can
push the reset button in every state. This is easy to state in a formal way, by
writing reset)= {(s,S) Is E S}. Note in Figure 8.8 that the graphical repre-

132 Understanding Formal Methods

sentation becomes fairly complicated. The reader is invited to invent variants
of the above system, where, among possible suggestions, one can insert coins
in an arbitrary order, or push the accept button in any state (of course, the
machine should only perform a state change from state R).

In the model described above, labels happen to correspond to actions initi
ated by the external environment. This is not necessary. Actually, if our machine
delivers a drink as soon as one euro and 20 cents are inserted, without waiting
for a confirmation, the label ace is interpreted by a spontaneous action. But
this does not matter to the transition system: as already indicated, the latter
just describes possible sequences of actions without a priori interpretation of
their meaning.

8.2.3 Behavior of a Transition System

Given a transition system T, a trajectory on T represents a possible behavior
of T. One can imagine that T defines a state space and motion rules; as in
mechanics, a trajectory is a function of time that returns the state of the system
at each instant. Since our transitions are discrete, time will be represented by
N. Formally, a trajectory on T is a pair of two sequences (Sn)nEN and (an)nEN

where:

1. For all integers n, Sn is a state and an is an action.
2. For all integers n, Sn ~ Snt-l.

The component (an)nEN is called the trace. In the case of Kripke models,
it is of course superfluous. In the literature trajectories are also referred to
as scenarios, executions or paths. We agree that the prefix of a trajectory
(Sn)nEN, (an)nEN) will be represented in the form So ~ 81 ~ S2· ..

A trajectory example for the transition system of Figure 8.7 starts with

S~A~F~S~A~R~S.

The systems modeled in Figures 8.6 and 8.7 have the same set of
I~ traces, but have different behaviors: in the former, ace is always
allowed after 20c whereas this is not the case ofthe latter. Traces simply do not
provide the relevant pieces of information that would enable us to distinguish
between them.

When the system includes deadlocks (also called blocking states, i.e. states 8

such that for any action a, {s' E S I 8 ~ 8'} = 0), the definition of trajectories

must be made more general. Trajectories are maximal sequences satisfying the
above conditions: either they are infinite, or their last state is a blocking state.

8.2.4 Synchronized Product of Transition Systems

Formalizing more complicated examples using flat transition systems quickly
turns out to be quite laborious. It is better to specify the production of a
transition system by indirect means, notably:

Behavioral Specifications 133

- the composition of (smaller) systems, as will be considered here;
- the use of higher level concepts or languages, for example Unity or CCS; we go

back to this approach in § 8.2.6 and in § 8.3; then transition systems provide
an operational semantics for those languages.

Consider n transition systems that we put together: 11 = (81 , AI, ---*), 72 =
Ti

(82, A 2, ---*) ... Tn = (8n , An, --+). A complete state ofthe system is obtained
72 Tn

by the synchronized product [AN82], which contains a component ranging over
81 , a component ranging over 82 ... a component ranging over 8n . The state
space of the synchronized product of 11, 72 ... Tn is then the Cartesian product
81 x 82 ", X 8n .

Saying that the whole system goes from state (SI' S2, ... sn) to state (s~, s~,
... s~) amounts to saying that each component goes from state Si to state s~
using an action taken in --+. This corresponds to the fact that a transition is

Ti
passed simultaneously in each subsystem, what we call a synchronization. In
general we want to restrict the set of possible synchronizations. Typically, an
action send a of a system will only be synchronized with an action receive a of
another system. The action set of the synchronized product will then be given
by a subset Y of Al x A 2 ... X An, whose elements are called synchronization
vectors.

In the general case, we write the synchronized product in the form (11 II
72 ... " Tn; Y). It corresponds to the transition system whose state set is 81 x
82 ", X 8n , whose action set is Y and where transition relations are defined by:

() (at, . .. a n) (' ')'ff ai I £ II" [1 SI,oo,Sn) Sl""Sn 1 Si--+Si ora zml,n.
(Ti···IITn;Y) Ti

8.2.5 Stuttering Transitions

In order to represent so-called asynchronous systems that advance in an in
dependent manner, it is convenient to assume that each of them possesses a
waiting action e such that executing e leaves the state unchanged. Leslie Lam
port uses the term stuttering transitions:

~ = {(s, s) I s E 8d.

For example, a synchronization vector (al' e, ... e) allows 11 to execute action
al whereas other systems do nothing. A synchronization vector (al' a2, e, ... e)
allows 11 and 72 to synchronize without being disturbed.

Note that introducing stuttering transitions in each state from the outset
is good from the modularity viewpoint. A system specified in this way can be
embedded in an environment while keeping its own behavior. However, this
approach leads one to make a fairness hypothesis on allowed trajectories, in
order to disallow trajectories where a system remains indefinitely in the same
state even though a change is possible.

134 Understanding Formal Methods

8.2.6 Transition Systems for Unity

The declare clause of a Unity program U defines its state set Su (the fields
declared are projections of Su in their respective domain; for example in Fig
ure 8.4, II is a projection of Su into N). The initially clause defines a subset
I of Suo In order to construct the associated transition system, we give a name
aI, a2 ... to every assignment introduced after the assign clause. Recall that
each of them is in the form s := fi(s) if Ci(S) and reads: ''if s verifies condition
Ci, then the next state is fi (s) else the next state is still s". Then we define

~ = {(s, fi(s)} Is E Su 1\ Ci(S)} U {(s, s)) Is E Su 1\ "'Ci(S)}.
The semantics of the initially clause is given by an action i, a pre

initial state * which is not in S with -4 = {(*, s) I s E I}. Finally we

consider Au = {i, a!, a2, ... }, the system transition associated with U is then
Tn = (Su, Au, (..!.t)aEAu)·

One can follow a slightly different point of view where, when the
condition Ci evaluates to false, the corresponding label is replaced

with the stuttering action e, (see § 8.2.5). In this version,

~ = {(s, Ii(s») Is E Su 1\ Ci(S)} and Au = {i, e, aI, a2, ... }.

8.3 CCS, a Calculus of Communicating Systems

In the Unity model, entities cooperate by sharing a common memory. In con
trast, approaches based on process algebras put the emphasis on communica
tion. CCS (Calculus of Communicating Systems), due to Robin Milner, is one
of the most elegant [Mil89]. We are given a set of actions A = {r, a, ii, b, b, ... }.
Processes are constructed as follows: 0 is the process that can do nothing (it is
in a deadlock state and cannot communicate); if P and Q are processes and if
a is an action, then a.P, P I Q, P+Q and P\L are processes. ".", "I" and "+"
are respectively the prefix operator, the parallel composition operator and the
choice operator.

Intuitively, r is the silent action; if a is an action different from r, a can
synchronize with ii (and reciprocally, considering that & = a). The process a.P
performs the action a and then behaves like P. Thus the process a.b.(a.O+c.b.O)
corresponds to the transition system:

a

C

One also can write mutually recursive process definitions in the form PI ~f
E1 , P2 ~f E2 , ••• where El , E2 , ••• represent process expressions in which Pl ,

P2 , ••• can occur. Thus the process P ~f a.b.(a.P + c.b.O) corresponds to the
transition system

Behavioral Specifications 135

c .0 b .0
and the systems described in Figures 8.6 and 8.7 can be expressed in CCS
respectively by:

S ~f lE.20c.(acc.S + reset.8) and by

S ~f lE.(20c.(acc.S + reset.8) + 20c.reset.S) .

Formally, the state set of the transition system defined by CCS processes
PI, P2 , ••• is made up of algebraic subexpressions of PI, P2 , ••• , its action set
is A and we get its transition relations by application of the following rules:

- prefix:
a.P~P

P~P'
- choice:

P+Q~P'
and

Q~Q'

P+Q~Q'
- parallel composition without communication :

P~P' Q~Q'
and

P~P' Q~Q'
- communication:

PIQ~P'IQ'

A~E'
- definition:

P~P'
for every definition P ~ A.

Note that the parallel composition operator is asynchronous: each component
evolves regardless of the other so long as they are not involved in a common
action. Stuttering transitions indicated in § 8.2.5 are no more essential in this
approach, where modularity is dealt with in a different way (using explicit com
munication). In the transition systems considered in previous sections, states
were explicitly defined and were considered as always being observable through
the concept of trajectory. Properties of behaviors considered in § 8.5 are ex
pressed over trajectories and over states. In CCS only transitions are considered
as observable; a CCS term (process) can be seen as representing an implicit
state, but only its capacity to propose transitions and to continue is important.

CCS also includes the restriction operator "\": if P is a process and
L is a set of actions different from T, then P\L is the process that

behaves like P but where actions of L are disallowed; P can progress on a
branch starting with an action a of L only if this action can be synchronized
with the complementary action a of a parallel branch of P.

Choice generalizes to an infinite number of processes. H (P"')"'EN and
(a"')"'EN are respectively a family of processes and of actions and if Q is a
process, the process ((E"'ENa",.P",) I as.Q)\{a", I x E N} evolves necessarily to

136 Understanding Formal Methods

Ps I Q: this specifies that the second component communicates the value 5 to
the first.

A language quite close to CCS called CSP (Communicating Sequential Pro
cesses) was proposed by C.A.R. Hoare [HoaS5]. The design of LOTOS, a stan
dardized language for telecommunication protocols, was inspired by CCS and
CSP [isob]. However, SOL turned out to be more successful from an industrial
perspective", partly because it is founded on more familiar concepts (automata
communicating via asynchronous messages transmitted on queued channels)
and partly because it benefits from well-developed tool support.

8.4 The Synchronous Approach on Reactive Systems

When a system is composed of several subsystems evolving in an asynchronous
manner, possible interleavings of events yield a combinatory explosion of the
number of situations to be taken into account. Thus understanding phenomena
becomes more complicated, as well as modeling tasks and, of course, verifi
cation. However, under a number of conditions, one can follow the so-called
synchronous approach, which is well illustrated by the Esterellanguage [BG92].

The main idea is to consider infinitely fast systems, so that outputs are syn
chronous with the inputs that cause them. This hypothesis is quite audacious,
but it can be interpreted in two ways:

- if one considers a reactive system, that is, a system reacting to stimuli from
its environment, it amounts to assuming that the reaction time of the system
is smaller than the duration separating two stimuli; it is then essential to be
able to bound the reaction time, and control structures of Esterel have been
designed accordingly (it is an imperative language with sequences, loops and
interrupt mechanisms);

- if one considers subsystems of a synchronous system which has been decom
posed in a modular way, it means that the response time of a subsystem with
respect to a stimulus provided by another subsystem is null or can safely be
considered as null; the big difference with the previous case is that modules
and interactions between them are known - sophisticated compilation tech
niques can be used - whereas the system may have little or no control over
its environment.

Another important synchronous language is Lustre [CPHP87]. It is a data
flow language: each synchronization point is represented by the sequence of
values successively present at that point and the system is defined by equations
relating such sequences. For instance, in the simple case of an or logical gate,
we can state the equation Sn = en V In in order to express that at each time
n, the output Sn is the disjunction of inputs en and In (this is the idea; the
syntax of Lustre avoids the use of indices). Note that here again, outputs are
synchronous with inputs. The case of a looping circuit (e.g. a latch) is more
interesting: the output at time n also depends on the output at time n -1, so
we have an equation in the form Sn = ... Sn-l.·.

Behavioral Specifications 137

The synchronous approach is particularly suited to embedded applications
subject to hard and non-trivial temporal constraints.

8.5 Temporal Logic

Intuitively, temporal logic handles propositions whose truth value evolves over
the course of time. Using it for qualifying program behaviors goes back at least
to Pnueli [Pnu77]. The idea is quite natural: the state of a system changes
during the execution of a program; as a consequence, properties of the state
change as well. This is easy to represent in regular logic: if visited states are
successively So, Sl, ••• a proposition p which is successively false, true, ... is

. represented by a predicate p over N verifying p(O) = false, p(l) = true ...
However, the additional argument introduced everywhere turns out to be cum
bersome. Moreover it is not sufficient, because the integer 0, 1, ... makes sense
only with respect to a given sequence of states. Temporal logic encapsulates
the maneuvers we need thanks to a small number of operators.

Temporal logic is about discrete time. Durations measured with real
numbers are beyond its scope.

8.5.1 Temporal Logic and Regular Logic

Most presentations of temporal logic are based on model theory3 (see § 3.3.1):
the meaning of temporal logic formulas is directly defined on models. However,
the concept of model used here is somewhat different from the concept used
in § 5.1.3 and in § 5.6.1. More precisely, we are given a transition system and
each state is mapped to a model in the classical sense. Thus, a proposition or a
formula P may be true in some states and false in other states. A formal way to
do that consists of introducing a set of elementary propositions P = {P, Q, ... }
and in mapping each state S to the subset of P of propositions which are true
at s. Equivalently, we can see P, Q, ... as denoting state predicates. We take
here the latter standpoint. We will also need trajectory predicates <p, 1/;, ...
(We can even consider that P, <p, ... are formulas constructed in a first-order
or a higher-order language, rather than just a propositional language.)

If we look at syntax, temporal logic formulas combine such predicates as
propositions. For example, P => AF8Q expresses that if P is true in the current
state, then Q is eventually true on every trajectory starting from the current
state. Note that state s does not occur in the above formula and that we do not
form P(s). This is done only at the level of semantics, recalling that the truth
of ''propositions'' is relative to a state: it makes it explicit that predicates are
hidden behind a propositional notation (more generally, that n+l-ary predicates
are hidden behind n-ary predicate notation).

3 A notable exception is the temporal logic of Unity, which is axiomatically defined
in [CM89j. See also § 8.5.5.

138 Understanding Formal Methods

In order to simplify the exposition, we limit ourselves to Kripke models
without blocking states: a trajectory is then a sequence of states (Sn)nEN such
that for all n, Sn ~ Snt-l. In the following, we fix a given Kripke model /C:

all states and trajectories are implicitly about /C. Moreover, S and u always
represent a state and a trajectory, respectively.

The semantics of the state predicate P (respectively the trajectory predicate
cp) is denoted by /C, S II- P or by abuse of notation, since /C is fixed, S II- P
(respectively ull- cp).

8.5.1.1 Elementary Formulas. We are given atomic formulas Pj their truth
value P(s) depends a priori on the state s. We do not say more about the
language defining such formulas. What matters is that our ability to determine
P(s) when s is known. We have, not surprisingly:

- sll- P ~f P(s) for P atomic.

For example, in the initial state Sinit of the transition system corresponding to
the protocol described in § 8.1.3, we have h = 0 and 12 = 0, which allows us to
state Sinit II- III -121 ~ 6..

The simplest trajectory predicates are constructed by application of the
start operator a on a state predicate. In the following u(i) refers to the ith
element of u.

- ull- aP ~f u(O) II- P : P is true at the beginning of trajectory u.

Coming back to the example of § 8.1.3, we have u II- a(lll -121 ~ 6.) for all
trajectories u beginning with Sinit.

8.5.1.2 Logical Connectors. Temporal logical connectors /I., V, etc., are not
applied to propositions, but to state predicates (such as P and Q), or to tra
jectory predicates (such as cp and t/J). Their semantics are defined using corre
sponding connectors of regular logic, and we proceed similarly for quantifiers:

-sII-P/l.Q ~f sII-P /I. sll-Q (similarly for V, etc.),
- s II- Vx P ~f Vx s II- P (similarly for 3),
- ull- cp /I. t/J ~f ull- cp /I. ull- t/J (similarly for V, etc.),
- u II- Vx cp ~f Vx u II- cp (similarly for 3).

The meaning of "/I.", "V", etc., is not the same on the left and on
the right of" ~". On the right, connectors link propositions whereas

they link predicates on the left: in the latter case we have (monadic) second
order logic as seen in § 5.5. Trajectory quantifiers introduced in § 8.5.2.2 for
translating branching operators are also second-order.

8.5.2 CTL*

Besides" /I.", "V", etc. we have specific operators. They can be divided in two
groups in the temporal logic we consider now, called CTL *.

Behavioral Specifications 139

8.5.2.1 Temporal Operators. The first group includes temporal operators
X (next), F (future or "eventually"), G (globally), W (weak until) and U (until)
which build a trajectory predicate from one or two trajectory predicates. In
order to define them we need the suffix of a obtained by removing the k first
elements of a: ak ~f (a(k+n))nEN'

- a II- Xcp ~f a1 II- cp : cp will be true on the next step of a.
- a II- Fcp ~ 3n an II- cp : cp will eventually be true on a.
- a II- Gcp ~ Vn an II- cp : cp will always be true on a.
- a II- cpW1jJ ~f Vn (Vi -:;. n a i II- -,1jJ) => an II- cp :

cp is true on a while 1jJ is not true.
-all-cpU1jJ ~ 3n (an 11-1jJ) 1\ (Vi<n aill-cp) :

1jJ will eventually be true on a and until then cp will be satisfied.

Operators Wand U are strictly more general than F and G, for example Gcp is
equivalent to cpWf. Moreover, cpU1jJ is equivalent to cpW1jJ 1\ F1jJ.

Let us point out that temporal operators are applied to trajectory predi
cates and not to state predicates. It is therefore possible to combine them, for
example in GFcp (cp will be infinitely often true) or in FGcp (eventually, cp will be
continuously true). However, one often needs to apply them to state predicates
as well. To this end we use4 the start operator 8.

8.5.2.2 Branching Operators. Operators of the second group, E (exists)
and A (all), build a state predicate by quantifying a trajectory property over
trajectories starting from the considered state:

- s II- Ecp ~ 3a a(O) = s 1\ a II- cp : there exists a trajectory starting from s
which verifies cp;

- s II- Acp ~ Va a(O) = s => a II- cp : every trajectory starting from s verifies
cpo

8.5.2.3 True Formulas Everywhere. In order to say that a state predicate
P is true in all states of the system, we employ the notation VP. Symbol V
can be seen as an operator which builds a proposition from a state predicate.
It is not part of CTL *: recall that logical connectors of CTL * do not link
propositions.

8.5.2.4 Examples. Invariance properties are expressed by formulas of the
form AG8P, which is true in state s if and only if: Va a(O)=s => Vn P(a(n)).
Thus, in our first Unity program in Figure 8.1, the formula stating that x is less
than y forever is AG8(x < y). However, x < y is true only for states that can
be reached from an initial state. Initial states are characterized by a predicate
I, which is the conjunction of formulas declared after the initially clause.
Then we should consider the formula I=> AG8(x < y). In order to state that
this formula is true in all states, we write "'1(1 => AG8(x<y)).

4Experienced users will prefer a lightened notation where {} is omitted, consider
ing that we have implicit conversions in that case. Indeed, the {} operator is absent
from most presentations. It is made explicit here for a better understanding of the
underlying mathematical model.

140 Understanding Formal Methods

AG AF

EG EF

Figure 8.9: The operators of CTL

Similarly, the safety property we expect from the synchronization protocol
described in § 8.1.3 is '+/(1 =? AG8(llt -121 ~ ~».

Liveness properties are expressed by operator F, generally just after A. Thus,
in the system given in Figure 8.7, we h~tve AF8(s = S), and in the program given
in Figure 8.2, we have '+/(1 =? AF8(J = true».

The progress property on clocks of the protocol given in § 8.1.3 is more
complicated. For example, I =? AF8(l1 ~ 1010°) states only that It will be
very large. In order to get arbitrarily large, the natural statement is: "In E
nat I=? AF8(l1 ~ n). This formula is allowed in a version of CTL * which
includes arithmetic. In the usual version, based on propositional logic, we have
to encode progress in a different way, from the idea: "11 will always become
larger". Assume we have a state predicate incr at our disposal; we arrange
things in a way such that this predicate is true if and only if during the last fired
transition, It was incremented. To this effect, one can insert appropriate fields
in the state and update th~m adequately, without disturbing the rest of the
program. (This simple exercise is left to the reader.) Now the progress property
says that along every trajectory, incr is true infinitely often: V(1 =? AG F8incr).

Reachability properties are obtained by combining E with F: if one controls
execution - the choice among competing transitions at each step - a state sat
isfying the desired property will be reached. Let us consider again the synchro
nization protocol of § 8.1.3: the reachability of a state where the two local clocks
are equal is expressed by EF8(It = 12)' The statement V(I =? AG8EF8(It = 12»
tells us that this equality is reachable from every state of every trajectory
starting from the initial state.

Behavioral Specifications 141

8.5.3 CTL

CTL (computation tree logic) is the fragment of CTL * obtained when every oc
currence of a temporal operator (X, F, G, W or U) is immediately preceded by
a branching operator (A or E). All allowed compound operators (AX, EF, etc.)
build state predicates. They are then necessarily applied to sub-formulas sys
tematically headed by the start operator 8. In practice this operator is implicit.
Thus, one can say that in CTL formulas are obtained by repeated application of
AX, EF, etc. on state formulas. This simplification makes automated verificatidn
via model checking much easier [BBF+01].

Safety, liveness and reachability properties like the ones described in § 8.5.2.4
are of this kind, but not the progress property I => AG F8incr. Fairness prop
erties, in the form AGF8P are excluded as well. In general one cannot express
properties about events which are along the same trajectory.

Typical combinations AG 8P, AF8P, EG 8P and EF8P are illustrated on
diagrams in Figure 8.9, where the tree-like character of CTL properties is easy
to see. A filled circle represents a state where P is true.

8.5.4 LTL and PLTL

L TL (linear temporal logic) is the fragment of CTL * where only trajectory pred
icates are considered, that is, predicates built using temporal operators. The
idea is that formulas obtained in this way should be verified on all trajectories.
Formally, it amounts to putting a unique (and, in practice, implicit) universal
quantification A at the beginning of the formula. Thus L TL does not provide
a means for considering the existence of different possible behaviors starting
from a given state. This is why this logic is called linear. For instance, the
reach ability property expressed by AG8EFcp has no equivalent formulation in
L TL. More generally, this logic does not allow one to distinguish between two
transition systems having the same trajectories.

Automated verification research is concentrated on PLTL (propositional
LTL), which is the fragment of LTL where non-temporal connectors are those
of propositional calculus (first-order quantifiers are forbidden).

Let us mention in passing a traditional notation coming from the modal
logic 54, which uses 0 for G (forever) and <> for F (eventually). This notation
is used in TLA, as we will see in § 8.6.

8.5.5 The Temporal Logic of Unity

The very design of Unity involves two ingredients: the programming language
presented in § 8.1 and a linear temporal logic endowed with the following partic
ulars: its operators take state predicates as arguments and they return a propo
sition: they are then weaker than LTL operators (which build a trajectory
predicate from trajectory predicates); in particular they cannot be embedded.

142 Understanding Formal Methods

In contrast, propositions obtained in this way can be combined with logic con
nectors /\, V, etc. The latter can then have "classical" occurrences (as in § 5.1)
as well as ''temporal'' occurrences (as in § 8.5.1.2) in the same formula.

The two basic operators of Unity are co and leadsto (denoted here by ~).
The proposition P co Q (for P constrains Q) is defined by VI(P => AX8Q): Q
comes immediately after a state verifying P. The original version of Unity used
a kind of weak until: P unless Q, which is defined by (P /\ --.Q) co (P V Q)
and turns out to be equivalent to VlAG(8P W 8Q). The proposition P ~ Q
expresses that every trajectory where P is initially true eventually reaches a
state verifying Q; it is equivalent to VlAG(8P => F8Q).

For instance, a way to formalize the progress property of It in the synchro
nization protocol of § 8.1.3 is:

Vn E nat (It =n) ~ (It =n + 1) (8.1)

The logic of Unity is originally defined in an axiomatic way by deduction
rules. Other rules can be derived, such as the following. It is the set of such
rules that makes Unity of practical interest as a verification technique.

P~QVB B~R

P'",QVR

8.5.6 Hennessy-Milner Modalities

It is sometimes useful to state properties which refer to transition labels.5 It is
even essential if we work with a language like ((S. To this end, one can use the
modalities [0:] and (0:) where 0: is a label, as in Hennessy-Milner logic [HM85].
They apply to a state predicate P and give new state predicates [o:]P and (o:)P.
The latter is true in every state s from which a state satisfying P can be reached
through a transition labeled by 0:: (o:)P(s) if and only if 3s' s ~ s' /\ P(s').

Equally, [o:]P is true in every state s from which every transition labeled
by 0: leads to a state satisfying P: [o:]P(s) if and only if Vs' s ~ s' => P(s').

For example, in the system given in Figure 8.7 page 131 we have:

- R If- (acc)t /\ (reset)t: from the state R one has the option of getting a drink
and the option of asking for reimbursement;

- A If- [20c](reset)t: from the state A, after paying 20 cents, one can still ask
for a reimbursement;

- A If- (20c)«acc)t/\ (reset)t): from the state A one can pay 20 cents and then
choose between getting a drink or asking for a reimbursement;

- A If- (20c) (--.(acc)t /\ (reset)t): from the state A one can pay 20 cents and
then be in position to ask for a reimbursement without having the option of
getting a drink.

5In § 8.5.6 and also in § 8.5.7, the model, that properties are about, is a transition
system rather than a Kripke system.

Behavioral Specifications 143

Given that only processed actions are taken into account, one might
~ think that Hennessy-Milner logic is limited to expressing properties
of traces, as LTL is limited to properties of trajectories. This would be a mistake.
The last property stated above is not true of the first vending machine described
in Figure 8.6 whereas both systems have the same traces, as seen previously.
In fact modalities [a] and (a) are close to branchings expressed by AX and EX.

It is easy to extend the previous modalities by replacing a by a set of actions:
s ~ s' can then be considered as an abbreviation for 3a E K s ~ s'. In this

context, we agree that "-" denotes the set of all actions of the system. Thus
[-]P is true in any state from which all transitions lead to a state satisfying
P. In our example, we have A II- [-](lE)t.

8.5.7 Mu-calculus

The properties just mentioned would also be satisfied by a vending machine
that stops working after delivering its first drink or paying money back. The p,
calculus based on Hennessy-Milner logic allows one to specify complex iterative
behaviors thanks to the introduction of least fixed points p,x.cI>(X) and of
greatest fixed points vX.cI>(X), where 4>(X) represents a state predicate in
which the state predicate variable X can occur.

For example, let us consider the formula P ~f vX.(reset) /\ [-][-][-]X.
In a first approximation it can read: P is true if "reset can be fired and if,
after firing three transitions, reset can again be fired and if, after firing three
transitions again, reset can again be fired, and so on. Here, P describes a
cyclical behavior with period 3. In the system of Figure 8.7, P is true in states
P and F.

More precisely, P is the greatest solution of the fixed-point equation X =
(reset)/\[-][-][-]X, that is, the greatest predicate X satisfying X =>(reset)/\
[-] [-] [-]X. According to § 3.6, this solution is obtained by successive iterations
Po = t, H = (reset) /\ [-][-][-]Po, P2 = (reset) /\ [-][-][-]PI , etc. but we
have already P2 -¢::} Pl. To see that, let IZI denote the set of states satisfying
Z, we have IPol = {S, A, R, F}, !PI I = {R, F} and IP2 1 = {R, F}.

This definition by fixed points makes use of the theorem of Knaster-Tarski
which asks for a monotony condition. In the p,-calculus, the latter is ensured
using a syntactic device: fixed-point variables (like X above) must occur only
under an even number of negations.

Terms in the form vX.f(X) express properties about full trajectories and
then are related to safety. Dually, least fixed points p,X.f(X) are related to
liveness properties.

Fixed points provide a convenient means for defining the semantics of CTL.
For example E(8P U 8Q) is true in state s if Q is true in s, or if P is true
and there exists a next state in which E(8P U 8Q) is true. More precisely,
IE(8P U 8Q)1 is the smallest set of states X containing IQI and containing states
s such that P(s) and s --t s' with s' EX. This idea is represented in a synthetic

144 Understanding Formal Methods

way in the formula p.X.Q V (P 1\ (- }X), and is the basis of the first verification
algorithms for CTL by model checking.

Much more complex properties can be formulated by alternating p.s
and vs. For instance vX.(p.Y.PV(-}Y) 1\ (-}X represents the CTL

formula EG8EFaP (there exists a trajectory along which one always has the
option, branching off if necessary, of reaching a state satisfying P), whereas
vX.p.Y.(P V(-}Y 1\ (-}X) represents the CTL* formula EGFaP (there exists
a trajectory along which P is infinitely often true), which is beyond what CTL
and L TL can express. The first formula can be analyzed as follows: p.Y.PV (-) Y ,
which is equivalent to EFaP, is embedded in vX.Q 1\ (-}X, which is equivalent
to EG8Q. The second formula is more subtle: it contains a ''true'' alternation of
fixed-point operators - the two variables X and Yare within the scope of the
second fixed-point operator(p.). Still more complex (and delicate) properties
can be stated, using additional fixed-point operators alternations, so that we
can go beyond the expressive power of CTL *. The interested reader may consult
the literature cited at the end of this chapter.

8.6 TLA

With TLA (temporal logic of actions), Leslie Lamport proposed to specify both
the expected properties of the behavior of a system and the system itself, all
within the framework of a linear temporal logic. To this end, temporal operators
are applied to transitions. The latter are described by a binary relation between
the current state and the next state using the same convention as in Z: for
example, incrementing II is described by a relation Al which can be defined by
l~ = II + lor by l~ -II = 1. Such a relation in TLA is called an action. A system
that perpetually increments II is specified as follows: Al d~f O(l~ -II = 1). To
specify the initial state, we just need a state formula, for example [nit1 ~ it = O.
The conjunction [nit 1 1\ OA1 makes up our first TLA system.

From a mathematical perspective, one can consider that a TLA formula OA
defines a Kripke model (8, R), by stating a constraint on 8 and on R. As a
first approximation, 8 is defined by the vocabulary employed in A, which is
just it in our example.6 Each word of the vocabulary denotes a field of 8, that
we translate to a projection as in § 8.2.6 for Unity. In the case of AI, at the
moment we have 8 = N while II boils down to the identity function. 7 The
formula A then defines the transition relation R. This yields in example AI:

R1 = {(s,s') E 8 x 8 Ilt(s) -It(s') = 1}

= {(O,l), (1,2), (2,3), ... }.

61~ must be considered as a term obtained by application of the postfix operator
I to h; this operator is similar to X introduced in § 8.5.2, but it is applied to a term
instead of a formula.

7Let us mention that according to Lamport, the domain of fields should not be
specified. This point is not essential here.

Behavioral Specifications 145

However, as a TLA specification is the conjunction of several formulas hav
ing, in general, different vocabularies, but which can overlap - as in Unity,
cooperation is modeled by field sharing - one agrees that S is only partially
specified by the vocabulary of A. In our example we would have S = ... x Nx ...
and 11 would be the appropriate projection. The transition relation R is de
fined as before by formula A, but with the extended interpretation of S. Thus,
Rl becomes, assuming that it is the first projection and that we have another
Boolean field:

Rl = {((O,f), (l,f)}, ((O,f), (1, v}}, ((O,v), (l,f)}, ((O,v), (l,v)},

((l,f), (2,f)}, ((l,f), (2,v)}, ((l,v), (2,f)}, ((l,v), (2,v)},

((2,f), (3,f)}, ((2,f), (3,v)}, ((2,v), (3,f}), ((2,v), (3,v}),

... }

Now, if we augment the previous specification with a second formula A2 def

(11 ~ 1 A b~ = f) V (11 > 1 A b~ = v), the conjunction Al AA2 yields the transition
relation:

Rl n R2 = {((O, -), (1, f)}, ((1, -), (2, f)}, ((2, -), (3, v)}, ... }

where the joker "-" represents the two values f and v. The important point
to remember is that the transition relation we get by composition is no longer
the Cartesian product of transition relations, but their intersection.

~ It is possible to present the composition using a more general con-
'8 struct called the fibered product. The product and the intersection
are two special cases of fibered products. We will not expand this remark here.

_~ The terminology of TLA is different from that employed for transition
L..:::::@ systems in § 8.2.1: in the former case an action is a subset of S x S,

in the latter an action is a label (associated to a subset of S x S).

As with the product, composition by conjunction entails a: synchronization
of transitions of all components. If we want Al to evolve as well as another
system that does not mention it, the remedy is the same as in § 8.2.5: offering
a choice between modification and stuttering. In order to simplify the writing,
in TLA we have the notation [Rl(z) for R V (Zl = z). One would then write:
O[l~ -11 = 11(h).

One of the main points of TLA is that behaviors are specified by stuttering
invariant formulas: formulas such that, if they are satisfied by a trajectory a,
they are also satisfied by any trajectory we get by inserting or removing state
repetitions in a. For this, formulas are essentially in the form O[Rl(z).

Let us illustrate the idea on Roucairol's protocol written in Unity in Fig
ure 8.4. The first component performs three actions at will:

-N1 ~ 11 <d1 A l~ -11 =1

-E1 d4,f c~ = C2 U {h}
-R1 def

incrementation,

sending,

receiving, not detailed here.

146 Understanding Formal Methods

Note that the firing condition of NI is represented by a conjunction with h < d l .

One would define actions N2, E2 and R2 in a symmetrical manner. The desired
behavior q, is then specified as follows (be warned that actions relative to
channel Ci are put together; their behavior could be augmented by losses and
duplications) :

CI ~f RI V E2 C2 def R2 VEl

HMI ~ NI VCI vC2 HM2 def N2 V C2 V CI
q, ~f D[HM d(h,d"q,C2) A D[HM 2)(12,d2,C2,Cl)

We still have to ensure progress and fairness of the behavior, us
ing a conjunction with a suitable formula, and without introducing

any parasitic safety property. To this end one uses particular formulas noted
WF f (A) or SF f (A). They are defined by means of <> and 0, and they express
that action A (HMi in our example) is fairly fired and modifies fields listed in
f. They represent stuttering invariant properties.

Reasoning is performed in TLA using about fifteen deduction rules. Some
of them are as simple as D;~2Q' but rules on fairness properties are more
complex. The reader may consult [Lam94) and [Aba90).

8.7 Verification Tools

Previous sections presented different approaches for accurately specifying sys
tems composed of several entities evolving at the same time, as well as the
properties we expect them to satisfy.

8.7.1 Deductive Approach

For verifying these systems, one can proceed by decomposition and formal de
ductions, notably in the framework of Unity or TLA. The user then has to
properly organize his or her understanding of the phenomena under considera
tion and to master formal reasoning to a good extent. Proof environments can
then provide valuable assistance. A good specialized tool is STeP [BBC+95].
Libraries on top of general proof assistants such as LP, Isabelle and (oq, are
also available or in development, see for example the work of Cregut and Heyd
[HC96). The strong point of this approach is that the user may use powerful
mathematical devices for structuring specifications and proofs, and for explain
ing when and why the system works.

8.7.2 Verification by Model Checking

Considering that the number of possible scenarios for a system composed of
several entangled subsystems increases very quickly, including for small sys
tems, a different approach was invented in the 1980s and transpired to be quite

Behavioral Specifications 147

efficient and effective: building the Kripke model of the whole system (labels
are generally ignored), that is, the graph of all global states and possible tran
sitions between them, then computing the truth value of expected propositions
on each state - hence the name model checking. This is possible provided that
the graph is finite (hence extendable data structures like unbounded queues or
trees are not allowed), and that properties are expressed in a propositional
temporal logic.

Without going into detail, the verification of a CTL formula is based on
fixed-point computations (see § 8.5.7). It is linear in the size of the graph and
in the size of the formula. However, the number of states is itself essentially
exponential: introducing a one byte variable in the two protocol entities is
enough to make the number of global states explode by 32,000. This approach
has actually proven to be really successful since the introduction of techniques
for representing graphs and formulas in a compact way where common parts
are shared, in particular thanks to the use of BDDs (binary decision diagrams).

The automated verification of a PLTL formula <P is more complex be
cause it is expressed about a path instead of a state. One translates

its negation -,<p into an observer automaton and then computes the synchro
nized product of the latter with the system to be verified. The property is
satisfied if and only if the language recognized by the product is empty. The
verification remains linear in the size of the graph but becomes exponential in
the worst case in the size of the formula.

Moreover, note that in a number of environments, the property to be
verified has to be directly expressed in the form of an automaton, without using
temporal logic. A similar idea is used in proofs by bisimulation, though in a
technically very different way. The basic principle there is to check that a given
automaton (e.g. a CCS process) has the same observable behavior (in terms of
labels) as a second automaton, the latter being considered as an abstract view
of the former.

From the user perspective, model checking can relieve him or her of an
exhaustive amount of reasoning on a huge number of specialized situations.
Another valuable aspect of this approach is that if a property is not satis
fied, model checking algorithms produce a counter-example scenario. The main
difficulties are in the modeling steps of the system and of expected proper
ties. Automated verification is made possible by adequate limitations in the
languages (propositional logic, bounded data structures). Remaining means of
expression have to be used very cleverly.

8.8 Notes and Suggestions for Further Reading

The general formalism of transition systems is described in [Arn94]. The lan
guages Unity and TLA are respectively defined in [CM89] and [Lam94]. The
process algebras CCS and CSP are dealt with in [Mil89] and [Hoa85], respec
tively.

148 Understanding Formal Methods

The synchronous approach is described in [Hal93). Interested readers may
also consult papers on Esterel [BG92), Lustre [CPHP87) and Signal [BLJ91).

Excellent syntheses on temporal logic can be found in [Eme90) and [Sti92);
however, Unity and TLA are not covered. Let us also mention that some tem
poral logics include modalities about the past, they are for instance exploited
in Lustre for safety properties. The reference manual for the STeP environment
is [BBC+95). The ",-calculus is studied in [Bra92) and in [ANOI).

Reference books on verification techniques through model checking are also
available. McMillan's book is still very valuable [McM93), while [CGP99) is
centered on underlying theory and implementation technologies. [BBF+Ol) is
mOre synthetic and provides useful practical advice, as well as an overview of
the main software tools available. Two of the most prominent are SMV [Berct),
which is based on CTL, and SPIN, based on LTL [HoI97). Original papers on
model checking are [QS82) and [CES83). The relative merits of branching as
opposed to linear time temporal logics have been a matter of debate since the
early 1980s. For a recent paper on this issue, the reader is referred to [VarOl).

9. Deduction Systems

In the propositional case, a formula P has only a finite number of interpreta
tions: there are exactly 2n of them, where n is the number of atomic propositions
used in P. The truth table method makes it easy to determine whether P is
satisfied, is a tautology, or is a logical consequence of a finite set of propositions.
This is a semantic technique: it is based on a study of models of P.

In contrast, the topic of proof theory is to know the consequences of a set
of axioms by purely syntactic means. The central concept is then the deductive
consequence relation, denoted by 1-. This relation is a priori different from
the semantic relation 1=. It is defined by so-called logical axioms (for example,
(P 1\ Q) ~ P) and rules called inference rules or deduction rules. Recall that
in model theory, the symbol 1= can also be used to state that a formula P is
valid (1= P). In a similar way, f- P denotes that P is a theorem.

We will need to express syntactical manipulations on the deductive
consequence relation itself. To this effect we will introduce ordered

pairs r I- ~ called sequents. Then we will have proof trees made of sequents
and having a sequent as their conclusion. This yields a more general concept
of a theorem and leads us to use different symbols for stating theorems and
for representing deductive consequences, so that we could write f- r I- ~.

According to [GaI93], the symbol I- comes from Girard.

Logical axioms are always true. They should not be confused with axioms
which are proper to a given theory and define the latter. A well-known exam
ple are Peano axioms, which define arithmetic. Such axioms are called proper
axioms, or non-logical axioms.

There are three main approaches for defining 1-: Hilbert's approaches, which
uses many axioms and very few inference rules and two approaches due to
Gentzen (natural deduction and sequent calculus) which have the converse
features: few axioms and many deduction rules. We start with these three
methods.

We will also sketch two other techniques for calculating consequences. The
first was developed by Dijkstra and Scholten in the framework of their cal
culational approach to programming. The second is rewriting systems, which
provide efficient tools for equational reasoning - prosaically: replacing equals
with equals.

The chapter ends with the relationship between truth and provability. One
would expect that provable formulas are true and conversely. This is correct
for first-order logic, but arithmetic makes the situation more complicated. The

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

150 Understanding Formal Methods

main results come from works originally motivated by the foundations of math
ematics, considered as the typical place for studying formal reasoning. The
practice of formal methods is mainly concerned by intrinsic limitations related
to fully automatic proof search techniques.

9.1 Hilbert Systems

The impact of Hilbert systems seems less important than the other approaches
for computer science. Therefore we limit ourselves to propositional logic.

The notation I- P states that the proposition (or the formula) P is proved.
In particular, axioms will be noted in this way.

In the framework of propositional logic, a Hilbert system has only one de
duction rule, called modus ponens. It can read, P and Q being arbitrary propo
sitions: if P => Q is proved and if P is proved, then Q is a theorem as well:

P=>Q P
Q

First-order logic includes a second inference rule, the generalization rule which
reads: if P is a theorem, then VxP is a theorem as well. For example, from
x>O => 2.x>0 we deduce Vx x>O => 2.x>0:

P
Vxp·

The construction of proofs is quite simple. The intuitive idea is to present
a proof in the form of a tree1 where nodes are labeled by an instance of an
inference rule and where leaves are labeled by an axiom. The proved theorem
is on the root. The precise definition of a proof is as follows:

- if I- A is an axiom,

-ax
A

is a proof with conclusion Aj A ax may be regarded as a rule without
premisej

- if VI and V 2 are two proofs with respective conclusions C1 and C1 => C2 ,

then the tree

V2

C1 => C2 C1
-----:::---- mp

C2

with root modus ponens, where P and Q are respectively instantiated by C1

and C2 , with immediate left subtree V 2 , and with immediate right subtree
VI, is a proof with conclusion C2 .

IThe concept of a tree can itself be formalized, see page 83.

Deduction Systems 151

A formula P is a theorem if there exists a proof tree with conclusion P.
Note that we will sometimes indicate explicitly, on proof trees, the name of the
rules we use near the corresponding fraction lines.

The main part of information is actually contained in the axioms. These
axioms, on which we agree independently from any theory (in the sense defined
in § 5.6.1), are called logical axioms. They are chosen in a way such that all
valid formulas can be deduced. Many axiom systems satisfy this condition. All
these systems are equivalent (that is, the axioms of one system are theorems
of any other axiom system). For illustration purposes, here are some axioms of
a well-known system due to Hilbert and Ackermann [HA28]:

I- P~ (Q~P) ,
I- (P ~ (P ~ Q)) ~ (P ~ Q) ,
I- (P ~ Q) ~ ((Q ~ R) ~ (P ~ R))

This system includes twelve additional axioms about 1\, V, {::} and -, connectors
[GG90, p. 112]. They are actually axiom schemas: real axioms are obtained if
we substitute any proposition of the considered language for the symbols P,
Q, R. For example, from the schema I- P ~ (Q ~ P), we get, in a language
including the proposition symbol P:

I-PI\P~(-'P~PI\P) .

Now we can provide a proof of P ~ P, using the two first axioms:

...,----:----,--,-----,,----.,. ax --,---...,.- ax
(p ~ (p ~ p)) ~ (P ~ p) P ~ (p ~ p)
~-~-~~-~-~----~~-~mp

P~P

The presentation of this tree can be simplified, because we know that the
formulas displayed at the level of leaves are necessarily axioms and that modus
ponens is used in all other places:

(p ~ (p ~ p)) ~ (p ~ p) p ~ (p ~ p)
p~p

We will see below more varied proof trees, where it is better to keep explicitly
the name of the rules which are used.

It is regrettable that Hilbertian axiomatic systems are somewhat contrived.
Axioms are sometimes complicated. It is a shame that the proof of P ~ P is
not trivial. It is hard to claim that this formalization of logic represents usual
logical reasoning. The situation gets even worse in Hilbert systems invented
with the purpose of minimalizing the number of axioms. In practice, no proof
assistant is based on this approach.

In mathematics (group theory, topology, geometry, etc.) a system of (proper)
axioms plays an important role; for a given theory; there is few room for al
ternative systems. In contrast, logic already offers a large number of possible
systems, this is already the case for propositional logic. This actually suggests
that no one tautology is more fundamental than the others.

152 Understanding Formal Methods

However Hilbert systems are quite convenient for the mathematical study of
logic, in order to know whether every provable proposition is true and conversely
- these properties are respectively called soundness and completeness. In this
respect a particular relation turns out to be important: the deducibility relation.

The axioms of a theory (in the sense given in § 5.6.1) are called proper
axioms, or non-logical axioms. Let r be a set of closed formulas. A closed
formula P is a deductive consequence of r (we also simply say that P is
deducible from r), which we note r I- P, if P can be proved using modus
ponens - and the generalization rule in the case of first-order logic - from
logical axioms and formulas of r.

Let r be an axiom system allowing one to prove P => Qj if we insert the
hypothesis P in r, we observe (thanks to modus ponens) that r, P I- Q. The
converse property seems natural and can actually be proved, but more work is
required.

Theorem 9.1 (deduction)
If r, P I- Q then r I- P => Q.

This theorem is proved by induction on (the length of) the proof
trees corresponding to r, PI- Q, by inspecting the different possible

cases. Warning: it is important to distinguish the proof of the previous theorem
and the objects it talks about, which are themselves proofs and theorems. There
are two language levels, and the first is the metalanguage of the second.

The metalanguage is the language we use for defining, commenting
or explaining another language. It is a natural language in most cases, such
as English. In the present case the metalanguage involves basic mathematical
concepts in order to explain the syntax of logic as well as concepts related to
deduction. In this respect, Theorem 9.1 is a metatheorem.

We will see that natural deduction and sequent calculus take the opposite
view with relation to Hilbert systems: the meaning of implication will be based
on the two last (and symmetric) properties formalized by modus ponens and
the deduction theorem. Other connectors will also be systematically treated in
a symmetric way.

9.2 Natural Deduction

With natural deduction, Gentzen introduced a formalization more faithful to
regular reasoning.

9.2.1 Informal Presentation

Let us start with a simple example. We want to show that the square of an
even number is even, given that the product of an even number by an arbitrary
number is even. The formula to be proved is:

Deduction Systems 153

[VX even(x) => Vy even(x.y)] => [Va even(a) => even(a.a)] . (9.1)

This example has no mathematical interest, but it allows us to illustrate the
meaning of quantifiers and implication. As in usual reasoning, our first step is
to prove that, from the hypotheses "Ix even(x) => Vy even(x.y) and even(a),
we can deduce even(a.a).

We then assume "Ix even(x) => Vy even(x.y) and we consider for x an
arbitrary a. We then have even(a) => Vy even(a.y). Let us now assume that a
is even. We can deduce that for all y, a.y is even, then that a.a is even. Hence
we have even(a) => even(a.a), for any a. We deduce Va even(a) => even(a.a).
This formula was proved under the hypothesis "Ix even(x) => Vy even(x.y),
hence we conclude (9.1).

Let us split up this reasoning into its components. First we prove that, from
the hypotheses:

"Ix even(x) => Vy even(x.y)

even(a)

we can deduce:

even(a.a) .

and

Let us take an arbitrary a for x in (9.2). We have then:

even(a) => Vy even(a.y) .

(9.2)

(9.3)

(9.4)

(9.5)

Let us now consider the hypothesis (9.3): a is even. From (9.5) and (9.3) we
get that a.y is even for all y:

Vy even(a.y) , (9.6)

then (9.4) if we take a for y. This conclusion depends on the hypothesis (9.3),
so we have:

even{a) => even(a.a) , (9.7)

and this for an arbitrary a, that is for an a on which we don't have any hy
pothesis. We deduce:

Va even(a) => even(a.a) , (9.8)

which was proved under the hypothesis (9.2), hence (9.1).
The inferences used in the previous example have one of the following

shapes:

- if from P we can prove Q, we have a proof of P => Q, more precisely a proof
of P => Q without the hypothesis P; to put it otherwise: in order to prove
P => Q it is enough to prove Q under the hypothesis P; thus we got (9.6)
from (9.3), hence (9.7);

154 Understanding Formal Methods

- if we proved P => Q on the one hand and proved P on the other, then we
have a proof of Q; for instance we deduced (9.6) from (9.5) and (9.3);

- if we proved P (P may contain free occurrences of x) without any hypothesis
on the variable x then we have a proof of VxP; in our example, see how we
deduced (9.8) from (9.7); however, we could not deduce Va even(a.a) from
(9.4), because a hypothesis on a was still present!

- if we proved VxP then we have a proof of [x := t]P where t is an arbitrary
term; for example, we deduced (9.4) from (9.6).

We observe that each connector * is defined by an introduction rule and an
elimination rule. An introduction rule determines how we can get a formula
having * as its main connector, while an elimination rule shows how, from such
a formula, we can get one of its immediate subformulas. This corresponds to
a general thought line: in the framework of natural deduction, the behavior of
each connector is defined by introduction and elimination rules. Here are the
rules for conjunction and disjunction:

- if we proved P and we proved Q, then we have a proof of P I\. Q;
- if we proved PI\. Q, then we have a proof of P (similarly, we also have a proof

of Q);
- if we proved P (similarly, if we proved Q), then I have a proof of P V Q;
- if we proved P V Q, and if in each case we can prove R, then we have a proof

of R.

Natural deduction includes no logical axiom; but one manipulates deduc
tions under hypotheses. The typical way to discharge these hypotheses is to
use introduction rules for =>. A proof is a special case of deduction in which
no hypothesis is left; finally, as in Hilbert systems, a theorem is a formula for
which there exists a proof.

The example of even numbers illustrated this process. One of the simplest
examples is the proof of P => P. First we put the hypothesis P, and we have
a trivial deduction of P under this hypothesis. Using the introduction rule for
=>, we immediately get a deduction of P => P without hypothesis.

9.2.2 Formal Rules

The formalization of natural deduction inference rules takes the shape of frac
tions, as in Hilbert systems. Each rule is identified by a name such as I\.i
(introduction of 1\.), I\.el or l\.e2 (respectively left and right elimination of 1\.).
The rules of the system NJ of Gentzen are given in Figure 9.l. We comment
on them now.

In a proof, hypotheses are identified by a number between parentheses.
When a hypothesis is discharged, its number is recalled on the corresponding
inference rule (introduction of =>, elimination of V or of 3). When one of these
three rules is applied, it is possible to discharge one, several (see the example of
Figure 9.2) or zero occurrences of the same hypothesis; all occurrences marked
by the appropriate number are discharged. A given formula may be used several

(n) ---..
P

Q=>..
P=>Q ~(n)

P --\:I;
\:IxP ~

~\/,.
PVQ Zl

~\/,.
PVQ n

[x:= tjP 3.
3x P z

Deduction Systems 155

~P-=>,,---==Q--P- :::}e

Q

~..1e
P

\:IxP \:Ie
[x :=tjP

(m) (n) ---.. ---..
P Q

PVQ R R
---'''-------- Ve(m,n)

R

(n) ---..
P

3xP Q
Q

Figure 9.1: The system NJ of Gentzen

times as a hypothesis and then have several occurrences. These occurrences may
be marked by the same number or by different numbers. In the latter case, they
will be discharged on different logical steps.

In order to apply the rule Vi, it is necessary that no hypothesis where x is
free is left, as we have seen above: such a hypothesis would constrain x, while
we want x to be arbitrary! By a similar reasoning, a side condition for applying
the rule 3e is that in all hypotheses except P, x cannot occur free.

The symbol ..1 denotes here the absurd, like f in § 5.1.2, and not the unde
fined value we introduced on page 88 for 3-valued logics. Of course, there is no
introduction rule for ..l. In order to use this constant, we can consider it as a
hypothesis. For example, Figure 9.3 contains a proof of P => ((P =>..1) => ..i).

The negation -,P is not a primitive concept in natural deduction, it is
considered as an abbreviation for P => ..l. For example, we have a proof of
P => -,-,p in Figure 9.3. Similarly, P -¢::> Q is considered as an abbreviation for
(P => Q) 1\ (Q => P).

156 Understanding Formal Methods

(1) ,...,......
P

(1) (1)
...-"--.. ...-"--..

P A Q Ae2 P A Q Ael

--'!Q'----------p- A ·
QAP Z

--""'---- =>,.
P A Q ~ Q A P Z(l)

Figure 9.2: Commutativity of conjunction

1..

(2)
...--"--..
P~1.. =>e

(1) (2) ,...,...... ,...,......
P -,p

1..
=>e

-----=>,.
(P ~ 1..) ~ 1.. Z(2)

~i(l)
P~ ((P~ 1..) ~ 1..)

----=>,.
(-,P) ~ 1.. Z(2)
"'----'--- =>,.
P ~ -,-,p Z(l)

Figure 9.3: Introduction of a double negation

(1)
"

Vx even(x) ~ Vy even(x.y)' Ve

even(a) ~ Vy even(a.y)

(2) ----even(a) =>e

Vy even(a.y) Ve

even(a.a)
------'~-"---- ~i(2)

even(a) ~ even(a.a) V:
Z

Va even(a) ~ even(a.a)
-----------'--'-----'~-"-------- ~i(l)

[Vx even(x) ~ Vy even(x.y)] ~ [Va even(a) ~ even(a.a)]

Figure 9.4: Example of even numbers

9.2.2.1 Formalized Examples. Figure 9.2 presents a half of the proof of
commutativity of A, while Figure 9.3 etablishes P ~ -,-,p' The example of
even numbers is formalized in Figure 9.4.

These proof trees can be read in two ways. The easiest is from the top to the
bottom. Reading a proof in this direction corresponds to the way semi-formal
proofs are usually presented. The explanation given above for even numbers is
an example of this kind. The reader has just to check that all steps are correct.
Figure 9.2 could then read: assume P A Q; using Ae twice, we deduce Q on the
one hand and P on the other, hence Q A P by Ai; we conclude P A Q :::} Q A P
by ~i.

In contrast, when we want to construct a proof tree, it is generally easier to
start from its root. One is then constantly guided by the shape of the current
goal. Thus, in order to prove P A Q ~ Q A P we have to prove Q A P, that

Deduction Systems 157

is, Q and P separately, from the hypothesis P 1\ Q. We will see below (§ 9.2.5)
how this strategy is supported by software tools.

Let us revisit the total correctness of the linear search algorithm, which was
proved on page 25. One of the properties of the loop variant was based on the
fact that x ::; N was a loop invariant:

"We still have to show that the property v ~ 0 (...) x ::; N [is left
invariant]. At the beginning of an iteration step, we have necessarily
--,P(x) which yields x =I N, since N satisfies peN); hence x ::; N boils
down to x < N; after the assignment x:=x+l, this yields x ::; N as
expected, since N and x are integers."

The property to be proved can be formulated as follows

peN) 1\ --,P(x) 1\ x::;N ~ x+1::;N . (9.9)

It is necessary to make precise the theory we work with. An option would be to
consider a theory of relative integers, but in order to avoid the introduction of
additional material, let us keep Peano arithmetic. Thus we just need a constant
N, a predicate symbol P and we assume P(N). The expression x + 1 is represented
by Sex); as in § 5.3.2.2, x::; y is defined as x < S(y). Our goal is then to prove,
under the hypothesis peN):

--,p(x) I\x<S(N) ~ S(x)<S(N). (9.10)

We will use the following axiom for equality:

x=N ~ [peN) ~ P(x)] . (9.11)

On this example we will construct the proof tree in the bottom-up direction.
If we look at the shape of the goal (9.10), a natural strategy is to attempt
to prove Sex) < SeN) under the additional hypothesis --'P(x) 1\ x < SeN). The
current goal boils down to x < N if we admit that we have the following lemma:

VxVyx<y~S(x)<S(y) . (9.12)

This lemma is available on any decent proof tool, however a formal proof is
given below. At this stage we have the following partial tree:

(1) ..
:"P(x) 1\ x<S(N)

: } to be provided

x<N

VxVy x<y ~ sex) <S(y) 'Ie

Vy x<y ~ Sex) <S(y) 'Ie

x<N~S(x)<S(N)
------~~~~-------------------~

Sex) < SeN)
------'-~--'-'---- ~i(l)
--,p(x) 1\ x < SeN) ~ sex) < SeN)

We still have to show x<N under the hypotheses peN) and --,p(x) 1\ x<S(N).
As the goal is atomic, we now proceed from the top to the bottom: let us split

158 Understanding Formal Methods

the second hypothesis into -'P(x) and x<S(N). Both of them are atomic as well,
but a Peano axiom (see § 5.3.2.1 on page 85) happens to state that x < S(N)
implies x < N V x = N. Eliminating V allows us to consider the two cases x < Nand
x = N separately. The branch to be constructed then has the following shape:

(2) (3) .--... .--...
x<N x=N

x<S(N)
=>e<

x<N x<NVx=N x<N
Ve(2,3)

x<N

Proving x < N from x < N is trivial. We are left with proving x < N from x = N ...
and the additional hypotheses -'P(x) and P(N), which yield the absurd thanks
to the equality axiom:

-'P(x)

(3) .--...
_x =_N _P(~N~) =>e=

P(x) =>e
1.. --1..e

x<N

The notation =>e= is an abbreviation for two consecutive eliminations of::} from
the equality axiom (9.11). We proceed in a similar manner for the comparison
axiom. Note that constructing a proof using additional axioms does not raise
any special difficulty. This amounts to working under the hypothesis that these
axioms are satisfied. The proof of x < N is then:

(1)
" r ,

(3) .--...
_x =_N _P(~N~) =>e= (1)

"
-,p(x) " x<S(N) A

"e1 , ,
-,p(X) _-,P-,(,-X<...) _"_X_<_S-,"(N~)

"e2
X<_S....:(,-N!-) _ =>e< ~ -1..-1..e

P(x) =>e

x<NVx=N x<N x<N
------------------ Ve(2,3)

x<N

9.2.2.2 An Arithmetical Example. In order to illustrate how we can for
malize reasoning by induction, let us prove the property (9.12) we used earlier:

VxVy X<y::} S(X) <S(y) . (9.12)

This formula is proved by induction on y. It means that we prove:

Vy x<y::} S(x) <S(y) (9.13)

using the axiom of induction (5.7) on page 86 that we recall here:

Deduction Systems 159

(x<O:::}S(x)<S(O)) A

(Vy (x<y:::} S(x) <S(y)) :::} [x<S(y):::}S(x)<S(S(y))]) (9.14)
:::} Vy x<y:::} S(x) <S(y) .

We get (9.12) from (9.13) by applying the rule 'vi. All hypotheses on x must be
removed. The formula (9.13) is a trivial consequence of (9.14) as soon as:

x<O:::} S(x) <S(O) and

Vy (x<y:::} S(x) <S(y)) :::} [x<S(y):::} S(x) <S(S(y))]
(9.15)

(9.16)

are proved. We entrust the reader with the task of checking it by means of a
sufficiently wide sheet of paper (hint: use =>e, Ael and Ae2).

We will need Peano axioms concerning <. They were given on page 85, but
we recall them here:

Vx ""(x<O) ,
VxVy x<S(y) {::::} x<y V x=y .

It is easy to prove (9.15) by reducing it to the absurd and using (9.17).

Vx ""(x<O) Ve ,J!2...
""(x<O) x<O
~-~-----=>e

..1 ..le
_ _ S(~xt-) <_S...!.(O....:..)_

:::}i(l)
x < o:::} S(x) < S(O)

(9.17)

(9.18)

Proving (9.16) boils down to proving S(x) < S(S(y)) from x < y:::} S(x) < S(y)
- this is the induction hypothesis - and from x < S(y):

(2)

;;<y:::} s(x) <s(yf

(3) ..---..,.
x<S(y)

} to be provided

_ _ --'s (,-,x)_<_S-,-(S-",(y.!...!..)) __
:::}i(3)

_ _______ x_<_S~(y=)_:::}~S(~x~)<_S~(S~(~y)~) ______ __
:::}i(2)

(x<y:::} S(x) <S(y» :::} [x<S(y):::}S(x)<S(S(y))] 'ri'

Vy(x<y=>S(x)<S(y» => [x<S(y)=>S(x)<S(S(y»] ~

The second comparison axiom (9.18) tells us that, in order to prove S(x) <
S(S(y)), it is enough to prove:

S(x) <S(y) V S(x)=S(y) . (9.19)

On the other hand, the same axiom yields x < y V x = y from x < S(y), which
allows us to reason on two cases. When x < y the induction hypothesis allows us

160 Understanding Formal Methods

to conclude S(x) <S(y). In the second case (x=y) an equality axiom provides
S(x) =S(y). In order to simplify the tree we replace (9.19) with S(x)::; S(y) on
two occurrences. This is a harmless presentation trick.

(3) ,.....--.....
x<S(y)

(2) (4) (5) , " ,..............
x<y => S(x) <S(y) x<y......... x=y

...... c:; ---=-- =>e=
S(x) <S(y) v, S(x)=S(y) \/.

=>e< il VZ2
x<y V x=y S(x) <S(y) S(x) <S(y)
-.....::...---=--------'--'-'=-~---------'--'-'=-="'- Ve(4,5)

S(x) <S(y) V S(x)=S(y)
---'--'--""""-'---:....:..--=..:..=>e<

S(x) < S(S(y))

9.2.2.3 Some Remarks About Axioms. In Hilbert systems, the meaning
of logical connectors is encoded in ad hoc axioms, so that one could get the
impression that logic is just a somewhat arbitrary game of symbols [GLT89]. In
contrast, natural deduction embeds the meaning of logical connectors in infer
ence rules corresponding to regular reasoning. This makes the latter approach
much more satisfactory.

The symmetry introduction-elimination we have for each connector is rem
iniscent of the relation constructor-destructor of algebraic abstract data types.
It turns out to be very important in the development of the theory, especially
for its relationship with type systems and A-calculus. We will revisit it in Chap
ter 11.

Finally, let us remark that though NJ does not include any axiom on logi
cal connectors, nothing prevents us from introducing axioms about non-logical
symbols. In our examples axioms about equality and arithmetic are employed.

9.2.3 Toward Classical Logic

Something is missing in the system NJ: one cannot prove all tautologies in it!
To this effect it is necessary to add the law of excluded middle, or, equivalently,
an elimination rule for double negations:

---EM
PV-oP

-o-oP
-- -o-oe

P

The system we get is called NK, it is complete (cf. § 9.8) for first order classical
logic. In fact, the system NJ represents exactly intuitionistic logic, a logic we
already talked about on page 42.

Adding a law such as EM is entirely compatible with usual reasoning. Com
bined with Ve, one gets the form "if P entails Q and -op entails Q as well,
then Q is proved". But EM (as well as -o-oe) breaks the symmetry and the cohe
sion of the system, and then complicates the study of NK. Therefore, Gentzen
introduced another system which is perfectly symmetrical and is much more
satisfactory for classical logic: the sequent calculus.

Deduction Systems 161

However, it is important not to confuse this calculus with natuml deduction
presented with sequents. This way of presenting natural deduction is sometimes
the most convenient. In passing, note that a formalism inspired from natural
deduction, which aims at defining the semantics of programming languages,
and is therefore called natural semantics [Kah87], is usually presented with
sequents.

9.2.4 Natural Deduction Presented by Sequents

A sequent is an ordered pair composed of a finite sequence of formulas r and
of a formula P, noted r I- P. Such a sequent represents the judgement IIp is
derivable under the hypotheses of r".

r I- P can be seen as a deduction tree of the previous presentation, where we
keep only the leaves (non-discharged hypotheses) and the root (the conclusion).
Everything goes on as if one takes a snapshot of the simplified deduction tree
at each step, and then displays these snapshots along a tree.

The sequence of formulas f may include different occurrences of a hypothesis
H, so that H can be discharged at different stages. Two contexts r 1 and r 2

which are identical up to the order of formulas they contain can be considered
as equivalent. In other word, contexts can be considered as multisets rather
than sequences.

Examples. The simplest proof one can construct in natural deduction is the
derivation of P under the hypothesis P. With sequents, we get the judgement
PI- P, which is an axiom in this presentation. More generally, axioms are all
sequents having the shape r I- P where P is a member of f. (In the frame
work of NK, one has to add the excluded middle or the elimination of double
negations.) Inference rules indicate how we go from a sequent to the next. For
instance, Figure 9.5 gives the rules about conjunction and implication. Observe
that every formula in the context r corresponds to a bundle of hypotheses to
be discharged simultaneously; we no longer need to use a mark which links a
bundle to the step where it is discharged; this is the main advantage of this
presentation of natural deduction. The two styles can be compared in Figure
9.6.

r p r Q".
r PAQ ~

r,p Q =>..
r p=?Q ~

r p"Q"
el r p

r p"Q" e2
r Q

r p=?Q r p
----=----~ r Q

Figure 9.5: Rules of NJ presented with sequents

162 Understanding Formal Methods

(1)
~

PAQ Ae2
Q

(1)
~

PAQ Ael

P A.
QAP t

-----'"----- =>..
P A Q => Q A P t(l)

PAQt-PAQA
el

PAQt-P A.
t

PAQt-QAP =>..
t-PAQ=>QAP t

Figure 9.6: Commutativity of conjunction (2 styles)

9.2.5 Natural Deduction in Practice

Searching a formal proof is much easier in natural deduction than in a Hilbert
system. Most deduction steps are guided by the structure of the formula to be
proved. But the size of formal proofs remains large. Moreover, when we write
everything explicitly, we see that a given subformula has to be written several
or many times. Using such techniques by hand quickly becomes tedious - then
error prone! - for realistic proofs.

However, natural deduction is well suited to interactive automated proof
assistants. For example, it is used in HOl and Coq. At each stage, the current
sequent is displayed, then the user calls a deduction rule and a new sequent
or set of sequents is displayed. In practice, it is generally better to specify a
combination of deduction rules by means of a language of tactics.

Let us see how the example of Figure 9.6 is proved with Coq. We introduce
the goal

PAQ => QAP .

As this goal has the shape A => B, we naturally try the rule =>i' This is imple
mented by the tactic called Intro. A new hypothesis P A Q will be generated
and we can provide its name, say h1, as a parameter of Intro. The system then
displays the sequent h1:P A Q ... Q A P. In order to prove the conjunction Q A P
we try the rule Ai, which is called Split. Two subgoals are generated, the first
displayed by Coq is h1:P A Q ... Q. We then want to use the hypothesis h1 by
eliminating its main connector. To this effect we use the tactic Elim, with h1
as a (mandatory) parameter. The second subgoal is solved in the same way.

Several steps can be put together into a sequence of tactics, which is written
in our example:

Intro h1; Split; Elim h1.

Note that fully automatic tactics can also be used for such simple formulas.

Each basic tactic represents a deduction rule, but in the general case,
~ a tactic just states instructions aiming at carrying on the construc
tion of the proof tree. In some cases, an automated tactic can elaborate a full
branch. Thus the real proof we obtain is not the visible script of tactics (which
is also the thing one edits and keeps in a file), but the internal proof tree, that

Deduction Systems 163

is built by the system.2 This object is checked by a very small kernel, which
has only one task: inspecting whether, or not, rules are correctly applied. This
technology allows one to design and implement proof assistants which are both
reliable and open. We go back to this point in § 12.5.

Note in passing that the size of scripts is generally smaller than the size of
the corresponding proof trees. To give a rough idea, here is a detailed script
(shorter ones can be found, but they use advanced features) for the proof given
above for (9.10), under the assumption P(N).

""P(x) A x<S(N) => S(x)<S(N)

Intro h1; Apply succ_monot.
Elim h1; Intros h1l h1r;
Caseax_comp2 with h1r introducing h2 h3.

Trivial.
Elim h1l; Rewrite h3; Assumption.

(9.10)

The first line introduces ...,P(x) A x<S(N) as a hypothesis named h1 and then
applies a lemma named succ_monot, which states that the successor function
is monotonic (9.12). This yields the new subgoal x<N. In the second line, h1 is
split into ""P(x) and x<S(N), respectively called hll and h1r. Then we reason
on the two cases we get when we apply ax_comp2 (the second comparison
axiom (9.18» to h1r. The fourth line corresponds to the trivial case x<N (h2
is automatically used behind the scene). The last line proceeds by elimination
of the conclusion of hll which is .1; we are left with the subgoal P(x) which
boils down to the hypothesis P(N), thanks to the equality h3.

9.3 The Sequent Calculus

In natural deduction, the concept of a theorem becomes of secondary impor
tance with relation to the deducibility relation. This is still more true with
sequent calculus. The main difference between the intuitionistic sequent calcu
lus (called LJ by Gentzen) and natural deduction (NJ) is the replacement of
elimination rules, governing how the main connector of the conclusion can be
eliminated, with left introduction rules, governing what can be deduced from a
compound hypothesis, given what is deduced from its components. On the other
hand, classical logic (LK) is no longer obtained by the introduction of an ad
hoc axiom, but by using an entirely symmetric concept of a sequent. A classical
sequent is a couple of two finite sequences of formulas r and ~, noted r I- ~.

As we did before, we agree that sequences which are the same up to a permu
tation are considered as identical. Intuitively, the sequent r I- ~ can read: ''the
conjunction of hypotheses contained in r entails the disjunction of formulas
contained in ~". For example, A, B I- C, D is similar to A A B => C V D.

2By the way, it is possible to print the tree in natural language (TBK92].

164 Understanding Formal Methods

It is more natural to start the study of sequent calculus with the classical
system LK. We get the intuitionistic calculus LJ from LK by confining deriva
tions within the space of intuitionistic sequents, which are sequents where the
right part has at most one formula.

Another difference between natural deduction and sequent calculus stands
in the status of negation, which is no longer an abbreviation built upon::::} and
.1, but a plain connector: it is even the vault key of the symmetry of the system.
Indeed, a formula can pass from one sequent side to the other by means of a
negation: see the introduction rules for.., in Figure 9.9.

9.3.1 The Rules of the Sequent Calculus

The rules of LK can be divided into three groups: a group of structural rules
(Figure 9.7), a group on identity (Figure 9.8) and a group of logical rules
(Figure 9.9). These rules can all be read top down (if the premises are good,3
so is the conclusion), or bottom up (searching to prove the conclusion reduces
to searching a proof of the premises).

The structural rules tell us something about the structure of sequents and
not about the structure of formulas. They define how the stock of hypothe
ses and conclusions is handled. Although no logical connector is involved in
these rules, essential properties of the logic they formalize are determined by
them [GLT89]. Thinning (or weakening) rules allow us to introduce "useless"
formulas and to consider as axioms only sequents in the form P I- P. Contrac
tion rules, when read bottom up, allow us to repeat a formula that may be used
in several ways. They correspond to the building of packets of hypotheses in
natural deduction (when occurrences of several hypotheses are gathered, that
is, identified by the same number in our first presentation in § 9.2.2).

rl-6.
affl

rl-6.
affr

P, r I- 6. r I- 6.,Q

p,p,r I- 6. rl-6.QQ
ctrl ' , ctrr

p,rl-6. r I- 6.,Q

Figure 9.7: Structural rules of LK

The identity group consists of two rules: the axiom A I- A, where we can
without loss of generality restrict ourselves to the cases where A is atomic, and
the cut rule which formalizes the usual concept of a lemma. Everybody can
intuitively convince themselves that the cut rule is sound when ~ is empty: P

3Understand: provable or valid; the first alternative remains valuable in the case
of LJ.

Deduction Systems 165

plays the role of a lemma derived from r, the "consequence" 6.' can then be
deduced from rand r'. The general case where 6. is non-empty boils down to
this special case if one considers that formulas of 6. can be freely transferred
to the left-hand side, then put back to the right-hand side.

--ax
AI-A

r I- 6, P P r' I- 6' , cut
r,r' I- 6,6'

Figure 9.8: Identity group of LK

The price to pay for each double transfer is a double negation (see
the logical rules) which costs nothing in classical logic. The problem

is not raised in intuitionistic logic since 6. is necessarily empty. Moreover the
previous reasoning can be made symmetrical for LK: let us make r' empty in
a similar way, PI- 6.' expresses that 6.' refutes P (this is, as we could say, an
anti-lemma) and r I- P expresses that P refutes r. Let us also remark that,
if we regard rand 6.' as formulas, the cut rule states that I- is a transitive
relation.

Most logical rules (1\, VDll VD2' =>, "land 3r of Figure 9.9) are con
structed by analogy with intuitionistic natural deduction. Rules Vl and 3l are
constructed by duality with I\r and ,*. As a result, we get a kind of left/right
symmetry for each connector on the one hand, and a duality between 1\ (re
spectively V) and V (respectively 3) on the other.

At first sight, one may wonder that =>l distinguishes two contexts r I- 6.
and r' I- 6.', and then does not seem to be reducible to a combination of Vl and
'l. It is actually possible to identify r' = rand 6.' = 6. in LK; this variant is
discussed below (Figure 9.11). The version presented here is compatible with
the intuitionistic case: as in all rules where 6. comes with an additional formula,
it is enough to impose that 6. is empty. 6.' consists of at most one formula.

The self-duality of negation expressed in 'l and 'r provides an interpre
tation of sequents in terms of refutation and of proof. Proving a sequent is,
depending on one's preference, to refute a formula on the left-hand side or, to
prove a formula on the right-hand side, in the context made of the remainder
of the sequent. In other words, if we have a sequent P, r I- 6., Q, we can equally
well say that we prove Q in the context P, r I- 6., or that we refute P in the
context r I- 6., Q.

9.3.2 Examples

In order to illustrate a number of the previous rules, we give in Figure 9.10 the
proof of the excluded middle law (note the use of a contraction on the right),
and the example of even numbers already presented in natural deduction.

166 Understanding Formal Methods

p,rt-~ A

PAQ,rt-~ it
Q,r t-~ A

PAQ,rt-~ l2

P, r t- ~ Q, r t- ~ V
pVQ,r t- ~ l

r t- ~,P Q,r' t- ~'

p=>Q,r,r't-~,~' =>z

[x:= tjP,r t- ~ 'vi
vxp,r t- ~

p,rt-~ 3
3xp,rt-~ l*

r t- ~, P r t- ~, Q Ar

r t- ~,PAQ

r t- ~,P \I

vrl
r t- ~,PVQ

r t- ~,Q \I

vr2
r t- ~,PVQ

P, r t- ~, Q =>r
r t- ~,P=> Q

r t- ~, P '9i-*
r t-~, \h:;P

r t- ~, [x := tjP 3r
r t- ~,3xP

Rules'9i- and 3l must respect the restriction already discussed in NJ: x
cannot possess free occurrences in the context (that is, in r or in ~).

Figure g.g: Logical rules of LK

9.3.3 Cut Elimination

The major theorem of sequent calculus is:

Theorem 9.2 (Gentzen's Hauptsatz)
Every provable sequent can be proved without the cut rule.

The proof of Gentzen is constructive: it provides an algorithm for eliminating
cuts. This theorem is interesting because cut-free proofs enjoy properties which
are not satisfied in the general case. One of the most important is the subfor
mula property: all formulas which occur in a cut-free proof are subformulas
of the formula (or of the sequent) to be proved. This is clear because no rule
but the cut rule has a formula (P) in its premises which does not occur in its
conclusion (r, r' I- ~, ~').

As the cut rule is redundant, what is the point of introducing it? Indeed:

- the cut rule is useful in practice because, combined with contractions, it
allows one to factorize inferences; note that contractions are used in an es
sential way when a given quantified formula is instantiated on several places
of the same proof;

- the cut rule turns out to be very convenient in the development of the the
ory. For example, one may want to inverse logical rules. Consider /\r: if
r I- ~, P /\ Q is derivable, we would like to infer that r t- ~, P is deriv
able (and similarly for r I- ~, Q). Indeed, we can easily derive the sequent

--ax
PI-P

""r
I-P,""P

-~~-=--Vr2
I- ...,PV P,...,P

Vrl
I- ...,PV P,...,PV P ---=-.....!...-=--=-- Ctrr

I- ...,PV P

Deduction Systems 167

--------ax
_______ ax even(a.a) I- even(a.a) 'vi
even(a) I- even(a) Vy even(a.y) I- even(a.a) ~

even(a) => Vy even(a.y),even(a) I- even(a.a) 'vi
Vx even(x) => Vy even(x.y), even(a) I- even(a.a) ~

Vx even(x) => Vy even(x.y) I- even(a) => even(a.a) '*
Vx even(x) => Vy even(x.y) I- Va even(a) => even(a.a) ~

I- (VX even(x) => Vy even(x.y)] => (Va even(a) => even(a.a)]

Figure 9.10: Proof examples using LK

P A Q I- P, then we get the desired result using a cut on P A Q:

p ... p

r ... 6., P A Q P A Q ... P All
-----.:..---=-----~-- cut

r I- 6.,P

- one may also consider proofs making use of proper axioms. For example, the
two first axioms of Peano can be represented by the sequents:

0= Sex) ... ,
Sex) = S(y) ... x = y .

Gentzen's theorem is generalized as follows: all cuts can be eliminated except
the ones where a proper axiom is used.

The dynamics of the cut elimination process is fairly complex. The idea of
the algorithm is to make cuts going upwards to the leaves of the derivation
tree. Each lemma in the form \/xP is potentially usable in an infinite number
of instances, so it is a priori not obvious that the process terminates.

True eliminations occur in the case of a cut with an axiom. Propa
gating a cut coming from logical inferences may have the effect that

the number of cuts increases, but as a compensation, new cuts are about sub
formulas. Here is an example in order to illustrate this phenomenon.

168 Understanding Formal Methods

r,A B
---'---=>,.
r A::}B

B B r' A
r' , A ::} B B ::} l

----------------------~---------cut

r,r' B

On the next step, the cut on A ::} B is replaced with two "smaller" cuts, one
on A and the other on B:

r' A r,A B
-----------'----- cut

r,r' B B B
~-------------------------cut

r,r' B

The second cut is on an axiom, it is immediately eliminated:

r' A r,A B
---------'----- cut

r,r' B

The most dangerous cuts are the ones which occur immediately after
a contraction, because propagating them entails a duplication with

out a straightforward counterpart. During cut elimination, the proof size may
4h

increase in a hyperexponential way (it may be 44 . , where h is the height of
the initial proof and where the iteration number of exponentials depends on the
size of cut formulas). This measures the complexity of the elimination process:
the algorithm is not supposed to be actually performed on real proofs.

This positive result of Gentzen is very important. Among a number of ap
plications in computer science, it will be seen in Chapter 11 that it lies at
the root of recent developments of computational paradigms within a logical
framework.

9.4 Applications to Automated Theorem Proving

The deduction systems presented above formalize the concept of a proof: they
first aim at recognizing a proof. On the other hand, constructing a proof tree
is much less simple, at least when we go beyond propositional calculus.

Recall that a closed formula P is not necessarily always true or always
false: its truth value generally depends on its atomic components.

Two well-known techniques implemented in automated proof search tools
called "tableaux" and resolution, are traditionally presented from a model
theoretic perspective. The sequent calculus provides another viewpoint based
on proof theory.

The first method works on arbitrary formulas. We present here the propo
sitional version. Given a proposition P, we will see, thanks to a systematic

Deduction Systems 169

decomposition procedure of P, how a counter-example for P or a proof of P
can be constructed.

When P is no longer a proposition, but a closed first-order formula, we face
an additional difficulty: intuitively, we have to construct witnessing values for
individual variables. There are systematic search procedures that eventually
yield a proof of P if there is one, while the search for a counter-example does
not terminate in the general case: the problem is then only semi-decidable. This
will be summarized below (§ 9.8.1).

We will not indicate how to adapt the method of semantical tableaux to
first-order logic. However, this will be done for the resolution principle, which
works with a restricted set offormulas (restrictions are about the use of connec
tors) but has as its main interest the computation of witnessing values thanks
to the unification algorithm.

9.4.1 Sequents and Semantical Tableaux

In order to mechanize the search for a proof of a given sequent, it is necessary
that the process of applying rules (with a bottom-up reading) terminates.

Logical rules of LK possess a remarkable property: they decompose each
formula into its components, so that the number of used logical connectors
decreases. As cut rules are not mandatory, only contraction rules are still prob
lematic. However we can still avoid them in classical propositional logic, thanks
to the variants of "[, Vr and ~[given in Figure 9.11.

p,Q,r I- A 1\

pI\Q,rl-A z
r I- A,P,Q Vr

r I- A,PVQ
rl-A,p Q,rl-A

P => Q, r I- A =>Z

Figure 9.11: A variant of LK

These rules are equivalent to the rules of Figure 9.9 (one pass from a version
to the other using weakenings and contractions), but the new ones have an
advantage for automated proof search: if the conclusion is provable, the premise
(or the premises) is (are) provable as well. Such rules are said to be revertible
or invertible: intuitively, no piece of information is lost when we go from the
conclusion to premises. Then we can forget contraction rules without loss of
completeness. Remaining rules provide an algorithm for verifying tautologies
which is quite simple to implement.

Weakening rules are tried as a last resort: when we get a sequent r I- ~ only
made up of atomic propositions, two cases are possible: either r and ~ have a
common formula A; in this case r I- ~ is derivable from the axiom A I- A using
weakening rules (in practice we don't need to perform these steps, computing
the intersection is sufficient); or r and ~ are disjoint, then there is no way

170 Understanding Formal Methods

to prove r I- ~; as this sequent is needed in order to derive the sequent S we
search a proof for, (because of reversibility of the rules we use) we conclude
that S is not provable.

The same algorithm can be presented - under a different form - from a
model-theoretic perspective, so that we are led to the method of semantical
tableaux. First the concept of a tautology is extended in the obvious way to
sequents, with the analogy between the sequent AI, ... , Am I- BI , ... , Bn and
the formula (AI 1\ ... 1\ Am) ::} (BI V ... V Bn) in mind: a sequent r I- ~ is
tautological if every interpretation where all propositions of r are true satisfies
at least one proposition of ~.

Reciprocally, a counter-example to the latter sequent is provided by any
interpretation where all propositions of r are given the truth value true and all
propositions of ~ are given the truth value false. The rules of the last variant of
LK considered above are such that the conclusion admits a counter-example if
and only if one of the premises admits this counter-example, which is another
way of stating that the rules are sound and invertible. When we reach a sequent
made up only of atomic propositions, we have two cases:

- the two sides of the sequent possess a common proposition A; it is then
obvious that the sequent is not semantically refutable, since A cannot si
multaneously take the values true and false;

- the two sides are disjoint, so we immediately get a counter-example.

Thus it can be shown that a formula F is a tautology if and only if no branch
of the search tree starting from F reaches a counter-example.

Though this presentation rests on providing truth values to propositions,
the semantical tableaux method is very different from the truth table method.
The latter becomes less efficient as the number of atomic propositions becomes
larger. Actually, only the former method can be generalized to infinite sets of
propositions and to first-order logic. An example of an automated tool based
on semantical tableaux is 3PP [HBG94].

9.4.2 From the Cut Rule to Resolution

Since the 1960s, a number of researchers, following Gilmore, Davis and Putnam,
and Robinson set out to look for a feasible semi-decision procedure, based on
the work done by Jacques Herbrand in the 1930s. The programming language
Prolog is generally presented as an application of the resolution principle due
to Robinson [Rob65].

9.4.2.1 Resolution in the Framework of Propositional Logic. The res
olution principle is easy to present from sequent calculus. Let us start with the
propositional case. It is well known that, using De Morgan laws and replacing
P::} Q with -,p V Q, every proposition can be put in the form of a conjunction
of clauses, where a clause is a disjunction of literals, and a literal is either an
atomic proposition, or the negation of an atomic proposition:

-,AI V ... V -'Am V BI V ... V Bn .

Deduction Systems 171

In order to prove a proposition P from a conjunction of clauses C1 ••• Ck , we
first put P in clausal form PI /\ ... /\ P, in turn. Our problem then boils down
to separately proving each clause Pj from C1 ••• Ck. Thus we can without loss
of generality restrict ourselves to reason with clauses only.

Which inference rules can we use on clauses? It happens that only one is
enough: the resolution rule that, from two clauses r V Rand -,R V r', denoting
respectively

-,A1 V ... V ... V -,Am V Bl V ... V R V ... V Bn and
-,A~ V ... V -,R V ... V -,A~ V B~ V ... V ... V B~

allows us to deduce the clause r V r' (the disjunction of all literals of rand
r'). As usual, this can be stated by means of a fraction:

rv R -,Rvr'
rvr'

The soundness of this rule is easy to explain if we agree that the clause

represents the sequent

AI, ... , Am I- B 1 , ••• , Bn

the resolution principle simply corresponds to the cut rule.

We can also understand why the resolution rule is sufficient, thanks
to Gentzen's Hauptsatz. If we translate clauses into the language of

sequents, we need a priori structural rules, the identity group and logical rules
of LK. However, the latter are of no use here since our sequents are without a
logical connector!

The theorem of cut elimination seems to indicate that the resolution
rule is useless as well, but beware: here we want to prove a sequent correspond
ing to a clause Pj from the sequents corresponding to clauses C1 ••• Ck, so
that the latter are interpreted as proper axioms. We know that, in contrast to
cuts with logical axioms A I- A, cuts with proper axioms cannot be eliminated.
However, the resolution rule can safely be restricted to the cases where at least
one of the premises is among C1 •.• Ck.

These ideas are explained in more detail in [GLT89]. The reader can
also find there a justification for the removal of contraction and weakening rules
in the case of Prolog. In the purely logical fragment of Prolog, a program is a
set of (first-order) clauses which have at most one positive literal. They are
called Horn clauses, and they correspond exactly to intuitionistic sequents.

9.4.2.2 Resolution in the Framework of First-order Logic. In order to
illustrate the resolution principle when we have first-order variables, consider
the two formulas saying that every human being is mortal and that Socrates is
a human being:

172 Understanding Formal Methods

'Ix human(x) => mortal(x) ,
human(Socrates) .

We can put the first formula in clausal form

..... human(x) V mortal(x)

where it is implicit that x is universally quantified. In the special case where x
is Socrates, this yields:

..... human(Socrates) V mortal(Socrates)

The resolution rule for propositions can then be applied:

human(Socrates) human(Socrates) V mortal(Socrates)
mortal(Socrates)

In fact, the full resolution rule performs the substitution and the simplification
in one step:

human(Socrates) human(x) V mortal(x)
mortal(Socrates)

In the general case we have to find a substitution for both premises so that, after
performing the substitution, they contain two opposite literals. For example,
in the following deduction, we substitute 0 for n in the first premise, S(m) for
x and S(p) for y in the second:

..... (m+n=p) V S(m)+n=S(p) (x+O=y) V x=y
..... (m+O=p) V S(m)=S(p)

The procedure for computing the smallest unifier of two terms or of two
atomic formulas, which is the most general composition of substitutions making
these terms (or these formulas) identical, is called unification. (There is actually
an equivalence class of unifiers identical up to a renaming of variables.) In the
previous example, the smallest unifier we chose is

[n := 0] 0 [x := S(m)] 0 [y := S(P)] .

Unification algorithms examine simultaneously the two terms to be unified,
according to their syntactical structure, while adding substitutions when, at the
same location, one term has a variable v and the other has either a variable, or
a term that does not contain v; however, if we have something impossible, e.g.
two different constants at the same location, the algorithm stops and returns
a failure.

Explaining resolution using sequents is just as easy when we consider pred
icates instead of propositions. We consider sequents without quantifier but
containing free occurrences of variables. A substitution step uses the rule:

Deduction Systems 173

[x := tlr t- [x := tl6. '
which is easy to derive from the rules of LK. By repeating such substitutions
and then applying a cut rule we get the resolution rule:

r t- 6., R -.R' ,r' t- 6.'
ar, ar' t- a6., a6.'

where a is the most general unifier of Rand R'.
The previous examples of deductions read more easily with sequents:

t- human(Socrates) human(x) t- mortal(x)
t- mortal(Socrates)

m+n=p t- S(m)+n=S(p) x+O=y t- x=y
m+O=p t- S(m) =S(p)

In the following, clauses are noted in the form of sequents.

9.4.2.3 Skolemization. As we consider only quantifier-free sequents, this
amounts to agreeing that variables are universally quantified on the whole
formula we would get, after all literals are placed on the right-hand side of
the sequent. For example, the sequent A(x) t- B(x) should be understood as
equivalent to "Ix A(x)::::} B(x).

At first sight, the expressive power of first-order logic is weakened by this
limitation: using both quantifiers should be allowed at any place in a formula.
However, it is possible to put any formula in prenex form

QIXI ... Qnxn M ,

where Qi represents V or 3, and where M, called the matrix, contains no
quantifier.

Existential quantifiers can also be removed by introducing new function
symbols, called Skolem functions. For example, in the formula

3xVy3zP(x,y,z) ,

x depends on nothing while z depends on y; introducing the constant a and
the unary function j we get:

VyP(a,y,j(y» .

This process of eliminating existential quantifiers is called skolemization, and
leads to the Skolem normal form. What really justifies this transform is the
following theorem.

Theorem 9.3
Let {Fl , ... Fn} be a set of formulas and let SI, ... Sn be their respective
Skolem normal forms, {Fl' ... Fn} is inconsistent4 if and only if {SI, ... Sn} is
inconsistent.

4 A set of formulas is defined to be inconsistent if we can infer the absurd, which is
formalized here by the empty sequent. We come back to this concept later (§ 9.8.2).

174 Understanding Formal Methods

In practice, this means that, in order to prove that P is a consequence of
the clauses C l , ... Ck, we will reason by reduction to the absurd: proving that
-,p is impossible. To this effect we put -,p in skolemized clausal form Pl , ... Pl.
Then we try to deduce the empty clause from C l , ... Cn, Pl , ... PI. This search
is made much easier thanks to the preliminary process of removing connectors
and quantifiers.

For example, we want to prove that there exists a mortal being knowing
that Socrates is a human being and that every human is mortal. These two
hypotheses are modeled by the sequents

I- human(Socrates) and human(x) I- mortal(x)

Now, skolemizing 3xmortal(x) would lead us to dead end: mortal(a), where
a is a new constant, cannot be deduced from the two previous sequents. In
contrast, if we consider the negation -,3x mortal(x), corresponding to the se
quent mortal(x) 1-, we can deduce the empty sequent from the three previous
sequents. Note that we use here a top down strategy for constructing the proof
tree, with the idea of confronting axioms with the sequent to be refuted (ini
tially mortal(x) 1-) in mind.

human(x) I- mortal(x) mortal(x) I-
I- human(Socrates) human(x) I-

I-

Let us illustrate the use of skolemization, with a proof that, if there exists
a common lower bound to all elements:

3z'V'x z::; x (9.20)

then every element has a lower bound:

'V'x 3y y::; x . (9.21)

We put (9.20) in normal form. We introduce a Skolem constant m for z:

(9.22)

Then we consider the normal form of the negation of (9.21), which leads us to
introducing a Skolem constant - say n - for x this time (we implicitly exploit
the dual identities -,\fu P ¢::} 3u -,p and -,3u P ¢::} 'V'u -,P):

(9.23)

The proof itself has only one resolution step, using the unifier [y := ml 0 [x :=

nl:

I-

Deduction Systems 175

9.4.2.4 Uses of the Resolution Principle. The resolution rule is just one
part of a full proof search procedure. At each step, we still need to choose a pair
of clauses on which the rule should be applied. A number of different strategies
are possible, some of them are guaranteed to find a derivation of the empty
clause if there is one, in theory. For an exposition of the most important, the
reader may consult the book of Chang and Lee [CL 73]. The resolution principle
is actually used in proof tools for first order logic, e.g. Otter [McC94].

9.4.3 Proofs in Temporal Logic

Temporal logic was presented in § 8.5. Proofs for linear temporal
logic can be formalized using an axiomatic approach (Figure 9.12)

or a sequent calculus based approach (Figure 9.13). These systems are sound
and complete (cf. § 9.8) for Kripke semantics on the considered fragments (they
do not include U for instance).

o(A => B) => (oA => DB)
OA=>A
oA=> OOA
OA ~,o....,A

Figure 9.12: Axioms of temporal logic (system 84)

r,A I-~
r,oA I- ~

or I- A,O~

or I- oA,O~

r I- A,~

r I- OA,~

or,A I- O~

or,OA I- O~

Figure 9.13: Rules of sequent calculus for system 84

9.5 Beyond First-order Logic

The deduction systems introduced in the previous sections can be extended to
second-order and higher-order logic. We will revisit this point in Chapter 11
with the presentation of system F.

176 Understanding Formal Methods

9.6 Dijkstra-Scholten's System

In the previous deduction systems, particularly the systems of Gentzen, logical
equivalence is not handled directly: it has to be first translated by a double
implication. In contrast, the connector of equivalence plays a pivotal role in
the calculus of Dijkstra and his followers, which was designed for favoring the
conciseness of proofs. We limit ourselves to the propositional fragment in what
follows.

9.6.1 An Algebraic Approach

Deductions are regarded as rewriting of logical expressions. One goes from one
line to the next by replacing a subexpression with an equal subexpression. "De
duction rules" are then considered as logical identities which have an algebraic
flavor, such as (a + b)2 = a2 + 2ab + b2.

The first logical connector one starts with is equivalence <=>. One postulates
the following properties of this operation:

- it is associative: (A <=> B) <=> C = A<=> (B <=> C)j
- it is commutative: A <=> B = B <=> Aj
- it admits t as an identity element: A <=> t = Aj
- it is the (Leibniz) equality on Boolean values: A <=> B is another way to

write A = B when A and B are logical expressions.

Disjunction is then introduced with similar postulates: commutativity, asso
ciativity, idempotentness (A V A = A), distributivity over equivalence. Syntac
tically, V (as /\ and :::}) takes precedence with relation to <=>. The implication
A :::} B and the conjunction A /\ B are respectively defined by:

and

The expression A <=> B <=> A V B has to be regarded as a whole,
~ and certainly not as the conjunction of A<=> Band B <=> A V B. It
can be compared with an algebraic expression such as p + q + p.q .

The last operator to be introduced in this approach is negation, which is
respectively related to equivalence and to disjunction by the following postu
lates:5

..,(A <=> B) <=> ..,A <=> B and ..,AvA

The constant f is defined as the negation of t:

f ~f ..,t .

5If we think of the relation between NJ and NK, it is interesting to note that
-,-,A {:::} A can be derived from the first postulate (first prove A {:::} -,B {:::} -,A {:::}
B), whereas it is not the case of the law of excluded middle.

Deduction Systems 177

9.6.2 Displaying the Calculations

Proving a formula X amounts to making it equal to t using a sequence of
rewriting steps. Calculations are displayed in the following way, in order to
provide the justification of each step and make reading easier:

X

= {evidence for X = Y (or for X {::} Y)}

Y

= {evidence for Y = Z (or for Y {::} Z)}

Z
etc.

Evidences are more or less explicit, depending on the context. In the examples
given below they are quite detailed. First we give a proof of A V t which makes
use of the equality (X {::} X) = t .

Avt
= {(X {::} X) = t , with X := A}

A V (A {::} A)

= {distributivity of V over {::} }

(A V A) {::} (A V A)

= {(X {::} X) = t , with X := A VA}

t

When the formula X to be proved has the shape R {::} S, it is simpler to
rewrite R to S (the fact that t is an identity element for {::} ensures that the two
processes are equivalent). We will proceed below in this way, for proving that
A {::} B is equivalent to (A => B) 1\ (B => A) . From a more general perspective,
as soon as properties of implication are proved, for example transitivity, one is
allowed to use steps such as

X

=> {evidence for X => Y}
y

in order to prove that the first line entails the last, or

178 Understanding Formal Methods

x
{evidence for Z =* (X {::} Y)}

Y

t

in order to prove that Z entails the first line.
This way of displaying calculations is also used in the framework of imper

ative program calculation [Coh90, Kal90] (as introduced in Chapter 4) and of
functional programming [Bir95].

9.6.3 The Role of Equivalence

The fact that {::} is an equality plays a very important role:

- as soon as A {::} B is at our disposal, occurrences of A can be replaced with
B in an expression (law of Leibniz);

- all previous identities can be written with {::} instead of =;
- as {::} is associative and commutative, many identities can be read in several

ways.

This leads one to manipulate multiples equivalences without parentheses:
X {::} Y {::} Z ... {::} T . In a sequence such as the latter, one can delete two
occurrences of the same formula: X {::} X is t, which is the identity of {::}.

One of the most noticeable multiple identities is certainly the golden rule,
which is, among other things, a definition of A:

This rule admits six permutations, and each permutation can be parenthesized
in five ways; considering that Rand S play symmetrical roles, we still have
eleven different uses of the golden rule.

The previous ideas are illustrated in Figure 9.14, where it is proved that
double implication (Le. traditional equivalence) is identical to the notion of an
equivalence which is axiomatized here.6 Note that this theorem needs a fairly
longer proof in other frameworks:

- the proof that double implication is associative is an interesting bench
mark for automated tautology verification systems; this is one case where
the method of truth tables is more efficient than the method of semantical
tableaux;

- proving that double implication is a Leibniz equality requires an induction
on the structure of formulas.

6It is quite instructive to prove the same theorem by progressively identifying
A ¢::> B ¢::> ((A =? B) A (B =? A» to t, and using the right instance of X =? Y ¢::>

X ¢::> X VY.

Deduction Systems 179

(A => B) A (B => A)
= { definition of =>; commutativity of V }

(A V B {:::} B) A (A V B {:::} A)
= { golden rule; associativity of {:::} }

A V B {:::} B {:::} A V B {:::} A {:::} (A V B {:::} B) V (A V B {:::} A)
= { A V B {:::} A V B is an identity element; commutativity of {:::} }

A {:::} B {:::} (A V B {:::} B) V (A V B {:::} A)
{ distributivity of V over {:::}: factorisation of A VB}

A {:::} B {:::} A V B {:::} B V A
= { commutativity of V }

A {:::} B .

Figure 9.14: Double implication in Dijkstra's system

This shows that the axioms for equivalence we have seen here contain a lot
of information. In practice, they turn out to be sufficient more often than one
would expect; it is worth translating an equivalence into a double implication
only as a last resort.

9.6.4 Comparison with Other Systems

The approach presented here is clearly an axiomatic one. This said, deduc
tions are not of the same kind as in Hilbert systems: here we have equational
reasoning, modus ponens is not primitive and is even avoided.

A closer look shows that axioms are chosen in the spirit of an algebraic
theory. Each primitive operation ({:::}, V and -,) comes with its own algebraic
properties or with algebraic properties related to other operations. So it may
be better to consider this calculus as an algebra rather than a logic. In other
words, it is a structure defined by non-logical axioms (see page 149). This is
consistent with the fact that this approach has nothing to do with foundational
issues, in contrast with formal logic as designed at the beginning of the 20th
century [DS90j.

The set B of Booleans endowed with conjunction, disjunction and
negation admits a number of laws already mentioned on page 47:

idempotence, commutativity, associativity, distributivity. It then makes up
what is called a Boolean algebra. There is a similar algebra in set theory
with the operations union, intersection and complementation.

Those algebras can also be presented from the concept of a Boolean
ring. A unitary ring is a commutative group endowed with a distributive law
having an identity element, for example (Z, +, .). A Boolean ring is a unitary
ring where every element is idempotent for the second law. The powerset of a
set endowed with symmetrical difference \ and intersection makes up a Boolean
ring, as well as (B, EEl, A), where EEl is defined by AEElB ~f -,(A {:::} B). One can
also interpret B by {O, I}, EEl by the addition modulo 2 and A by the product.

An important property of Boolean rings is that every expression can
be reduced into a form which is unique up to permutations, called its Stone

180 Understanding Formal Methods

normal form. A number of derivations perfomed in the system presented here
amount to computing a Stone normal form 7 in the dual Boolean ring (1m, <=> , V).

At the same time, <=> plays the role of an equality and then makes it possible
to perform rewriting steps. We revisit this original view on deduction below.

To conclude this comparison with the previous systems, note that a number
of passages in [DS90, vG90a, Coh90, Kal90] explicitly consider logic as an
arbitrary symbol game. This is regrettable, because the systems of Gentzen go
beyond this standpoint, which was previously defended by Hilbert. The purely
formalist approach to logic was not that much of a success, it was even to
some extent refuted by the failure of Hilbert's program [NNGG89, Gir87b]: see
below the incompleteness theorems of G6del. However, let us mention the work
of A.J.M. van Gasteren [vG90a], which shows that a careful examination ofthe
formal shape of expressions can provide valuable heuristics for solving some
problems.

9.6.5 Choosing Between Predicates and Sets

Most logical connectors correspond to an operation over sets: V corresponds
to U, 1\ corresponds to n, --, corresponds to complementation in a reference
set (which has to be fixed in advance). We don't have a regular notation for
the set operations corresponding to <=> and => (recall that A C B is not a
set but a logical expression), but let us introduce one for the set operation
corresponding to <=>, say 0, so that we get two similar theories. The set A 0 B
is the complement of symmetrical difference A \ B in the reference set.

The algebraic properties of <=>, V and /\ can immediately be transposed
to 0, U and n. The choice between formalizing a given problem using logical
operations, or using set operations, may then seem nothing more than a matter
of taste.

However, the identity between <=> and Boolean equality has additional spe-
cific advantages. Thus, every theorem in the form X<=> Y <=> Z ... represents
several identities at once, allowing one to replace X with Y <=> Z . .. , or Y with
X <=> Z . .. , or X <=> Y with Z . .. , and so on whereas A 0 B 0 C ... represents
only one set. In particular, the golden rule

X I\Y<=>X<=>Y<=>XVY

contains in a compact way at least five common identities on set, related to
intersection, union and symmetrical difference:

A =
A\B =

B \ (A n B) \ (A U B)
(A n B) \ (A U B)

(AnB)
(AUB)

A \ (AUB) =

A \ B \ (AU B)
A \B \ (AnB)

B \ (An B).

This remark, together with the fact that set theory is sometimes more com
plicated than expected, leads Dijkstra to consider that predicate calculus is

7This remark was communicated to the author by Gerard Huet.

Deduction Systems 181

more convenient than set constructions. For example, in his approach to for
mal specification, the space state of a program is described by a logical formula
rather than a set expression, as would be the case in Z or in B.

9.6.6 Uses of Dijkstra-Scholten's System

This system is well suited to pencil and paper manipulations. Dijkstra's school
attaches importance to the quality of proofs presentation. Though entirely for
mal, proofs are always concise and easy to check, even in a number of non-trivial
programmation problems. Many calculational steps use the associativity and
the commutativity of A, V, <=>, notably when we have chains of equivalences.
A skilled eye should be able to recognize an interesting pattern in a chain -
note that automated reasoning in the presence of associative and commutative
operations is not that easy.

Doing formal proofs in this framework turns out to be an art, with its own
guiding heuristics [DS90, vG90a, Coh90, Kal90). The proofs we get using this
approach are quite different from the ones provided by traditional proof theory:
the latter are easily checked by a program, but non-trivial ones soon become too
large for human eyes to spot. So one may consider that the approach to formal
proofs presented in this section provides more convincing arguments; however,
automated help is needed for realistic scale problems, and techniques based on
sequent calculus or on natural deductions seem more apropriate [Rus93).

9.7 A Word About Rewriting Systems

A well-known technique has been developed for automating equational reason
ing: rewriting systems. We will provide an example on page 200.

The general situation is as follows. We are given a finite number of equalities
Si = T i , from which we want to prove a goal A = B. If the terms A or B contain
an instance of Si (or of Ti), we can replace it with the corresponding instance
of Ti (or of Si). For example, if we take x + x = 2 * x for granted, we can replace
the goal

(a + b) * (a + b) = a * a + 2 * a * b + b * b

with

Equational reasoning consists of iterating such substitutions, until we get an
equation where the two sides are syntactically identical. However, in the frame
work of automated proof search, we have to avoid cyclic sequences of trans
formations, where A = B would be replaced with Al = B I , ... and finally
An = Bn would be transformed into A = B again. Such a cycle is very easy
to get: just use an equality in one direction and then in the reverse direction.

182 Understanding Formal Methods

We also have to avoid a potentially infinite sequence of transformations, which
may happen e.g. with equations such as x = e * x {an arbitrary term t may
then be replaced with e * t, then with e * (e * t), etc.).

A central idea is then to restrict the use of equations given as axioms: they
have to be oriented, that is, we have to choose one direction, either from the left
to the right, or conversely. This choice yields a rewriting rule. But of course,
one then runs the risk of becoming unable to prove a number of theorems:
indeed, in many reasonings one uses a given equality in one direction at one
stage, and in the reverse direction at a later stage.

In order to recover a rewriting system having the same consequences as the
original equations, new rules stemming from the axioms have to be added.
This process, called completion, was introduced by Knuth and Bendix in
1970 [KB70].

Let us explain this somewhat more formally. We look for a set of rules
Gi -+ Di such that:

1. Gi = Di is a consequence of the equations given as axiom.
2. Given an arbitrary term to, every sequence to, h ... tn . .. (where tk+l

stems from tk by application of a rule G i -+ D i) eventually reaches a
unique term which depends on to only, called its normal form.

3. Two terms which are equal modulo the axioms possess the same normal
form.

Then, in order to know whether A = B is a consequence of the axioms, we
just have to compute the normal forms of A and B and then to compare the
results.

Bringing this basic idea into actual play, however, raises non-trivial issues.
Important research developments came out, as well as interesting support soft
ware systems such as REVE [FG84, Les86], RRL [KZ95] and LP [GG89, GG91]
for completion and rewriting, and Spike [BR95, Bou94, BKR92] for inductive
proof of equations. More recent (and efficient) systems are Maude [CDE+99]
and Elan [BKK+98].

In passing let us point out the importance of termination: the normalization
process should be guaranteed to terminate, and this is an essentially delicate
problem. Theoretical and practical tools were developed in the framework of
rewriting systems for proving that a relation is noetherian (see the definition on
page 52). This is a technical matter, where ordinals naturally have an important
place.

Rewriting systems are strongly related to algebraic specification techniques,
since specifications are written using equations in this framework. We go back
to it in Chapter 10.

9.8 Results on Completeness and Decidability

If we want to prove theorems in a mechanical way, propositional, first-order
and second order logic don't offer the same possibilities. In fact this even de-

Deduction Systems 183

pends on the theory we consider. We give here a brief account of some of the
main known results. For a number of them (particularly for incompleteness the
orems), only an approximate statement is given, because a precise statement
would necessitate too many technical preliminaries. A state-of-the-art survey is
available in [Rab77] (and [Gri91], in French). Apart from the basics on model
theory and proof theory already presented, we rely on the concepts related to
calculability introduced in Chapter 3.

Completeness was also introduced and illustrated in Chapter 3. Its intuitive
meaning is that everything which is true is provable. But this may be under
stood in two ways, since, given a set of formulas r, one may consider truth
either in a class of models of r, or in one special (intended) model of r.

9.S.1 Properties of Logics

We first define a number of properties about logics. Our framework is classical
first-order or higher-order logic. We agree that every first-order language defines
a logic - within which several theories can be described. Some results depend
on the number and on the arity of the symbols defining the language considered.
In what follows P and r represent respectively a closed formula and a set of
closed formulas.

A logic is sound if the deductive consequence relation implies the semantic
consequence relation, i.e. if r I- P entails r 1= P. A logic is complete if the
semantic consequence relation implies the deductive consequence relation, i.e.
if r 1= P entails r I- P. A logic is decidable if there exists an algorithm that
finds whether an arbitrary formula admits, or does not admit a proof, using
a finite number of steps; a logic is semi-decidable if there exists an algorithm
that finds a proof of any theorem, using a finite number of steps (it may be
the case that the algorithm does not terminate if the input formula is not a
theorem); in the other cases the logic is said to be undecidable. We have the
following results.

Theorem 9.4
Propositional logic and predicate logics of arbitrary high order are sound.

This is simply because logical axioms are valid and deduction rules propagate
validity.

Theorem 9.5 (Schroder)
Propositional logic is decidable.

Theorem 9.6 (Post)
Propositional logic is complete.

Theorem 9.7 (completeness, Godel)
Given any first-order language, the corresponding first-order logic is complete.

To put it otherwise, if a formula cp is true in all models of a family of formulas,
then cp has a formal proof.

184 Understanding Formal Methods

Theorem 9.8
Second-order logics are incomplete (even weak monadic logic).

This theorem is a consequence of the incompleteness of arithmetic (see below)
and of the fact that arithmetical truth can be characterized by a finite number
of second-order axioms.

Theorem 9.9 (Church)
First-order logic is semi-decidable. More precisely, if the language of a first
order logic contains at least one function symbol or binary predicate symbol,
the validity of an arbitrary formula cannot be mechanically decided.

One generally considers recursively axiomatizable theories, and a consequence is
that their theorems make up a recursively enumerable set. When the conditions
of Church's theorem are satisfied, which is the most frequent case, we get semi
decidables theories. Thus, theorems of predicate calculus can be recursively
enumerated (since first-order logic is complete), but not the other formulas.

In order to get positive decidability results beyond first-order, one has to
consider very restricted languages. However, the following result remains true
for second-order monadic logic.

Theorem 9.10
Equational logic with an arbitrary number of unary relation symbols and at
most one unary function symbol is decidable.

9.8.2 Properties of Theories

Now we define properties about theories. The concept of completeness we use
here for theories is a syntactical concept: a theory T is (syntactically) complete
if for every closed formula P one has either T ~ P, or T ~ ..,P. It is clear that
two models of a complete theory cannot be distinguished, since any closed
formula has the same truth value in each of them. In this respect one can say
that a complete theory characterizes a unique model.

The simplest example of an incomplete theory is the empty theory: if A is
a unary predicate symbol, neither ~ Vx A(x) nor its negation is a theorem;
even more simply, if B is a proposition symbol, neither ~ B nor ~ ..,B is a
theorem. A more interesting example is group theory, which states nothing
about Vxy (xy = yx), since there exist commutative groups as well as non
commutative groups. Hence group theory is not complete, and there is no cause
for alarm here.

In contrast, a number of theories are designed with a precise intended model
in mind. This is typically the case with natural integers endowed with usual
arithmetical operations. In such a case, one is interested in the consequences
which are true in one model (the so-called standard model), and not in every
model of the axioms. Let us recall the axioms for addition.

Vx
VxVy

x+O=x
x+S(y)=S(x+y)

Deduction Systems 185

One would expect that \Ix 0 + x = x, which is true in fIl, is a consequence of
the previous axioms. Actually we also need the induction schema: there exist
models of the two previous axioms where \Ix 0 + x = x is not satisfied.

Note that if a system of axioms is incomplete one may try to complete it
by introducing additional axioms.

A theory T is inconsistent if one of the three following equivalent conditions
is verified:

- T I- f,
- there exist a formula P such that T I- P and T I- -.P,
- for all P, one has T I- P.

In the opposite case T is said to be consistent; note that, this is the first
property about a theory one would expect. The complementarity between com
pleteness and consistency should be noted. To coin a phrase, we could say that
a complete and consistent theory tells the truth and nothing but the truth.

A decidable theory is defined in the same way as a decidable logic.

Theorem 9.11
A first-order theory is consistent if and only if it has a model.

This theorem is actually another formulation of the completeness theorem for
first-order logic.

Theorem 9.12 (Herbrand)
A set T of first-order clauses is inconsistent if and only if there exists a finite
set of closed instances of clauses of T which is inconsistent as well.

Thanks to this theorem, the search for a proof in predicate calculus can be
reduced to the search for a proof in propositional calculus. It plays an essential
role in the semi-decision procedures based on the resolution principle, as already
mentioned in § 9.4.2.

Theorem 9.13 (Turing)
A recursively and complete axiomatizable theory is decidable.

Theorem 9.14
The arithmetic of Peano is undecidable, as well as any consistent theory that
contains it.

For any consistent extension of PA (Peano's arithmetic), it is even possible to
exhibit a closed formula, which is neither provable nor refutable, and which is,
however, true in the intended model (Rosser). Then there is no first-order char
acterization of the standard model of arithmetic. This is an essential limitation
which cannot be repaired by adding appropriate axioms.

Beware: a formula which is true in all models of PA is provable by
~ means of axioms of PA: this is the meaning of the completeness the
orem (9.7). The first incompleteness theorem of G6del states that the standard
model of PA contains at least one formula which is true but cannot be proved

186 Understanding Formal Methods

using the axioms of PA. Note that we have already seen that there exist non
standard models of PA (see § 5.3.2.3). The original proof of G6del shows how
to construct such a formula, inspired by the paradox of the liar:8 using tricky
codings he was able to encode arithmetic formulas, then arithmetic proofs, by
integers, so that he could write a formula stating its own unprovability. Less
artificial theorems have been discovered recently [PH77, KP82j.

Here is an example of a statement which is true but beyond the proof power
of PA, taken from [KP82j. Let us choose an arbitrary natural number n, for
example 266, and a basis b, for example 2, so we write: 266 = 28 + 23 + 21.
Exponents are then represented in the same basis, and so on. In our example
this yields 266 = 222+1 + 22+1 + 21. Now consider the following process: we add
1 to b in this representation, we subtract 1 to the new value, then again with
the new values of band n if n is non-zero, and so on. In our example the second
value of n is 333+1 + 33+1 + 2, that is about 1038 ; the first values of (b, n) are
approximately (2,266), (3,1038), (4,10616), (5,1010,000). Though it may seem
strange, the incredible growth of n eventually stops - the basis becomes equal
to the number. The process then amounts to letting n be decremented by 1
at each step, so that the sequence is finite (the process stops when n = 0).
However, this cannot be proved in Peano's arithmetic.

The second theorem of G6del is the most celebrated because of its epis
temologic consequences. It states that the consistency of arithmetic cannot be
proved by simple induction on natural numbers. Later, Gentzen proved the
consistency of arithmetic by means of a stronger induction principle.

Note that an important fragment of arithmetic, called Presburger arith
metic, is decidable. Its essential difference with Peano arithmetic is that terms
cannot include a product x.y where x and y are variables. In other words, terms
are linear expressions with integer coefficients.

Theorem 9.15
Presburger arithmetic is decidable.

9.8.3 Impact of These Results

A good knowledge of the previous results is useful when one uses a proof as
sistant - it is even a must in the design of a such tool. Positive results open
possibilities, negative ones bring impassable theoretical barriers to light.

The actual impact of decision or semi-decision results depends on the com
plexity of the computations they entail. Unfortunately, even in the simple case
of the propositional calculus, deciding the satisfiability or the validity of a
proposition is up to now believed to need a computation time which is, in the

8Epimenides says that he is lying; if this is true, i.e. Epimenides is a liar, then he is
telling the truth, so he is not a liar - a contradiction. If this is false, i.e. Epimenides
is telling a lie when he says that he is a liar, then that means he is not a liar - a
contradiction again.

Deduction Systems 187

worst case, an exponential function of the size of the formula.9 Beyond this,
results are truly disastrous: for many decidable problems, theoretical upper
bounds lead to computation times which would be larger than the age of the
universe. However, on problems we encounter in actual practice, the efficiency
of decision procedures is sometimes drastically improved by clever techniques
or by appropriate restrictions. This is notably the case for Boolean formulas
and Pres burger arithmetic - in particular, in the latter framework, it is a good
idea to consider formulas without existential quantifiers.

In summary, fully automated proof search can only be carried out in a less
expressive logic, so that only very specific classes of problems can be handled in
this way. In the general case, the skills and knowledge of the user seems to be
the determining factor. Software support tools are of course very useful. As they
have to be interactive rather than fully automated in many situations, one may
consider that there is no point in restricting oneself to a limited language, say,
first-order logic. Indeed, support tools based on higher-order logic (e.g. PVS,
Coq or Isabelle) become more widely used nowadays. Of course they are much
more user-friendly when "simple" subgoals can be solved by efficient decision
procedures.

9.9 Notes and Suggestions for Further Reading

The principles and algorithms used by automated proof tools for first-order
logic, notably the resolution principle, are often presented from a model
theoretic perspective, using the fact that a special model, called the model
of Herbrand, is sufficiently representative of the general situation: this model is
built upon the set of syntactic terms that can be constructed in the language
under consideration. The book of Chang and Lee [CL73] provides a good syn
thesis along these lines.

Logic is presented from a sequent calculus perspective in more recent books,
such as the one of Jean Gallier [GaI86], devoted to first-order classical logic,
or the book of Girard, Lafont and Taylor [GLT89], which contains a good
introduction to natural deduction and second-order logic. Reference books on
proof theory include [Tak75], [Sch77] and [Gir87b].

Natural deduction inspired a theory of programming language semantics
called natural semantics by Kahn [Kah87], which is close to the structural
operational semantics of Plotkin [Pl081]. These two approaches are also ex
plained and compared in [NN92]. Natural semantics has been implemented in
Centaur [JRG92], an experimental software tool for prototyping programming
languages.

9To be more precise, determining whether a Boolean formula has a model is the
NP-complete problem par excellence: many combinatory problems (knapsack, opti
mization, etc.) can be reduced to it. For such problems, algorithms able to find a
solution in exponential time (in the worst case) are known, but until now there is no
proof that a polynomial time solution does not exist, though it seems highly improb
able.

188 Understanding Formal Methods

The books [Coh90j and [Ka190j present the approach of Dijkstra and
Scholten to logic and its application to the design of correct algorithms. A
thorough development of the logical part is given in [DS90j.

Reference publications on rewriting include the article of Huet and Oppen
[H080], the chapter of Dershowitz and Jouannaud [DJ90j in [vL90bj and the
book of Baader and Nipkow [BN98j.

A translation of the original of G6del on his incompleteness theorems is
available in [NNGG89j. The article is preceded by a long explanation of F.
Nagel and J-R. Newman, and then followed by an interesting presentation of
J-Y. Girard about the program of Hilbert, its epistemological stakes and the
consequences of its failure. Many results on decidability and indecidability are
given in [Rab77j.

10. Abstract Data Types, Algebraic Specification

At first glance, algebraic specification techniques may seem to have less rele
vance to industrial applications than other methods. They are, however, worth
studying because they benefit from extensive theoretical research and have had
a great influence on other specification techniques, and more importantly, on
computer science in general, notably with the concept of the abstract data type.
Typing is a well-known concept in computer science. It is not only a means of
protection against a number of mistakes, but also a methodological tool. We
start with an informal discussion of the uses of typing and several interpreta
tions of this notion. As a first approximation, a type can be regarded as a set.
Unfortunately, one has to be more cautious with this interpretation, than one
would expect. We will therefore consider more abstract concepts of a type.

10.1 Types

Adding a Boolean value to a string hardly makes sense. Types are basically
used for ensuring that such situations do not occur. To this end, types are
assigned to the relevant expressions (terms, formulas, commands, etc.) of the
language we are considering. When a given operation, say addition, is applied
to its arguments, we can then check that the latter have the expected type.
Type-checking a given expression consists of verifying that all its components
have the expected type. The key to type-checking is a means to determine,
given an expression E and a type T, whether or not E has the type T (denoted
E : T). There are several options for a typing system.

- If one wishes type-checking to be performed statically (at compile-time),
this problem has to be decidable; then the quantity of information carried
by types tends to be limited.

- A part of type-checking can also be performed at run-time; one of the most
well-known examples, previously introduced in Chapter 2, concerns array
indices, which must be kept between two bounds. We can no longer guarantee
the absence of run-time faults, yet it is still possible to have the program
terminate in a graceful manner. Another disadvantage is the additional time
required by these verification steps. Unless explicitly stated otherwise, we
will consider only static type-checking below.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

190 Understanding Formal Methods

- If one wishes to have an expressive typing system, free of run-time penalties,
the proof that the program is well typed must be carried out with the help
of the programmer. Let us also mention that, in a development with the B
method, typing information is added to the invariant and the assertions, so
that type checking yields proof obligations; however, the typing system of
B is not terribly rich, in order that proof obligations corresponding to type
checking can be automatically discharged.

The type associated to an object is not necessarily unique. For example, if
we consider the set-theoretic interpretation of a type, many sets containing a
given item could be seen as a possible type for this item. This yields a possible
interpretation of subtyping, a concept related to inheritance in object-oriented
languages.

Also, we often want to give several types to a function, but for other rea
sons. The idea can be illustrated with the simple case of the identity function,
which can be considered to have the types int -+ int, bool-+ baal, ... , that
is, in general, T -+ T where T is an arbitrary type. Such types are called poly
morphic types in the framework of functional languages, or generic types in
the framework of languages such as Ada or Eiffel.

A number of functions on lists, such as catenation or the computation of the
length of a list, are in the same category as the identity function: the algorithm
used is exactly the same. Note that addition is also a polymorphic operation,
because it can be defined over integers, floating numbers, vectors, matrices,
etc.; but here the underlying algorithm is different for each case. The former
kind of polymorphism is called parametric polymorphism, whereas the latter
kind is called ad-hoc polymorphism. In the following we will limit ourselves to
parametric polymorphism.

10.2 Sets as Types

In a typed programming language, a variable v is associated with a type, which
is generally seen as the collection of the possible values of v. Typing the variables
amounts then to specifying the set of the possible states, or equivalently, a
constraint on the execution of the program. We can then say that types provide
an invariant. For illustration purposes, let us imagine a programming language
having a Pascal-like syntax, where types are sets.

10.2.1 Basic Types

For example, we can interpret the declaration:

var x: {a,b,c};
y: {d,e};

as a specification requiring that the state space of the program is a strict subset
of {a, b, c, d, e p, which is, specifically, {a, b, c} x {d, e}. If we add:

Abstract Data Types and Algebraic Specification 191

z: N;

the state space becomes {a, b, c} x {d, e} x N.

10.2.2 A First Glance at Dependent Types

More advanced languages, such as Cayenne [Aug98], allow more sophisticated
type declarations, where the type of a component depends on the value of
another component. Thus:

var x: N;
y: 0 .. x;

would specify that the state space is {(x, Y) E N2 I Y :::; x}. As a classical
example, we can consider the (Gregorian) calendar. As a first approximation,
we can take {I ... 31} as the type of the day of the month, but a more accurate
typing would be {1. .. f (m, a)}, where m and a represent, respectively, the
current month and year, and where f is a well-known function. Such types are
referred to as dependent types. One may also use a logical formulation for them,
for example 1 :::;q/\q:::; f(m, a). In this framework, type-checking involves coping
with logical inferences, which make it more complex. We will revisit dependent
types at the end of Chapter 11.

10.2.3 Type of a Function

Functions can also be given a type. For example, a possible type for addition
is N x N -t N. In fact, the main purpose of typing is to ensure that applying
a function to its arguments does indeed make sense. In our example, we want
to reject an expression such as a + b if either a or b is not in N. On the other
hand, assuming that a + b is well typed, we know that a + b is a member of N,
hence it can be, in turn, one of the arguments of a further addition.

10.2.4 Type Checking

Using the constructs which are available in the language under consideration
(arrays, function application, tuples or whatever), one may form an expression
E. Saying that E has the type T amounts here to saying that E is a member
of T. Type-checking may then be seen as membership checking.

10.2.5 From Sets to Types

In the language imagined so far, types are defined in a set-theoretic notation.
Now, we could ask ourselves if any set could actually serve as a type.

Consider the set of even non-negative numbers, denoted here by 2N. There
are functions or programs that require such numbers as arguments, as we have
already seen at the end of § 3.5.2. Let fe be such a function, and assume we

192 Understanding Formal Methods

are given two non-negative even numbers p and q. Then we can form fe(P)
and fe(q). But it is unclear, at this stage, whether or not fe(P + q) should be
accepted. Since x E 2N implies x E N, p + q makes sense, but as the type of
+ is N x N -+ N, we can only conclude that p + q E N. On the other hand, we
have more, i.e., p + q E 2N, so we could in principle write fe(P + q). But this
cannot be decided with the type of + only, we need additional knowledge from
number theory. For a more complex example, consider a function fe that takes
as input a number which is not a cube. Then one could write fe(a 3 +b3) if a and
b are positive integers - this is a special case of Fermat's last theorem. Such
examples are somewhat artificial, but actually, everyday programming provides
arbitrarily difficult situations - and involves data structures which are more
complex than N. We cannot afford to embed any amount of mathematics in a
static type-checking procedure.

Hence, in the general case, we have to admit that when we apply a function
to arguments, the type of the result is provided by the type of the function, and
nothing more. In general, this entails a loss of information. It also means that
type-checking is not equivalent to membership checking: we may have E E T
whereas E : T does not hold.

10.2.6 Towards Abstract Data Types

In our example, we then give up the idea that fe(P + q) is well typed. But it
is still possible to recover something very close to fe(P + q). The price to pay
is the introduction of new symbols for functions that return even numbers: for
example, the addition +e oftwo even numbers, which has the type 2Nx 2N-+2N,
or the multiplication *el of an even number by a non-negative integer, which
has the type 2N x N -+ 2N. These operations behave exactly like + and *, on
their respective domains. Using +e and *el (and if we declare that the constant
2 has the type 2N) we can easily construct many well-typed expressions under
the form fe(E), including fe(P+eq). Moreover, type-checking can be performed
as normal, by a systematic syntactical inspection of the expression.1

In fact, we just worked in the spirit of abstract data types, as we will see
in § 10.3. The conclusion is that 2N is useful as a type, provided that we are
given functions returning a result in 2N.

10.2.7 Coercions

If we know that an expression E has the type 2N, we certainly would like to
be able to use it in situations where something of type N is expected. In the
general case, inferring that E : U from E : T is possible provided we have

10f course, the correctness of this approach still relies upon arithmetical facts,
which provide evidence that +e and *el return even numbers. This task is indepen
dent from the general type-checking procedure. We can then say that the relevant
arithmetical facts are now used in a controlled manner, as defined by the occurrences
of +e and *el in the expression to be type-checked.

Abstract Data Types and Algebraic Specification 193

some evidence that T is a subtype of U. In the set-theoretic interpretation of
types, this amounts to T c U. But subset checking is at least as difficult as
membership checking. Such inferences can be guided by syntactic means, just
as before: introduce an explicit identity function iT,U from T to U that maps
any x, considered as a member of T, to the same x, considered as a member of
U. Thus, in our example, i2N,N(p) + i2N,N(Q) has the type N.

In general, we are also interested in converting integers to real or floating
point numbers, etc. This may involve a change in the internal representation,
so that iT,U is no longer a function that maps x to itself but, more generally,
an injection. Such injections are referred to as coercions. They can often be
declared once-and-for-all, and left implicit in expressions, in order to keep them
simple - type-checking should then be completed in such a way that the
coercions are recovered.

10.2.8 A Simpler Approach

One may conclude that allowing arbitrary subsets of N or, more generally, of
any given type, to be considered as types, drives us to cumbersome notations.
An alternative approach, which is followed in Z and in B, consists of taking
a collection of sets for types, in such a way that, for all x, we have a unique
type Tx such that x E Tx. (For example, the type of integers will be Z.) As a
consequence, the intersection of two different types must be empty.

Let A be a set, and j be an operation defined over S. If we want to be able
to assign a type to j, all elements of A must be of the same type, say T, so
that j will have the type T -t U, for some type U (actually the type of j will
be P(T x U), since, in set theory, functions are special cases of relations). We
see that the only sets A we can work with, are the subsets of types. The type
Tx of x is then the greatest set containing x.

As we have seen in Chapter 6, type-checking is not very difficult in this
framework. Examples such as the one with even numbers are dealt with using
invariants or assertions instead of types.

10.2.9 Unions and Sums

In the previous approach, we cannot build a set with elements of different types.
It is problematic because one sometimes needs to handle several things on an
equal footing, say, integers and pairs ofintegers, whereas Z uZxZ is not allowed.

On the other hand, we know that a direct use of Z uZxZ is not that useful:
given a data item x which is a member of Z U Z x Z, one generally wants to
eventually perform a computation which depends on the source of x. But it is
not obvious that its source can be recovered. In the implementation of many
programming languages, we cannot distinguish a 64-bit integer from a pair of
two 32-bit integers. Even in set theory, integers and Cartesian products are
encoded in such a way that a given element can be interpreted in several ways.
As we have seen in § 3.1.2, a better concept is the sum. Recall that the sum

194 Understanding Formal Methods

A+B of two sets A and B can be defined as {false}xA U {true}xB. This is a
special subset of Bx (AUB). But it would be strange to allow that {false}xA
and {true} x B may be mixed, whereas A and B may not.

What we need here is a structured or abstract view of A + B, where A U B
is hidden. Such an approach is still more relevant if we consider slightly more
complicated data structures, such as binary trees: recall that the type of binary
trees is similar to an infinite sum A+ (AxA) + (Ax(AxA)) + «AxA)xA) +
Here again, we will see in § 10.3 that abstract data types are helpful.

Note also that the difficulty pointed out here is overcome in Z due to the in
troduction of the concept of a free type. Indeed, Z free types provide a notation
for the special abstract data types that we need in such situations.

10.2.10 Summary

Interpreting a type as a set has the immediate benefit of simplicity. However, a
direct use of typed sets is not that helpful when we want to represent a number
of well-typed regular data structures used in computer science. It is certainly
not by chance that set-theory is an untyped theory, where 3 = 1 U (0,1) is a
perfectly legal equality. Let us end this discussion with two comments.

- On the one hand, set theory is too general: the set of set-theoretic functions
from NxN to N is not countable, whereas only the set of computable functions
is relevant for programs, and this is a countable set2 (cf. § 3.3.4).

- From another perspective, set theory is not general enough, if one needs to
describe a polymorphic (also called generic) type [Rey85], as was already
mentioned in Chapter 7.

10.3 Abstract Data Types

The general idea behind abstract data types is to describe data structures
without unveiling their implementation. Essentially, an abstract data type en
capsulates a data structure D together with the operations which manipulate
it. Each value in D is expressed by means of these operations only. It then
becomes possible to axiomatize D in an algebraic manner.

Let us illustrate the idea with the very simple case of the natural integers.
To this end, instead of using directly N, we would introduce an abstract data
type called nat, together with names for the regular arithmetical operations.
Of course, N, endowed with appropriate operations defined by means of set
theoretic primitives, would provide a model for this abstract data type. Note
that the typing discipline itself does not depend on this interpretation. The rule
we should conform to would be that only expressions built up from the opera
tions declared in the type are accepted as arithmetical (integer) expressions.

2In a "high-level" (or abstract) specification stage, a less strict viewpoint is accept
able.

Abstract Data Types and Algebraic Specification 195

We can proceed in the same manner with even numbers, as suggested at
the end of § 10.2.6: introduce a data type called even_nb, with appropriate
operations, and consider that 2N (endowed with +e and *et) is a model for
them.

Finally, consider the example of a binary tree. In order to be able to use
binary trees, one needs to construct a new tree, to compose a tree from two
previously constructed ones, to compare two trees, etc. One has also to know
whether information items are stored at the leaves or at the nodes. But imple
mentation choices such as the use of pointers, arithmetical operations in arrays,
or whatever, are not relevant here. One has a concrete type when the repre
sentation of data items, and of the functions for accessing or modifying them,
are described, whereas one has an abstract data type when only properties
of these data items and functions are described. There is an analogy in logic:
a concrete type would correspond to the notion of a model, while properties
defined in an abstract data type would be represented by formulas.

10.3.1 Sorts, Signatures

To define an abstract data type, one first gives a name, termed a sort, to
the various kinds of data items to be used. For example, we will need trees,
integers and Boolean valnes, having tree; nat and bool, respectively, as t.heir
sort. We also need to designate operations over these objects. For example, for a
binary tree whose leaves contain an integer, we can consider the operations bin
which constructs a tree from its two sub-trees, leaf which constructs a one-leaf
tree, 1ft (respectively rgt) which extracts the left (respectively right) sub-tree,
depth which yields the depth of a tree (the length of its longest branch), bal
which indicates whether the tree is balanced, and so on.

The operations we consider are side-effect free; that is, they have no effect
other than the production of a value. Let us give some examples: the expression
bin (leaf (3) ,leaf (1)) represents a tree having two leaves containing 3 and 1,
respectively; rgt (bin(leaf (3) ,leaf (1))) represents a tree having exactly a
leaf containing 1. A value is always designated by means of previously declared
operations, without reference to a particular model. In most cases there are
operations, called the constructors, which playa special role. They allow one
to designate all possible values, and only those values. In the case of binary
trees, the constructors are leaf and bin. Using axioms, one should be able to
prove that every expression is equal to an expression using only constructors.

The signature of an operation consists of the declaration of the sorts
of its arguments and of its result. For example nat -+ tree is the signa
ture of a function which takes an integer as input, and returns a tree, while
tree x tree -+ tree is the signature of a function which takes two trees as
inputs, and returns a tree. The previous operations would then be declared as
follows:

leaf
1ft
depth

nat -+ tree
tree -+ tree
tree -+ nat

bin
rgt
bal

tree x tree -+ tree
tree -+ tree
tree -+ bool .

196 Understanding Formal Methods

10.3.2 Axioms

We need to have more knowledge about the contents or about the behavior
of those operations. In the case of a programming language (Ada, CLU), the
semantics of operations is expressed by programs. Their internals are based on
a concrete representation of data types; the formal interface is then made up
of only the signatures. In the case of B, a set-based model is provided for the
operations. This model is quite a high-level one, however, as it uses unbounded
choices and general operations over sets and relations. The more concrete rep
resentations, described in refinements and finally in implementations, are then
hidden behind an abstract specification. In the framework of an algebraic spec
ification language, one does not provide any model, abstract nor concrete, but
rather a number of properties which are expected from the operations. Those
properties are expressed by logical formulas, which can be axioms or theorems.

We have an analogous situation in mathematics. As a well-known example,
groups can be characterized by three axioms. Similarly, the effect of the opera
tions of an abstract data type can be characterized by appropriate axioms. For
example, natural numbers can be seen as an abstract data type, described by
the signature:

zero
plus
eq

~ nat
nat X nat ~ nat
nat X nat ~ bool

and the axioms of Peano.

succ
mult
inf

nat ~ nat
nat x nat ~ nat
nat X nat ~ bool

In the example of binary trees, here is an axiom stating that a tree, made
up of two sub-trees is balanced, if these sub-trees are themselves balanced and
if the difference between their respective depths does not exceed 1 (we use here
a liberal syntax for the arithmetical parts of the formula):

Va, b (bal(a) /I. bal(b) /I.
Idepth(a) - depth(b)I ::; 1)

::::} bal(bin(a, b))
(10.1)

The functions 1ft, rgt and depth are determined by the following axioms:

Va, b 1ft(bin(a, b)) = a
Va, b rgt(bin(a, b)) = b
"In depth(leaf(n)) = 1
V a, b depth(bin(a, b)) = 1 + max (depth(a), depth(b))

If the axioms are arbitrary formulas, we have an axiomatic abstract data
type; the name algebraic abstract data type is preferred when the axioms are
equations3 (or, sometimes, formulas of the form El /I. .•. /I. En::::} Eo, where Ei
are equations). We can state the axiom about bal in the form of an implication
between equations in the following manner:

3Recall that in mathematics, the axioms used to define algebraic structures such
as groups, rings, vector spaces, etc. are (universally quantified) equations.

Abstract Data Types and Algebraic Specification 197

Va, b (bal(a) = true 1\ bal(b) = true 1\
infeg(ldepth(a) - depth(b)I ,1) = true) (10.2)

=> bal(bin(a, b)) = true .

All these formulas are quantified universally for every variable; the general
framework is first-order logic, as described in § 5.2.

In our specification, boo 1 is a sort corresponding to an abstract data
type in the same way as arb. Its constructors are true and false.

It can be endowed with usual Boolean operations (negation, conjunction, dis
junction, etc.).

Note that bal is a predicate in (10.1), whereas it is an ordinary
function in (10.2). If we consider semantics, in both cases bal is interpreted as
a function to 1m. In a way, explicitly using bool places a formula such as bal(a)
at the level of semantics.

For the sake of completeness, the specification of binary trees should
~ make explicit that any tree constructed with bin is different from
any tree constructed with leaf, and that the constructors are injections, and
finally, that all trees are constructed with bin and leaf. This is easy to express
using first-order axioms, for example:

Va,b,n
Vm,n
Vm,n

...,(bin(a, b) = leaf(n))
rgt(bin(a, b)) = b
leaf(m) = leaf(n) => m = n .

In order to simplify the specification, it is agreed that such axioms
are implicitly stated. One does not then have the freedom to interpret two
expressions as the same object, except if this is a consequence of the axioms. In
short: two objects which are not explicitly (or provably) equal must be distinct.

10.3.3 First-order and Beyond

The formulas considered so far in this chapter are first-order. However, higher
order logic may be useful if we want to express generic operations. Let us
illustrate the idea on (an abstract view of) the sum of nat and nat x nat -
another abstract data type, say, for binary trees, would do just as well. We
have essentially two manners of constructing a value of this type - let us call
it Snat:

- by means of the constructor i1 (first injection) of type
nat -7 Snat;

- by means of the constructor i2 (second injection) of type
nat X nat -7 Snat.

If we want to use a value s of type Snat, in order to build up a Boolean for
example, we have to consider the two possible sources of s. To this end we
would introduce the operation case with three arguments:

198 Understanding Formal Methods

- a value of type Snat;
- a function of type nat -+ bool to be applied in the first case;
- a function of type nat x nat -+ boo I to be applied in the second case.

These operations come with the following axioms:

case(ii(n), t, g) = t(n) ,
case(i2«x,y»), t, g) = g«x,y») .

Any model of Snat should satisfy these axioms. In particular, this can be
checked with a set-theoretic interpretation based on {false }xNU{ true }x(NxN)
together with an appropriate model of ii, i2 and case.

Note that the function case takes functions as arguments. A polymorphic
version of this function would be welcome: its behavior is the same whatever
the type of the result. Then one would systematically replace bool with a
parameter T.

Actually, one would like to introduce such parameters for the sum itself and
for the two injections i 1 and i2. All this can be done, provided that one goes
beyond first-order. Appropriate devices for doing that will be introduced in the
next chapter.

10.4 Semantics

The semantics of a specification defined by an abstract data type is given by
a model of the axioms (§ 5.6). For algebraic abstract data types, one generally
considers multi-sorted logic. Each sort is interpreted by a previously known set.
Expressions such as nat x nat -+ nat are interpreted by a total function from
a Cartesian product to a set, for example, the addition is from N x N to N.

The abstract data type itself is interpreted by a mathematical structure,
that is, an n-tuple composed of sets and operations over these sets. For example,
the abstract data type nat of the previous section could be interpreted by
(N,]$, 0, S,+, x, =, <).

The example of even_nb, given in § 10.2.6, is interesting. One model for
it is 2N, of course, but another one is N itself, endowed with regular addition
and multiplication, without any changes. What changes in this interpretation
is the coercion function from even_nb to nat, which is no longer the identity
function, but the function which returns the double of its argument.

There are several options for defining the semantics of an algebraic ab
stract data type. Let us mention two of them here: initial semantics and loose
semantics.

In the case of initial semantics, a specific structure, referred to as the initial
model, plays a central role. For example, we would take (N, 111\, 0, S, +, x, =
, <) in the case of arithmetic. This approach is well suited when we have
constructors, such as zero and succ (we want them to have a ''no junk - no
confusion" property).

Abstract Data Types and Algebraic Specification 199

On the other hand, loose semantics considers the class of all possible models.
As a mathematical example, this framework would be more appropriate than
initial semantics for group theory.

10.5 Example of the Table

10.5.1 Signature of Operations

Given an arbitrary sort U, we want to represent tables of elements of U, con
sidered here as finite sets of elements of U. We will construct them by means
of the operations emptytab (the empty table, this operation, intuitively, corre
sponds to the creation of a new table) and insert (which inserts an element
in a table):

emptytab : table insert : U x table ~ table .

Other operations can be designed, for example, removing an element or building
the union of two tables:

remove U x table ~ table
tabunion : table x table ~ table

The search for an item will be specified by the relation in:

in U x table ~ bool
search : table ~ U .

10.5.2 Axioms

The following axioms express that the order of insertion is not important, and
that possible repetitions are not either.

'r/ x, y, t insert(x, insert(y, t)) = insert(y, insert(x, t))
'r/ x, t insert(x, insert(x, t)) = insert(x, t) .

In order to specify the search for an item we need a predicate P over elements
ofU:

'r/x
'r/x,t
'r/x,y,t
'r/x,t

in(x, emptytab) = false
in(x, insert(x, t)) = true
x i- y ::} in(x, insert(y, t)) = in(x, t)
search(t) = x 1\ in(x, t) ::} P(x) .

Note that the failure of a search is not completely specified here. We can only
say that, in case of failure, the item that is returned is not an element of t.
The two axioms given for in are sufficient because we consider that the order
of insertion is not relevant.

200 Understanding Formal Methods

10.6 Rewriting

It may be tempting to write the - unfortunately flawed - following specifi
cation for the search operation:

v x, t P(x) ::::} search(insert(x, t)) = x

An undesired consequence of this specification is that the table could not con
tain two distinct items x and y satisfying P! Indeed, a table containing x and
y can be put in the two forms insert(x, t) and insert(y, t') - where x and
yare members, respectively, of t' and of t. If we also have P(x) and P(y), we
get:

x = search(insert(x, t)) = search(insert(y, t')) = y

Yet the latter specification of search might seem quite harmless. The lesson
we draw from this is that formal statements, alone, are not a panacea. It is
crucial to examine their consequences. This is precisely the job performed by
deduction tools. In the case of algebraic specifications, they are generally based
on rewriting systems, as explained in the previous chapter. Let us illustrate
this technique using the example of binary trees.

An example of a property which is quite easy to check is that the left subtree
of a tree a (supposed to be in the form bin(b, e)), is less deep than the full tree
a:

a = bin(b,e) ::::} inf(depth(lft(a)),depth(a)) = true.

Indeed, after the substitution of bin(b, e) for a in the right-hand side of this im
plication, we obtain a formula containing lft(bin(b, e)) and depth(bin(b, e)),
which in turn can be rewritten to band 1 + max(depth(b), depth(e)), respec
tively, according to our axioms. The right-hand side can then be written:

inf(depth(b), 1 + max(depth(b), depth(e))) = true,

which is easy to solve using arithmetic rules:

inf(x,l+y) = infeg(x,y)
infeg(x, max(x, y)) true .

Note that in this example, we always proceeded by replacing the left-hand side
with the right-hand side of an equation. In other words, equations were used
as rewriting rules, as indicated in § 9.7.

10.7 Notes and Suggestions for Further Reading

The book [BKL +91] provides an overview of algebraic specifications. One of the
main approaches to this topic, using so-called initial algebras, is developed in

Abstract Data Types and Algebraic Specification 201

[EM85, EM90j, where the reader can find a description of the language ACTl.
This language has been reused in the two ''formal description techniques" for
communication protocols LOTOS - whose control aspects are derived from
process algebras in CSP and CCS style - and a (now obsolete) version of SDL.

Another important algebraic specification language is OBJ, described for
example in [JKKM92]. Its more recent successors include Maude [CDE+99]
and CafeOBJ [DF98].

11. Type Systems and Constructive Logics

This chapter introduces the relationship between typing, logic, and specifica
tion. In fact, a type can be viewed as a kind of specification. This analogy can be
carried to a fair extent, at least in the framework of the constructive approach
to logic, already mentioned on page 42. From this perspective, intuitionistic
logic turns out to have better features than classical logic.

In passing, we will introduce the ,x-calculus, which is both a plain logical
tool and an elementary language which is much appreciated for studying fun
damental issues in computer science, including questions related to typing. All
that will lead us to the topic of the next chapter, devoted to the calculus of
inductive constructions, a powerful type system implemented in two software
systems, Coq and Lego.1

11.1 Yet Another Concept of a Type

11.1.1 Formulas as Types

The most general thing we can say about a type is that it is just a non
interpreted formal expression, which can be attached to the concepts of the
language we consider (variables, functions, etc.). An object which has a given
type is sometimes referred to as an inhabitant of this type.

A typing system tells us how to assign a type to an expression of the lan
guage, as soon as we know the type of the components of that expression. For
example, if f has the type A -+ B and if x has the type A, then f(x) has the
type B. A typing system can then be regarded as a formal specification lan
guage, which is more, or less, refined depending on the richness of the typing
system. From this perspective, verifying that a program is well typed amounts
to proving that it satisfies its specification.

Note that the concept of a type applies not only to programming languages,
but to specification languages as well. Thus, in algebraic specification languages,
the basic symbols for types are called sorts, for example nat, bool, stack. The
operators x and -+ allow one to construct compound types, such as nat x
nat -+ bool. In this case we have two levels of specification: the typing specifies

lWe also want to mention NuPRL and ALF, which are based on very similar prin
ciples.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

204 Understanding Formal Methods

something about the algebraic specification. In particular, it forces the axioms
which come with the declaration of operations to be well typed. The same
comment applies to the specification languages based on set-theoretic notations.

Considering that a specification is, in general, a logical formula, we can
still go one step further. Types, regarded as formal expressions, become more
precisely logical formulas. This was already suggested in the case of dependent
types. We get here the first part of the so-called Curry-Howard isomorphism,
to be developed below:

type = logical formula .

We will see that, in this framework, x and -t are given a simple logical meaning.

11.1.2 Interpretation

As soon as we consider a type as a formula, we can consider interpretations of it,
as in model theory. However, model theory does not provide all possible kinds
of interpretation. Instead of interpreting the truth value of a formula by means
of the two values true and false, one can examine the space of the proofs that
conclude with this formula. Such objects turn out to be relevant to computer
science: they are just computable functions. More exactly, they are algorithmic
(or, intentional) definitions of computable functions - recall that usually,
''function'' is used with its extensional meaning, including the phrase ''recursive
function" in computability theory. A good framework for expressing intentional
presentations of recursive functions, and for studying typing systems, is the A
calculus. We start with the untyped version of this formalism.

11.2 The Lambda-calculus

Une fois rien ... c 'est rien /
Deux fois rien ... ce n'est pas beaucoup /
Mais trois fois rien / ... Pour trois fois rien, on peut deja
acheter quelque chose... et pour pas cher /2

R. DEVOS

The A-calculus, devised by Alonzo Church, formalizes with remarkably re
stricted means the concept of a computable function. It can be regarded as a
programming language, powerful enough for encoding any algorithm, whereas
its rudimentary character simplifies the study of a number of fundamental is
sues, such as computability and typing. The A-calculus was also used for defin
ing the semantics of programming languages, and it is the archetype of func
tional languages. Finally, notations of the A-calculus are very often re-used,
including in languages such as Z or B.

2 One time nothing ... this is just nothing! Two times nothing ... this is not much!
But three times nothing! ... with three times nothing, one can buy something ... and
with little money!

Type Systems and Constructive Logics 205

In the A-calculus, the notation AX. x+3 represents the function 1 such that
I(x) = x+3. Evaluating 1(5), denoted by «Ax. x+3) 5), consists of substituting
5 for X in the body of the function, which yields 5+3 (and then, 8).

One can get rid of the symbols "+", "3" and "5". The main idea of the
A-calculus is that everything can be represented by one-argument functions,
including data structures and control structures. Only one computation mech
anism, called the ,a-reduction, is available. It formalizes what happens when a
function is applied to its argument.

11.2.1 Syntax

In the A-calculus, programs, or functions, are expressed by A-terms, built up
from variables denoted by identifiers x, y, z ... and only three rules:

- a variable is a A-term;
- A-abstraction: if T is a A-term and if x is a variable, AX. T is a A-term

(intuitively, it represents the function which maps x to T; for example AX. X
is the identity function);

- application: if F and X are A-terms, the application of F to X is a A-term
denoted by F X.

As usual, parentheses are used for removing ambiguities, for example, for
distinguishing (Ax. x)y from AX. (xy). Application has syntactical precedence
over abstraction: AX. xy is a shorthand for AX. (xy).

The concept of a free, or of a bound, variable is similar to the one in pred
icate calculus, the role of V being played by A. In the same way, the meta
notation [x := V] T denotes the substitution of a term V for each free occur
rence of X in T. For example, in x(Ax. xy) the first occurrence of x is free, the
second is bound, and y possesses only one occurrence which happens to be free;
[x:= (Az.z)] (x(Ax.xy)) represents the term (Az.z)(Ax.xy).

The mechanism of the ,a-reduction is quite natural: when a function F with
a parameter x, say AX. T, is invoked on an argument V (this situation is called
a redex), V is substituted for all free occurrences of x in the body T of F;
more precisely, the A-term (Ax. T)V is rewritten as [x := V] T. For example, if
we take T = x, (Ax. x)V is rewritten as V; thus we check that AX. x represents
the identity function, as one would expect.

We easily see that Ay. y is also the identity function. More generally, A-terms
are defined up to a renaming of bound variables (this is called a-conversion).
In practice, such renaming can be performed systematically before every ,a
reduction in order to avoid confusion. We will always comply with this discipline
in the following.

A redex can occur at the top of a term, but also at the top of an arbi
trary sub-term. Of course, the scope of substitutions performed by a given
,a-reduction extends only over the concerned sub-term. A ,a-reduction step,

from T to T', is denoted by T .f!t T' . For example, we have

{3
(Ax. x)(AY. y) -'-+ Ay· y . (11.1)

206 Understanding Formal Methods

When we have a (finite) chain of ,B-reductions going from T to S this is written

T ~* S . When a term has no redex, we say that it is irreducible, or in normal
form. Evaluating a A-term T consists of looking for an irreducible term S such

that T ~*S .

11.2.2 The Pure "x-calculus and the "x-calculus with Constants

It turns out to be possible to encode all useful data structures (integers,
Booleans, pairs, lists, trees, etc.), as well as the functions which allow one
to manipulate them, by means of A-terms. One can also represent fixed-point
operators, and then recursive functions. Thus, this calculus has the maximal
expressive power that one can expect.

Nevertheless, it is sometimes convenient to enrich the syntax with additional
operations, together with appropriate reduction rules called a-rules. These op
erations are called constants,3 the system thus obtained is called the A-calculus
with constants. For example, one could introduce the constants +, 0 ... 3, 4,
5 ... with rules such as:

5+3~ 8 .

An important example is the A-calculus with pairs, which introduces three
constants: pair formation L, _), and the first (respectively the second) pro
jection PI (respectively P2) which, respectively, extract the first and the second
elements from a pair. For example, AX. W2X,PIX) represents the transposition

of the elements of a pair. It is necessary to introduce the a-rules PI (x, y) ~ x

and P2(x, y) ~ y. The system without constants is called the pure A-calculus.
We consider the latter up to the end of the current section.

11.2.3 Function and Function

We have seen that, as a function, a A-term takes a function as input and then
returns a function. However, the example given in (11.1) illustrates something
less common: a function can be applied to itself! Indeed, applying the identity
function to the identity function can be written (Ax. x)(Ax. x), or, preferably
(Ax. x)(Ay. y); after ,B-reduction we get Ay. y, which is the identity function
again (as expected). Recall that in set theory it is required that before defining a
function, its domain and its co-domain are defined, and this prevents a function
from being applied to itself: a function from A to B is regarded as a member
of P(A x B), so that it cannot be a member of A. We will see later that, even
though a function of the A-calculus is not interpreted by a set (of pairs), a

3 Admittedly, these constants represent functions, but these functions do not
change. One has to distinguish between the result of a function, which generally
varies when arguments vary, from the function itself. In contrast, letters x, y are
variables, which represent (and may be substituted by) arbitrary functions.

Type Systems and Constructive Logics 207

type may be assigned to it. The concept of a function in the A-calculus turns
out to be, from this respect, more powerful than the set-theoretic concept of a
function.

Actually, functions in the A-calculus are computation procedures above all.
In this respect, they are quite close to the concept of a function used prior to
Dedekind and Cantor. We admit that they represent computable functions par
excellence. Moreover, recall that there are many more set-theoretic functions
than computable functions (cf. § 3.3.4).

The difference between set-theoretic functions and computable functions
remains at the root of an important issue for formal specification of software.
Indeed, the set-theoretic concept of a function is sometimes easier to handle or
to understand, than the constructive concept, whereas the latter is the only one
available in programming; the set-theoretic concept is then put to the fore. An
essential issue in program construction from formal specifications is to exhibit
an algorithm computing a function previously presented in an implicit manner,
and one hopes that such an algorithm does exist.

11.2.4 Representing Elementary Functions

In order to illustrate more concretely how the A-calculus can be used, let us
show how a number of common programming constructs can be represented.
This will shed new light on a mapping between data structures and control
structures. Thus, the concept of a pair is associated with the concept of a
projection, the concept of a Boolean is associated with the concept of a test,
the concept of an integer is associated with the concept of an iteration. In some
respect, a data structure is defined by its typical use cases.

11.2.4.1 Preliminary Conventions, Curryfication. We have to agree on
a number of notational simplifications. We will also show how to "curryfy" a
two arguments function in order to consider it as a one argument function.

Let us consider informally the case of addition, which maps x and y to
"x+y" . If we fix the first argument to 2 (respectively to u), we get the function
"add 2" (respectively "add u") which maps y to "2+y" (respectively "u+y");
this function is then Ay. "2+y" (respectively Ay. "u+y").

Consider that x, y and "x+y" have the type nat. The function Ay."x+y"
then has the type nat -t nat. The addition is then regarded as the function
which maps x, not to an integer, but to the function of type nat -t nat we
have just seen, Ay. "x+y" . In other words, the addition is represented by
AX. (Ay."X+Y") of type nat-t(nat-tnat) . We agree that this term is also
noted AX. Ay. "x+y" or even more simply, AXY. "x+y" .

More generally, AXY. T and AX. Ay. T represents AX. (Ay. T); this convention
generalizes to an arbitrary number of arguments. Consistently, the application
operation associates to the left: gfy does not represent gUy) as one would
expect at a first glance, but (gf)y: this expression should be interpreted as the
application of the two-arguments (curryfied) function g to f and y. Thus we
do have, assuming that the only occurrences of X and yare in T:

208 Understanding Formal Methods

(3
(Axy. T) U V ~* [x, y := U, V] T .

11.2.4.2 Concept of a Combinator. A combinator is a closed A-term (that
is, without free variables). Three examples of combinators are:

I ~ Ax.x K ~fAxy.x and S ~fAxyz. (xz)(yz)

A theorem states that every combinator can be obtained using only I, K and

S. One can even dispense with I, because SKK A*I (recall that abc is read
(ab)c).

11.2.4.3 Booleans and Tests. The very purpose of a Boolean b is to choose,
from two arguments X and Y, the first if the value of b is ''true'' and the second
otherwise. In a functional language, this would be expressed by:

if b then X else Y . (11.2)

Beware: this expression designates the value of X or of Y, and not a command.
We take for ''true'' and for ''false'' two terms denoted by t and f, respectively,
and defined by

t ~fAxy.x and f~ Axy.y.

The fact that tXY A* X and that fXY A*y allows us to represent the test
(11.2) by bXY (which reads: (bX)Y).

Now Boolean functions are easy to program. For example, the disjunction
is obtained by computing x V y by means of if x then t else y:

or ~fAxy.xty .

11.2.4.4 Integers and Iteration. There are several means of encoding in
tegers with the A-calculus. The most popular, due to Church, consists of rep
resenting the integers n by the function which iterates a function given as an
argument n times, that is, intuitively:

Af· r = Af. f 0 f··· 0 f = Afx. f(J··· (J x)···) --------- -----n n

We need to represent the two constructors 0 and S. Let us observe that fO is
the identity function, while fntl(X) is f(r(x)). This idea is implemented in
the following combinators:

o ~f Af.Ax.x and S ~ An. Afx. f(nfx) .

We will also use:

1 ~f Afx.fx 2 ~ Afx. f(Jx) , etc.

Type Systems and Constructive Logics 209

As an illustration of the use of iteration, let us represent arithmetical op
erations. The addition m+n is obtained by m successive increments of n:
"m+n" = "sm(n)" = mSn, that is, formally, plus ~)..mn.mSn.

In the following we prefer a slightly different definition, which comes directly
from fm+n(x) = fm(r(x)), that is,

plus d~f)..mn.)..fx. (mf)(nfx) .

This version is actually shorter than the previous one, because we should ex
pand S in the latter.

We can get the multiplication m x n by iterating m times the addition of
n to 0, which yields the expression:)..mn. m()..x. plus n x)O . However we get a
shorter definition from fmn = (jm)n:

mult ~f)..mn.)..f. n(mf) .

Remarkably, the exponential function is still simpler to represent, since a
Church integer is precisely the exponential operation:

exp ~)..mn. nm .

Finally, comparison to zero is expressed by

zer ~f)..n. n()..x. f)t .

Indeed, ()..x. f)O is the identity, which obviously yields t when applied to t; in
contrast, for n > 0, ()..x.f)n is)..x.fwhich, applied to t yields f. As an exercise,
the reader may calculate zer(plus 1 x) and zer(plus 0 0).

11.2.4.5 Pairs and Projections. The combinator for constructing a pair
takes two "data" items X and Y as inputs (for example integers, Booleans, but
actually arbitrary)..-terms) and it returns (X, Y). The first (respectively the
second) projection takes a pair as input and it returns X (respectively Y). The
abstract type "pair" is actually characterized by three functions pair, prl and
pr2 which must verify prl(pair(x,y)) = x and pr2(pair(x,y)) = y .

Natural definitions of the curryfied projections pel and pc2 are)..xy. x and
)..xy. y . Let us represent the construction of the pair (x, y) by a term taking a
curryfied projection p as an argument and applies it to x and y:

(x,y) ~f)..p.pxy and pair ~f)..xy.)..p. pxy .

The projections are then in the form)..c. C7r where c is a pair and 7r is a curryfied
projection:

prJ ~f)..c. c()..xy. x) and pr2 def)..c.c()..xy.y) .

210 Understanding Formal Methods

11.2.4.6 Paradoxical and Fixed-point Combinators. The paradoxical
combinator is

o ~f (Ax. xx)(Ax. xx)

It has a feature which was not present in the combinators introduced so far:
there is a redex inside it. One can even perform an arbitrarily high number of

successive ,B-reductions from 0, since 0 ~ 0 . This term represents a "looping"
program. On first inspection, one might blame AX. xx, because it contains the
"self-application" xx; but there are combinators T such that (Ax. xx)T con
verges (terminates). The simplest is I:

(Ax. xx)(Ax. x) ~ (Ax. x)(Ax. x) ~ (Ax. x)

We can even get an infinite number of such terms, by taking for T the Church
encoding of an arbitrary integer n: this yields a representation of nn which,
after successive reductions, reaches the normal form

Afx. f(f···(fx)···)

This is an example of a term yielding a very long chain of ,B-reductions.

A slight modification of 0 provides a fixed-point combinator:

Y ~ V. (Ax. f(xx)) (Ax. f(xx)) ,

which, applied to any term F, yields after a ,B-reduction step a term F' that
reduces itself to F F', hence the infinite chain:

YF ~ F' ~ FF' ~ F(FF') ~ F(F(FF')) ~ ... (11.3)

This term then yields an infinite loop too, but not necessarily! Let us consider a
"recursive" definition of the form 9 = AX. G, where G contains free occurrences
of g. We know that, from a semantical viewpoint, we should interpret it as "g is
the least fixed point of G" (cf. § 3.6). Even though the set-theoretical concept
of a function turns out too narrow for developing this idea in A-calculus, the
intuitive idea remains valid: in some sense, Y F is a fixed point of F. Let us see
what happens if we take F = Agx. G and we apply Y F to a given term t. In
the example of the sequence of Fibonacci, G would be a translation of

if x = 0 V x = 1 then 1 else g(x - 1) + g(x - 2) .

When we reach F F't, that is, (Agx. G)F't, two new redexes appear successively,
so that we get [g := F', x := t]G. If the function G is programmed as expected,
this term contains redexes that, intuitively, check the value of x. Then there
are two options:

Type Systems and Constructive Logics 211

- "recursive" case, the j1-reduction yields a term containing other occurrences
of 9 - but recall that 9 has been replaced with F'; then a reduction step

F' 4 F F' can be applied, and we get one or several sub-terms under the
form FF'ti' so that we have a situation similar to the previous one, with
new values for t ("t - 1" and "t - 2" in the above example);

- "base" case, the j1-reduction yields a term which contains no occurrence of 9
("1" in the above example); we no longer enter in the infinite loop (11.3); all
additional reductions that may have been performed on F' turn out to be
useless.

To sum up, we observe that suitable applications of the j1-reduction mech
anism allow us to simulate the evaluation of a "recursive" function.

11.2.5 Functionality of .a-reduction

We presented j1-reduction as an evaluation mechanism which transforms any
given term into an irreducible one. A number of phenomena appear in previous
examples:

1. As a term may contain several redexes, it can be reduced in several ways;
is it possible to get different irreducible forms from the same term?

2. In a number of cases, such as ft, a term does not possess a normal form;
can this be decided a priori?

3. In other situations, a term can be transformed into an irreducible form,
along some paths, while successive reductions along other paths do not
terminate. A very simple case is (>.x. T)O, where T is a normal term con
taining no free occurrence of x. Can we find a strategy for the choice of
redexes such that an irreducible form will eventually be reached if there is
one?

The first issue is about functionality: we wish the result to depend only on
the initial expression, and not on the manner of performing computations. This
property is called confluence, or the Church-Rosser property. The following
result is quite difficult to prove.

Theorem 11.1 (Church-Rosser)
If a term T can be reduced to two different terms U and V, that is, ifT .!!t* U

and T .!!t * V, then there exists a term W such that U .!!t * Wand V .!!t * W.

As a corollary, if the irreducible form exists, it is unique (hence the name
normal form).

This result can also be regarded as stating a kind of consistency of the >.
calculus, in the following sense. Let us consider ~, the reflexive and symmet

rical closure of .!!t*. By construction, this is an equivalence relation. Each term is

in a unique equivalence class modulo ~, and each class represents the ''value''

denoted by one of its members. For example, we have (or t f) ~ (or t t). It

212 Understanding Formal Methods

is clear that j1-reductions preserve the equivalence class. However, it is impor
tant that the values represented by t and f are different, that all the values
of Church integers are different, and similarly for each data structure: other
wise computations would have no interest, one would say that the calculus is
inconsistent. The Church-Rosser property guarantees the consistency of the
calculus because the normal form forms of t and f are syntactically different
(and similarly for Church integers).

The second and third point concern the termination of computations. The
answer to the second can only be negative, because the A-calculus has the power
of Turing machines. In contrast, a strategy exists which reaches the normal form
if it exists. This strategy, called the normal strategy, consists of reducing the
redex whose "X' is on the left-most position. For example, in (Ax. T)fI, one has

to choose the reduction (Ax. T)fI ~ [x := fI]T (which yields T if T does not
contain a free occurrence of x), and not the redex which is inside fl. These two
results are summarized in the following theorem.

Theorem 11.2
The existence of a normal form of an arbitrary A-term is a semi-decidable
problem.

Confluence and termination properties playa pivotal role in the study of rewrit
ing systems. The tools developed in the framework of the A-calculus are widely
used in this theory.

To summarize, we can recall that the A-calculus is a formalism well suited
for representing the concept of a computable function (or of a recursive func
tion, as defined in § 3.7). Indeed, it is a consistent and Turing-complete calcu
lus. In practice, it is present in several important specification languages, and
also in functional programming languages, though the notations used there are
more user-friendly. In these languages, integers and other data structures are
generally represented by common encodings close to the machine, instead of
A-terms, for obvious reasons of efficiency. However, understanding the behavior
of Church integers and other combinators is quite useful, because they are a
good illustration of fundamental manipulations of functions to be met in the
practice of modeling and of programming.

11.3 Intuitionistic Logic and Simple Typing

11.3.1 Constructive Logics

In mathematics, it can sometimes occur that one proves the existence of an
object verifying some property without exhibiting this witnessing object. A
frequently cited example is the proof that there is an irrational number r such
that rV2 is a rational ~ so that we have two irrational numbers rand s such
that r S is rational. Consider a ~f y'3 and b ~f aV2. If b is rational, we can

take r = a; otherwise, we can take r = b because (aV2)V2 = y'32. By the law

Type Systems and Constructive Logics 213

of the excluded middle, the existence of r is ensured, without needing to say
whether r is a or b.

Such proofs are called non-constructive, because they do not provide an
effective manner to obtain the witness possessing the desired property. Con
structive proofs are, however, quite common. A simple case is when the witness
is explicitly provided, for example 3 in the property 3x 2x = 6. Many proofs
by induction are constructive, because they implicitly contain a construction
process allowing one to compute a witness. For example, in order to prove that
every integer is even or odd, the induction step consists of taking an integer n
which is already in the form 2k or 21 + 1, and then proving that n + 1 is in
the form 2k' or 21' + 1; here one has to consider k' = 1 + 1 and l' = k. During
this proof, we implicitly described an algorithm which performs the Euclidian
division of n by 2.

Most theorems in basic arithmetic are proved constructively, as well as
theorems which are involved in program proving. Note that the axiom of choice,
in set theory, is essentially non-constructive. Actually, it is scarcely used in
computer science, because one is often interested in the algorithmic contents
of proofs. Unfortunately, classical logic, that is, the kind of logic that everyone
uses regularly, turns out to be inappropriate for the development of constructive
proofs.

We need constructive logics, which not only allow us to extract an algo
rithmic content from proofs, but provide proof spaces themselves with an in
teresting mathematical structure. The most commonly used constructive logic
in computer science is intuitionistic logic, which originated at the beginning of
the 20th century. In constructive logics, provability and proof structure become
more important concepts than truth values.

More recently, a considerable amount of research work has been de
voted to a new and promising constructive logic called linear logic.

We want to also mention that subtle variants of classical logic can be made
constructive. This is a recent discovery, related to the interpretation of control
structures such as exceptions and calli cc [Gir91, Gri90, Mur91].

11.3.2 Intuitionistic Logic

Intuitionistic logic was already presented in Chapter 9. In the following we rely
on natural deduction. Let us recall that, in the system NJ, one manipulates
deductions made under some hypotheses. These are displayed in a tree whose
root contains the conclusion. A finished proof is a deduction where all hypothe
ses have been discharged. The formation of deductions can be interpreted in
the following manner (disjunction and quantifiers will be discussed later):

I\i given a deduction a of A and a deduction b of B, one forms a deduction
of A 1\ B; the latter is represented by the pair (a, b);

I\e given a deduction c of AI\B, under the form (a, b), one forms a deduction
of A (respectively of B) which is a (respectively b), obtained from c by
a projection;

214 Understanding Formal Methods

=>e given a deduction f of A=>B and a deduction a of A, one forms a deduc
tion of B; f is then regarded as a function which maps every deduction
of A to a deduction of B;

=>i given a deduction of B under the hypothesis A, one forms a deduction
of A=> B; it can be regarded as a function from the space of deductions
concluding to A, to the space of deductions concluding to B;

..1 the space of deductions of ..1 is empty.

This interpretation is the interpretation of Heyting, also called the BHK in
terpretation (Brouwer-Heyting-Kolmogoroff). Here, the semantics of a propo
sition P is not a truth value, but the space of proofs concluding to P. The
propositions which can be proved with the connectors considered here are es
sentially implications (for example P => P or P 1\ Q => Q 1\ P), since the con
junctions which can be proved are conjunctions of implications (for example
(P => P) 1\ (P 1\ Q => Q 1\ P». The main spaces we consider are then essen
tially sets of functions.

We use the term "space" because the study of the semantics of these
objects shows that they live in spaces, in the common mathematical

sense, that is, sets endowed with algebraic or topological properties.

11.3.3 The Simply Typed A-calculus

It will be seen that these functions are actually nothing but A-terms, more
precisely terms of the simply typed A-calculus with pairs which we introduce
now.

First we define types as expressions formed by the means of type variables
A, B, C, etc. and of binary connectors --+ and x. The terms of the simply
typed A-calculus with pairs are just the terms of the A-calculus with pairs
which are compatible with typing rules. Thus, we are given, for each type T,

typed variables of type T, for example x : A, y : A, z: A x B, t: A --+ B. Let T

and 0' be types:

- if x is a variable of type 0' and if t is a A-term of type T, AX: 0'. t is a A-term
of type 0' --+ T; to simplify reading, we also write AXO". t;

- if f is a A-term of type 0' --+ T and if 5 is a A-term of type 0', f 5 is a A-term
of type T;

- if 5 and t are A-terms oftypes 0' and T, respectively, (5, t) is a A-term of type
O'XT;

- if c is a A-term of type 0' x T, PI c and P2 care A-terms of types respectively
0' and T.

Each typed A-term can trivially be mapped to an untyped A-term: just remove
typing information.

11.3.3.1 Examples.

- '\xA. x has the type A --+ A; the underlying untyped A-term is AX. X;

Type Systems and Constructive Logics 215

- AxA. AyB. x has the type A ~ B ~ Aj the underlying untyped A-term is
Ax.Ay·x;

- AfAxB-tc. AxA. AyB. f(x,y) has the type (AxB ~ C) ~ (A ~ B ~ C)j the
underlying untyped A-term is Af. Axy. f(x, y) - this is curryfication.

11.3.3.2 Properties. When T is the underlying untyped A-term of a typed
A-term of type 7, we say that T is typable with type 7. As one may expect,

J3-reduction is compatible with typing: if T 4. S and if T is typable with type
7, then S is typable with type 7. Theorem 11.3 will soon provide a much more
interesting property.

11.3.4 Curry-Howard Correspondence

The semantics of Heyting amounts to interpreting deductions by A-terms of the
above system. In this interpretation, 1\ is regarded as a product, since proof of
A 1\ B boils down to a proof of A and a proof of B. The connector ::::} is still
more interesting: A::::} B allows one to construct a proof of B from any proof of
A; implication is then interpreted as the construction of a space of functions.
This yields the following systematic translation:

- a proposition P is translated into a type pn, obtained from P by replacing
::::} with ~ and 1\ with x;

- a packet of hypotheses P (see page 161) is translated into a variable x : pn
(or xP~)j

- if two deductions of A and B are respectively translated into the A-terms
a of type An and b of type Bn, the deduction of A 1\ B obtained by I\i is
translated into (a, b) of type An x Bn j

- if a deduction of A 1\ B is translated into the A-term c of type An x Bn, the
deduction of A (respectively of B) obtained by l\el (respectively l\e2) is
translated into PIC (respectively P2C);

- if a deduction of A::::} B is translated into the A-term f of type An ~ Bn, and
if a deduction of A is translated into the A-term a of type An, the deduction
of B obtained by ::::}e is fa of type Bn;

- if a deduction of B, done under a packet of hypotheses A, is translated into
the A-term b of type Bn - the latter must contain a free variable of type
An, say x, which translates the packet of hypotheses - the deduction of B
obtained by ::::}i by discharging this packet of hypotheses is translated into
AxAI. b of type An ~ Bn.

Conversely, every A-term of type 7 can be regarded as a deduction conclud
ing to 7" which is 7 after the replacement of x with 1\ and of ~ with ::::}. The
two reciprocal translations ~ and D constitute the Curry-Howard correspon
dence (also called the Curry-Howard isomorphism), which can be summarized
as follows:

proposition
proof =

type
function

216 Understanding Formal Methods

where ''function'' should be understood as "A-term". This sheds a new light on
the typed A-calculus: it is a concise notation for deductions. Here are some
examples:

7 =>.. is noted AXA. X ,
(X) }

A =} A t(X)

2A =>'(YI } is noted AXA. AyB. x ,
-----=>..
A =} B =} A t(x)

(f)
~

(X) ... -....
A

(y) ,........,
B

-----/\i
A/\B=}C A/\B
--------- '*e

C
-B-=}-C- =}i(y)

-----=>..()
A=}B=}C zx

(A /\ B =} C) =} (A =} B =} C) =}i(f)

is noted

From now on, types will be considered and noted as propositions, and we
will take "-+" as the symbol for implication.

It is then natural to ask how to interpret the ,B-reduction from the per
spective of logic. In other words, what is the meaning of the evaluation of a
function in the space of proofs? In order to simplify the discussion, let us here
limit ourselves to the implicative fragment of NJ, that is, the fragment having
-+ as its only connector. The corresponding A-calculus is the simply typed
A-calculus.

Let us write the deduction corresponding to a A-term containing a redex
(AxA. b) a where a has the type A and b has the type B:

(X) ,........,
A
;b

B :a
----+
A -+ B Z(X) A
--------+e

B

(11.4)

Type Systems and Constructive Logics 217

The deduction corresponding to [x := a] b is:

(11.5)

In (11.4), the deduction a can be seen as a proof of the lemma A, and this
lemma is used an arbitrary number of times in b for proving B. In (11.5), each
occurrence of the hypothesis A which is a member of the packet denoted by
x, is replaced with the deduction a in b. In some sense, the proof (11.5) is
more direct than (11.4), because it avoids the passage by A -+ B, which is not
a sub-formula of the conclusion B to be proved. The transformation of (11.4)
into (11.5) is called a normalization step. This provides the third part of the
Curry-Howard correspondence:

normalization = {3 -reduction

This transformation is similar to cut-elimination in the sequent calculus. The
deduction (11.4) corresponds to:

r, A I- B B I- B r' I- A
-r-I-'---A--+-B- -+r r' , A -+ B I- B -+ 1
--------------------~---------cut

r,r' I- B

while (11.5) corresponds to:

r' I- A r, A I- B
-----------'----- cut

r,r' I- B

(11.6)

(11.7)

The transition from (11.6) to (11.7) is the one that was already discussed
on page 167. By iterating such steps, one reaches a proof without lemma,
also called a normal proof, as in the Hauptsatz of Gentzen. We have even a
theorem stating that this normal form is reached whichever reduction strategy
is employed: this property is called strong normalization. One says also that

the relation ~, restricted to typed terms, is Noetherian (see page 52).

Theorem 11.3
The above procedure for transforming deductions (1104) -+ (11.5) in the im
plicative fragment of NJ, or, equivalently, the {3-reduction of simply typed A
calculus, has the strong normalization property.

We have seen that there exist A-terms, such as (2 and YF, which are not
normalizable. There is no contradiction, because these terms are not simply
typable. Actually, even Ax. xx is not.

Let us take stock. The untyped A-calculus has the power of Turing machines.
In general one cannot know in advance whether the evaluation of a A-term t

218 Understanding Formal Methods

does or does not terminate. Moreover, it can terminate for some reduction
strategies only, for example, if t encodes a recursive function by the means of
a fixed-point combinator. We also learned that the evaluation of t terminates
in all cases if t is simply typed. We will see that there are yet other strongly
normalizable terms.

11.4 Expressive Power of the Simply Typed ~-calculus

The fact that the simply typed >.-calculus prohibits some terms is, by itself,
quite legitimate. The very purpose of a typing discipline is precisely to detect
irrelevant combinations, such as the application of a function defined over in
tegers to a Boolean value. But what is preserved from the expressive power of
the >.-calculus? Let us consider some of the combinators presented above.

11.4.1 Typing of the Natural Numbers

A possible typing of >.fx. f(f·· . (f x) ...) is
~

n

>'fX-+X.>,xX. f(f ... (fx) ...)
~

n

which has the type (X --* X) --* (X --* X). Any other expression where X is
uniformly substituted for a given proposition <p is also suitable; we will abbre
viate this formula to NIP' It is easy to verify that we can give 0 the type Nx,
S the type N x --* N x, plus and mult the type N x --* N x --* N x .

The exponential function exp ~f >.mn. nm raises a problem. If we give
m and the result the type N x, we are driven to give n the type N x --* N x,
which yields >.mNx. >'nNx-+Nx. nm of type Nx --* (Nx --* Nx) --* Nx, while
one would expect the same type as for plus and multo

Indeed, note that Nx --* Nx is also of the form NIP: it is Nx-+x. However,
it is not very satisfactory to have to consider different formulas for the type of
the natural numbers within the same term.4

We have a more serious issue:5 it is impossible to give a type to a term
as simple as >.n. (exp n n) - which can be simplified to >.n. nn - and, more
generally, to any term in which one would use a variable with different instances
of the same type.

4Note that a similar problem would be raised with other definitions of the addition
and of the multiplication, for example plus ~f Amn. mSn.

5Warning: we consider here one among the possible encodings of the function that
maps n to nn. Other encodings admit a simple type, but they are more complicated.

Type Systems and Constructive Logics 219

11.4.2 Typing of Booleans

A typing of AXY. x is AXX. AyY . x of type X -+ Y -+ X, and a typing of AXY. Y
is AXX. AY Y. Y of type X -+ Y -+ Y. As we want t and f to have the same type,
we are led to take X = Y. The Boolean type is then X -+ X -+ X (abbreviated
to Bx) or any instance of Bx.

Consider a possible expression for the negation: Ab. bft. Assume we give t
and f the type B x, we are led to taking the expression B x -+ B x -+ B x, as the
type of b; this expression is of the form B"" as desired, with cp = Bx. But this
yields BBx -+ Bx as the type of Ab. bft, so we again get a quite unsatisfactory
situation, as with the exponential. We can, however, use another expression for
the negation, which is Ab. AXY. byx, that is, Abx -+x -+x . AXX. AyX. byx, whose
type is Bx -+ Bx as expected. We get a similar problem if we encode disjunc
tion by Abc. btc, whereas Abc. AXY. bx(cxy) has the type Bx -+ Bx -+ Bx·

There is no relationship between the terms t or f and the logical in
~ terpretation of the typing system. The type of Booleans is essentially
an enumerated type with two values, which could quite legitimately be named
aa and bb instead of t and f; the fact that the latter convention is preferred can
be regarded as tradition. It is sometimes convenient to introduce an enumerated
type with, for example, three values. It would be ex ~ X -+ X -+ X -+ X, it
is inhabited by AXX. AyX. AZX. x, AXX. AyX. AZX. y and AXX. AyX. AZX. Z . For
this type one would get a ''three-cases if" control structure.

~ Several types can be given to the same A-term. For example, a pos-
'8 sible typing of Af. AX. x is A/X-+X. AXX. x, that is, 0; another is
A/X. AXX. x, that is, f.

11.4.3 Typing of the Identity Function

The aforementioned problems can readily be observed in a very simple example,
the identity function: AX. x is typable by X -+ X and by every proposition under
the form cp -+ cp • What do we think about the term (AX. x) (AX. x)? Possible
typings are of the form (AX"'-+"'. X) (AX"'. x), which forces us to consider two
different identity functions within the same expression.

11.4.4 Typing of Pairs, Product of Types

It is not difficult to propose a type for the curryfied projections pcl and pc2,
with pcl ~fAXY.X and pc2 ~ AXY. y: just take X -+ Y -+ X and X-+Y -+Y.
However, the implicative fragment of NJ turns out to be insufficient for coping
with pair formation. The typed version of the combinator pair ~fAXYp. Pxy
is of the form:

220 Understanding Formal Methods

The variable p represents here a projection, which means that U must be either
X, or Y. However X and Y are a priori distinct - for example, if we want to
form pairs composed of an integer and of a Boolean.

This drives us to consider a >.-calculus where the formation of pairs and pro
jections are primitive: this is the simply typed >.-calculus with pairs. Its typing
system corresponds to the fragment {~, t\} of N J. Note that, in propositional
logic, t\ cannot be defined using ~ only.

11.4.5 Sum Types

Given two types CT and T, we can form their sum CT + T. Let y be an inhabitant
of CT + T, y comes from an inhabitant u which is either in CT, or in T.

How can we use y? A function from CT + T to <p is obtained by providing a
function f of type CT ~ <p and a function g of type T ~ <po Then one considers a
construction case yf g, designed in such a way that, if u is of type CT, the result
is obtained by applying f to u and if u is of type T, the result is obtained by
applying g to u.

In order to form y, we are given two injections, which are il of type
CT ~ CT + T, and i2 of type T ~ CT + T. We assume that the abstract type sum
satisfies case (it s)f g = f 5 and case (i2 t)f g = gt.

In the untyped >.-calculus, these operations can be represented by

it ~f >.s. >./g. /s ,
i2 ~ >.t. >./g. gt ,
case ~f >'x/g.x/g

Again, it is not possible to give a satisfactory type to these operations.
As for the product, the sum cannot be recovered from ~ only. It cannot be
constructed from ~ and x either; we thus need a further extension.

The strong normalization theorem stated on page 217 can be extended to
the whole NJ calculus; that is, to the simply typed >.-calculus with pairs and
sums.

From the viewpoint of logic, the sum corresponds exactly to the intuition
istic disjunction: ViI corresponds to iI, Vi2 to i2, Ve to case. An inhabitant of
CT + T is either an inhabitant of CT, or an inhabitant of T; similarly, a deduction
of S V T is formed either from a deduction of S, or from a deduction of T.
Moreover, we are able to know which is the right case, depending on whether
ViI or Vi2 was applied: this is typical of the intuitionistic disjunction.

There is, however, a subtle point: if (it 5) is of type CT + T, (>.x. x)(il 5) is
also of type CT + T. There are actually an infinite number of terms of type CT + T

which are not of the form (it 5) or (i2 t). Then, how can we justify that every
inhabitant of CT + T comes from a term of type CT or of type T - and that we
know which one? Precisely because of the strong normalization property, which
entails that every term of type CT + T reduces to a normal term of type CT + T,

and that the latter is necessarily of the form (it 5) or (i2 t).

Type Systems and Constructive Logics 221

Comment. In the set-theoretic interpretation of types, if we denote the inter
pretation of the type cp by Ilcpll, 1I0+TII is a disjoint union {1} x 110"11 U {2} x IITII·
Recall that the union cannot be used in a naive manner because, if 110"11 and
IITII share elements, their origin cannot be distinguished in 110"11 U IITII·

11.4.6 Paradoxical and Fixed-point Combinators

We already mentioned that there is no simple type for the paradoxical combi
nator O. The same is true for fixed-point combinators such as Y. This is more
problematic because they provide a very important expressiveness. In partic
ular they are crucial for simulating a Turing machine. We may add that this
is precisely why functional languages such as ML include a typed fixed-point
constant (syntactically, it is presented in the form of a let ree construct).

11.4.7 Summary

The previous examples illustrate the benefits of simple typing, as well as its
limitations: the constraints of simple typing turn out to make it reject too
many A-terms. The expressive power left with the calculus is insufficient for
the needs of programming, even if primitives for the product and the sum are
introduced. Recursion is not allowed, and iteration itself cannot be employed to
its full extent - remember An. (exp n n). On the other hand, the typing system
considered above is still far from what is needed in specification languages. For
example, all functions mapping an integer to a Boolean are indiscriminately put
in the same category, whereas it would make sense to distinguish the functions
which, say, return "true" if their argument is an even integer less than 100.

These two issues can be attacked by generalizing the typing system, and this
is done in two independent directions. In both cases, this amounts to consider
ing a more powerful constructive logic. A means to greatly increase the number
of typable functions is introducing second-order quantification, over proposi
tional variables. To allow for richness of expression, we gain polymorphism. In
the second direction, introducing first-order variables and related quantifiers
provides a system which includes dependent types, which are interesting for
specification purposes.

Note that, in compensation for its coarseness, simple typing has a feature
of interest to secure prototyping languages: type inference. As indicated by its
name, this mechanism infers the type of an expression or of a program where
minimal or even no typing information is given explicitly.6 The typing system
implemented in functional languages such as ML and Haskell is a kind of simple
typing extended to recursive constructs, in a manner such that type inference
is still possible.

6Type inference relies on the use of a unification algorithm to type expressions.
Unification was already described in Chapter 9: it is one of the main basic tools of
automated proof.

222 Understanding Formal Methods

11.5 Second-Order Typing: System F

The system F was devised by Girard and independently rediscovered by
Reynolds. It is built on a single logical connector, implication, and on second
order quantification. We will see that in the presence of the latter, the other
intuitionistic connectors can be defined.

Let us first illustrate some intuitive ideas behind second-order quantifica
tion, by starting with the following deduction of P -t P:

(X) ,-.....
P

---~.
P -t P. Z(X)

We then deduce 'rf2 P P -t P (in the current section we distinguish second
order from first-order quantification by using 'rf2 in the former case and Y in
the latter). The second-order quantifier can then be eliminated by substituting
an arbitrary proposition for P. This yields, for example:

We can even substitute y2 P P -t P for P, and we get

Now consider the deduction:

(X) .--.-..
...:.Q_-t_P __ Q...:. -te

P
------~.

(Q -t P) -t P z(x)

We can deduce y2 P (Q -t P) -t P, without incident because we still have the
hypothesis Q. In contrast, it would be manifestly incorrect to deduce y2Q (Q-t
P) -t P. For example, [Q := Pj ((Q -t P) -t P) does not hold, even under the
hypothesis Q, which does not intervene. The most simple case of that kind is
the trivial deduction of P under the hypothesis P; we certainly don't want to
deduce y2 P P ! This unprovable proposition actually provides a representation
of the absurd proposition ..1 of NJ. In the light of the preceding remarks, we can
give the introduction and elimination rules of y2 (Figure 11.1), the first rule
being constrained by a proviso: the deduction of cp must make no hypothesis
over P.

Let us consider again the theorem 'rf2 P P -t P. We have seen that the
quantifier carries over the space of all propositions, including y2 P P -t P . We
recognize here the impredicativity previously encountered in set theory. We are
going to employ techniques similar to the ones used in § 7.3.1, for inductively
defining the product, the sum, the natural numbers, trees, etc.; but here we will

Type Systems and Constructive Logics 223

V2P IfJ V~
[p:=.,p]1fJ

In V~ , all undischarged hypotheses must contain
no fiee occurrence of P.

Figure 11.1: Rules of "12 in system F

not be disturbed by a constraint corresponding to the one governing the axiom
of separation. Moreover, the structures constructed here will be polymorphic
right away. The latter feature can already be observed in the previous proof
of y2 P P ~ P. It is time to provide a functional syntax for the manipulation
rules of y2. The introduction of yz will be represented by a A-abstraction which
does not carryover a regular variable, but over a type variable (a propositional
variable). From the proof AXP. x of P ~ P, we then construct AP. AXP. x of
type yz P P ~ P. Define

Idp ~ AP. AXP • x ,

AXP. x is the identity function over P, while Idp is the polymorphic identity
function which may be applied to an inhabitant h of any type H ... after P has
been explicitly instantiated by means of y~ , that is, in a functional syntax,
by means of a "second-order application": (AP. AXP. x)Hh, which successively
reduces to (AxH. x)h, then to h. Impredicativity appears when we take for h
the polymorphic function identity itself:

Idp (y2 P P ~ P) Idp
def

Idp
def

The remainder of this section provides some hints on the expressive capacity
of system F.

11.5.1 Typing of Regular Structures

The natural numbers, the Booleans, and the other data structures
admit a satisfactory typing if we combine the simple typings previ

ously proposed with suitable quantifications. Let us quickly inspect them. The

224 Understanding Formal Methods

type of integers is:

N ~f 'liP X (X -t X) -t (X -t X)

Any inhabitant of N can be regarded as a polymorphic iterator which, given a
type T, a function f from T to T and an inhabitant x of T, is able to compute
f(.. . (x) ...). The exponential function can be typed as follows:

AmN. AnN. AX. n(X -t X)(mX) : N -t N -t N .

As a consequence, the function which maps n to nn, that is An. nn, gets a
suitable typing.

The type of Booleans is:

B ~f V2X X-tX-tX

The constants t and f are respectively typed in the following manner:

and

The two versions of the negation are typable in F, including Ab. bft:

AbE. b (B-tB-tB) ft .

The initial version of or can be typed by following a similar approach.

In order to represent pairs, we first examine the problem from a
logical perspective: how can we represent the conjunction by means

of '12 and of -t? The intuitive idea can be explained from the impredicative
definitions we have seen in § 7.3.1. The intersection of a and {3 could have been
impredicatively defined as the smallest superset of a and {3:

e contains a n (3

{x IVe (Vy yEa 1\ y" E (3 -t y E e) -t x E e } , , ..
x is in any superset of a n (3

But P 1\ Q -t R can also be written without" 1\": P -t Q -t R, hence:

an {3 ~f {x I 'Ie (Vy yEa -t y E (3 -t y E e) -t x E e} ,

that is:

x E a n {3 iff 'Ie (Vy yEa -t y E (3 -t Y E e) -t x E e . (11.8)

If we consider that x E P means "x allows us to prove P", or just "I know how
to prove P", (11.8) can read: "I know how to prove A 1\ B if and only if I know
how to prove every consequence of A and of B", which can be represented in
second-order logic as follows: 7

7It is not a completely rigorous justification of (11.9). But we can see an analogy
between impredicative constructions in set theory and in type theory.

Type Systems and Constructive Logics 225

A 1\ B d~f \j2 X (A ~ B ~ X) ~ X , (11.9)

At the functional level, we then have a guideline for building (a, b) from aA and
from bB: (a, b) is of the form AX. >'fA-+B-+X. e, where e is an inhabitant of X
built on a, b and f: the only possibility is fab, which yields

(a, b) ~ AX. >'fA-+B-+X. fab .

The projections are inhabitants of A 1\ B ~ A and of A 1\ B ~ B. Let c be 'a
variable of type A 1\ B, c can be specialized as a function to A by an application
to A, since cA is of type (A ~ B ~ A) ~ A. We still have to find a function of
type A ~ B ~ A, we naturally consider the curryfied projection >.xA. >.yB. x.
With a similar reasoning about the second projection, we get:

prl ~f >.CAAB. cA(>.xA. >.yB. x) and
pr2 ~ >.CAAB. cB(>.xA. >.yB. y) .

We still have to check that prl(a, b) 4 a and pr2(a, b) 4 b, but this was pre
viously done, since removing types provides exactly the definitions of untyped
>.-calculus. This example illustrates the help provided by types for designing a
program (in >.-calculus here).

The sum of types is designed along the same lines, only the steps are
given here:

e contains a U fJ

x is in any superset of a U fJ
= {x I '<Ie ('<Iy yEa ~ y E e) ~

('<Iy y E (3 -+ Y E e) ~ x E e} ,

which means "I know how to prove A V B if and only if 1 know how to prove
any X which is both a consequence of A and a consequence of B":

A V B ~f '<12 X (A ~ X) ~ (B ~ X) ~ X ,

i1 a ~fAX. >.fA-+X. >.gB-+X. fa

i2 b ~ AX. >.fA-+X. >.gB-+X. gb

case ~f AT. >.sAVB. >.fA-+T. >.gB-+T. sTfg .

11.5.2 Systematic Construction of Types

for a : A ,

for b : B ,

The scope of the method explained in the previous subsection goes
far beyond propositional connectors: it can be generalized to induc

tive definitions such as the natural numbers (one recovers the representation

226 Understanding Formal Methods

of Church), all kind of trees, the (polymorphic) lists, etc. In this way, one
can represent all sets of closed terms obtained by the means of a finite set of
constructors, which are employed in algebraic specification.8

The reciepe consists of starting with the curryfied signature of each
constructor, in which the desired type is systematically replaced with the vari
able X, where X has previously been universally quantified. If this type is made
up ofn constructors, having 0"1, ••• O"n as their respective signatures, we repre
sent it by y2 X 0"1 -+ ... 0" n -+ X. For example, the two constructors of A V Bare
il of type A -+ A V B and i2 of type B -+ A VB, which yields 0"1 = A -+ X and
0"2 = B -+ Xj A V B is then represented by y2 X (A -+ X) -+ (B -+ X) -+ X.
For a little variety, let us consider binary trees, as defined by

leaf int -+ tree
bin : tree x tree -+ tree

Here we represent the integers by N. After curryfication and replacement with
X, the constructor signatures become N -+ X and X -+ X -+ X, which yields
for tree:

y2 X (N -+ X) -+ (X -+ X -+ X) -+ X .

This idea goes far beyond regular algebraic data types, because we
may introduce constructors having more complex types. For example,

here is a type of trees where each node may possess 0, 1, or an infinite number
of children:

init arbi
next arbi -+ arbi
lim (int -+ arbi) -+ arbi.

It is represented in system F by

y2 X X -+ (X -+ X) -+ «N -+ X) -+ X) -+ X

This structure provides a representation of ordinal numbers, where ini t is
interpreted by 0, next is interpreted by the successor function and lim is in
terpreted by the formation of a limit ordinal number. This gives some idea of
the expressive abilities of system F.

11.5.3 Expressive Power and Consistency of System F

System F includes an extremely rich class of functions. The following theorem
states that almost all functions we need in practice can be represented in F.9

8See the concept of an initial algebra on page 88.
9However, there is a restriction: system F does not always provide a type for the

most efficient algorithm which computes a given function. Here the term "function"
takes its set-theoretical meaning - something uncommon in this chapter.

Type Systems and Constructive Logics 227

Theorem 11.4
Any total function whose termination can be proved by means of regular math
ematics10 can be represented in system F.

It is then quite remarkable that the strong normalization property of the simply
typed A-calculus still holds.

Theorem 11.5
The fJ-reduction is strongly normalizing in system F.

This means that the termination of computations is decidable (ensured, in
fact) as soon as typing is checked. This property has a good consequence: it
guarantees that system F is free of logical paradoxes (such problems may have
been caused by the impredicativity of the system). Note that, the expressive
power of system F does not come from recursion (in the sense of computer
science): fixed-point combinators cannot be represented.

11.6 Dependent Types

11.6.1 Introduction of First-order Variables

The interpretation of Heyting allows one to distinguish the (many) proofs of a
given formula. For example, the most simple proofs of N -+ B are AnN. t and
AnN. f; but we can find many others: .

AnN. "if n = 0 then t else f" ,
AnN. "if n is even then t else f" ,
etc.

From the viewpoint of specification, only the domain (N) and the co-domain
(B) of these functions are specified, but we would like to go further: stating
a relation between the result and the argument. To provide an analogy with
abstract data types, system F declares only the signatures - however, we have
a new feature with relation to algebraic data types: higher-order signatures are
allowed here.

In order to tackle this problem, we take predicates instead of propositions.
For example, in the case of natural integers, we introduce the symbols S and
o in the logical language, and N becomes a I-argument predicate. The idea
is that N(x) is provable if x is obtained by successive applications of S to O.
Intuitively, N(x) represents x E N. Let us write the expected induction schema,
where the induction step comes first;ll here, X is a unary predicate variable:

laThe precise meaning of this phrase should be explained but this is beyond the
scope of this chapter. A precise statement can be found in [GLT89].

11 We could also consider the base case first; the integer n will then be represented
by AX/. f(f··· (f x) ...) instead of >.ix. f(f··· (f x)·· .). Of course, all operations

" ---n n
defined over the natural numbers have to be rewritten accordingly.

228 Understanding Formal Methods

'<;2 X (Yx Xx --+ X(SX)) --+ Xo --+ \:In N(n) --+ Xn .

The quantification over n can also be written at the beginning of the formula,
which yields:

\:In N(n) --+ \:12 X (Yx Xx --+ X(Sx)) --+ XO --+ Xn

Formally, we will actually define N by:

N(n) ~f y2 X (Yx Xx --+ X(Sx)) --+ XO --+ Xn (11.10)

Note that, if we remove first-order information, we recover the definition given
in system F:

N ~f y2 X (X --+ X) --+ X --+ X

The system we just sketched was introduced by Krivine under the name
second-order functional arithmetic (AF2) [Kri93]. The class of functions,
which can be described in it, is the same as in system F; but typing provides a
real specification language.

The previous type expressions may seem somewhat mysterious at first sight,
but looking at them as Prolog programs may help. From this perspective, one
should ignore issues related to the special resolution strategy of Prolog, and
concentrate on the proof trees that could be constructed using a fair strategy.
The Prolog program corresponding to the type of the integers in system F would
be

nat: - nat.
nat.

The Prolog program corresponding to the type of the integers in AF2 would be

nat(S(x)):- nat(x).
nat(O).

11.6.2 SUInS and Products

11.6.2.1 Products of Sets. Until now, we considered the product S x T or
the sum S + T - also denoted, respectively, by S 1\ T and S V T, thanks to the
Curry-Howard correspondence - of two types. In mathematics, these concepts
can be generalized to the product, and to the sum, of a family of sets (Ti)
indexed by a set [.

For the sake of simplicity, let us first take for [an interval of integers of the
form [l..n]. The elements of the product lliEI Ti are the tuples (Xl, ... , xn)
where, for all i from [, we have Xi E T i . In the case where all Ti are identical,
we can write Ti = T, then we can view the tuples (Xl, ... , Xn) as functions
from [l..n] to T. For example, there is a natural bijection between TxT and
{I, 2} --+ T.

Type Systems and Constructive Logics 229

More generally, for an arbitrary I, DiE! T is defined as the set of mappings
from I to T, which is commonly denoted by I -t T.

In conclusion, I -t T is a kind of product.
In the general case, where Ti are distinct sets, DiE! Ti is termed a depen

dent product. It is seen as a function, whose domain is I, and whose co-domain
Ti depends on the element to which it is applied.12 The following notation is
often used:

II T(i)
iE!

The product R x S is a simple example of a dependent product, it is:

II T(i) with T(l) = Rand T(2) = S
iE{1,2}

Examples:

- In communication protocols, it is not uncommon that, in a message, the type
of a field depends on a value, or on a combination of values, which come from
a previous field.

- In the example of a calendar, which was mentioned at the beginning of the
previous chapter, suppose that we would like to select a day in each month
of the year 2002. This will be represented by a 12-tuple, that is, at a first
approximation, a member of [1, 12)-t [1,31). But, for a more accurate spec
ification, we would consider it as a member of the dependent product:

II month(i),
iE[1..12]

{
month(l) = [1,31)'

with month(2) = [1,28) ,
etc.

11.6.2.2 Sum of Sets. In a similar manner, LiE! T(i) is composed of pairs
(i, month(i») whose first element i is taken from [1,12) and the second element
is taken from month(i). This is a dependent sum. In this case, it represents the
type of the dates of a non-leap year.

11.6.2.3 Products and Sums of Types. The previous constructs over sets
can be translated into constructs over proof spaces. We know that providing a
proof of Tl /\ T2 amounts to providing a proof of Tl and a proof of T2 •

By generalizing this remark, providing a proof of Vi T(i) amounts to pro
viding a proof of T(i) for each i: this corresponds to the dependent product
11 T(i).

Finally, providing an intuitionistic proof of 3i T(i) amounts to providing
an i and a proof of T(i), that is, an inhabitant of Li T(i).

When a type is represented by a formula which contains parameters, it is
termed a dependent type, because the type of the result of a function, which
inhabits such a type, depends on the value of its argument.

12In order to recover the common concept of a set-theoretic function, one has to
build its co-domain: it is the union of all Ti.

230 Understanding Formal Methods

11.6.3 Specification Based on Dependent Types

A function to be implemented can be specified using dependent types, in a
formula such as:

\;fx:E P(x) -+ 3y:S Q(x,y) , (11.11)

where E is the type of the input argument, S is the type of the output, P is a
precondition and Q is a post condition. Intuitively, the above formula tells us
that, for all x from E satisfying P, there exists a y from S such that Q(x,y)
is satisfied. A constructive proof of (11.11) forces us to make the witness y
explicit, or more precisely to make it explicit how y can be computed from x
(in classical logic, we could content ourselves with proving that, if all y satisfy
-,Py, a contradiction can be derived).

After closer examination, an inhabitant c.p oftype (11.11) is a function which
takes, first, an inhabitant x from E and then, an inhabitant from - a proof of
- Px, and which returns a pair (y, q) such that y inhabits Sand q inhabits
Q(x, y). This is then more complicated an object than a function from E to S.
Nevertheless, it is possible to extract from c.p a function f of type E -+ S such
that:

\;fx:E P(x) -+ Q(x, f(x)) (11.12)

This operation is termed program extraction or program synthesis. It is im
plemented in several software tools such as Nuprl and Coq; we will return to
this idea in Chapter 12.

11.7 Example: Defining Temporal Logic

In order to illustrate the expressive power of the notions presented in the pre
vious sections, we formalize here the definition of CTL * given in § 8.5.

We assume that we are in an environment which includes a type
state for the states and a type nat for the natural integers. We

define traj, the type of trajectories, and suff, the function which computes
the kth suffix.

traj ~f nat -+ state

For the sake of clarity, we distinguish various kind of predicates by giving them
a type: Pstate, for the predicates over states, and Ptraj, for the predicates over
trajectories. They are defined from the type of propositions, which is denoted
by Prop (as in the next chapter).

Pstate ~f state -+ Prop Ptraj ~f traj -+ Prop

Then we formalize the start operator 8 and logical connectors. Here, we give
only the conjunction andst over state predicates, the conjunction andtr over

Type Systems and Constructive Logics 231

trajectory predicates, and the universal quantification forallst over state
predicates.

a ~f ApPstate. Aatraj. P(aO)

andst ~f ApPstats. AQPstats. Asstats. Ps 1\ Qs

forallst ~ ApA--+Pstate. Asstate. '<Ia A Pas

andtr ~f A<pPtraj. A1/;ptraj. Aatraj. <pa 1\ 1/;a

Finally, we have the temporal and the branching operators.

x ~ A<pPtraj. Aatraj. <p(suff 1 a)

F ~ A<pPtraj. Aatraj. 3nnat <p(suff n a)

G ~f A<pPtraj. Aatraj. '<Innat <p(suff n a)

W ~f A<pPtraj. A1/;ptraj. Aatraj.

'<Innat ('<Iinat i ~ n -t ...,1/;(suff i a)) -t <p(suff n a)
U ~f A<pptraj. A1/;ptraj. Aatraj.

3nnat 1/;(suff n a) 1\ ('<Iinat i <n -t <p(suff i a))

E ~f A<pPtraj. Asstate. 3atraj a(O) = s 1\ <pa

A ~f A<pPtra j . Asstats. '<Iatraj a(O) = s -t <pa

11.8 Towards Linear Logic

Recall that, in sequent calculus, intuitionistic logic appears as a re
striction of classical logic, where the right-hand side of sequents can

be made up of at most one formula. As an important consequence, the use of
the contraction rule is prohibited on the right, and the use of the weakening
rule is drastically limited. After a deep analysis of this fact, based on seman
tical considerations, Girard came to consider a logic where a fine-grain control
over the space of hypotheses and conclusions, regarded as resources, is specified
by special logical operators [Gir87a]. Typically, regular implication is decom
posed into a new kind of implication, which is denoted by -0 and is termed
linear implication, and whose inhabitants are functions which "consume" their
argument, and a cloning operator for keeping this argument in memory. Two
versions of the conjunction and of the disjunction are distinguished: a multi
plicative and an additive version. For example, the multiplicative conjunction
can be interpreted as the juxtaposition of resources, while the additive con
junction can be interpreted as their superposition. An interesting property of
the multiplicative fragment is that, in the corresponding calculus on proofs
(according to the Curry-Howard correspondence) transitions can be performed
in parallel without synchronization problems.

232 Understanding Formal Methods

The new constructive logic thus obtained is termed the linear logic
(not to be confused with the linear temporal logic considered in Chapter 8). In
the same vein, let us mention interaction nets [Laf90], an elegant paradigm for
parallel computations over graphs, which is based on linear logic.

11.9 Notes and Suggestions for Further Reading

Reference works on the A-calculus are [Bar84] and [HS86]. An algorithmic for
mulation, interesting for computer scientists and practitioners, is presented by
Gerard Huet in [Hue92].

The book [Hue90] edited by Huet contains fundamental chapters on type
theory. Chapter 2 of [AGM92b], by Barendregt, presents several type systems
for the A-calculus in a uniform and synthetic manner (see also Chapter 16 in
[Hue90)). One may also consider the papers of Mitchell in [vL90b]. The book
[Th091] contains a thorough and progressive introduction to type theory. It
is based on a predicative version of type theory, due to Martin-Lof, which is
particularly influential [ML84].

The relationship between typing, natural deduction and sequent calculus are
handled in [GLT89] and [GaI93]. Interesting hints are also given by Coquand
in [Hue92, ch. 17].

Reference books on intuitionistic logic and, more generally, constructive
mathematics, are [DumOO] and [TvD88].

12 . Using Type Theory

Et, comme la multitude des lois fournit souvent des excuses aux vices, en
sorte qu 'un Stat est bien mieux regie lorsque, n'en ayant que fort peu, elles
y sont fort etroitement observees ; ainsi, au lieu de ce grand nombre de pre
ceptes dont la logique est composee, je crus que j'aurais assez des quatre
suivants, pourvu que je prisse une ferme et constante resolution de ne man
quer pas une seule fois Ii les observer.!

R. DESCARTES, discours de la methode, II.

In the table example, we would like to consider the search criterion P as a
parameter. This is not possible in the framework of a formal method based on
first-order logic, at least not in a satisfactory manner:

- P may be encoded in the form of a set, but in the framework of B, for
example, only certain finite sets are allowed;

- Z is more flexible, but no straightforward mechanism is provided for deriving
a program from the specification;

- the axiom for search, in the algebraic specification of Chapter 10 is actually
a schema of axioms; we then have to write down an instance of this schema
for every property of interest.

Furthermore, the proposed expedients hardly survive if one wants to tackle
arbitrary situations, for example if P is an argument to be discovered only at
call time, or if P is given by an algorithm instead of a data structure, or else
when we consider several-level search processes in complex overlapping tables.

If we take a predicate P as an object which may vary, or be manipulated
as an argument of a function or of a predicate, we are working in higher-order
logic. The version of higher-order logic we will employ in this chapter is the
calculus of inductive constructions. This is a very powerful logic, well-adapted
to specifying and reasoning about programs. Interactive and reliable tools, such
as Coq and Lego, are available for aiding the development of specifications and
proofs.

1 And as a multitude of laws often only hampers justice, so that a state is best
governed when, with few laws, these are rigidly administered; in like manner, in
stead of the great number of precepts of which logic is composed, I believed that the
four following would prove perfectly sufficient for me, provided I took the firm and
unwavering resolution never in a single instance to fail in observing them.

J.-F. Monin et al. (eds.), Understanding Formal Methods
© Springer-Verlag London 2003

234 Understanding Formal Methods

12.1 The Calculus of Inductive Constructions

We start with a pragmatic presentation of the logic, then we will indicate how
it is related to type theory as introduced in the previous chapter.

12.1.1 Basic Concepts

The calculus of constructions includes the ordinary logical operators 1\, V, --, and
the implication denoted -to Quantifications are typed. Thus, a property which
holds true for every natural integer is expressed by Vn:nat Pn. (Comment on
the notation: as in the A-calculus, we henceforth omit parentheses for function
application whenever possible. For example, Vn : nat P n would be denoted
Vn:nat pen) in standard mathematical notation.)

The notational confusion between a proposition P -t Q and function space
P-tQ is intentional: according to the Curry-Howard correspondence (§ 11.3.4),
a proof of P -t Q can be interpreted as a total function which computes a proof
of Q from a proof of P.

Propositions themselves have a type named Prop. For example, the predi
cates over natural integers have the type nat -t Prop. We can express that, for
any given proposition P, P implies P, by the formula VP: Prop P -t P. Let
us point out that P is quantified here: this would be impossible in first-order
logic.

The data types such as nat themselves have a type named Set. Thus we
can build up functions whose type depends on the first argument. The most
simple example is the identity function, which is defined (without types) by
Idx = x. Its behavior is the same, independently from the type of x, which
could be an integer, a Boolean, or even a function itself. It is assigned the type
VX:Set X -tX. The typed version of Id is then Id(X:Set; x:X) = x. For
example, Id could take nat as its first argument, then 3, and its result is then
3. We can also consider the expression Idnat, and take it as the definition of
Idn. Idn is then the specialization of Id to natural integers.

Similarly, data structures can be parameterized by a data type. The clas
sical example is lists: given an arbitrary type X, list X is the type of lists of
elements from X; list then has the type Set -t Set, its constructors are nil,
of type V X: Set list X, and cons, of type V X: Set X -t list X -t list X.

The expression Al -t Az -t ... An -t B denotes the type of a function
_{0~ which has n arguments of types AI ... An, respectively, and which
returns a result of type B. Similarly, on the side of propositions, we have seen,
in the equation (3.11) on page 47, that P -t Q -t R, which means "if I have P,
then if I have Q, then I have R" can replace P 1\ Q -t R.

A type such as nat -t nat is still of type Set. This allows us to form,
for example, lists of functions over integers. Thus, we can legitimately

apply Id to nat -t nat. For example, Id (nat -t nat) Idn returns Idn. We can
even apply Id to itself as follows: Id (V X: Set X -t X) Id, and this expression
reduces to Id.

Using Type Theory 235

12.1.2 Inductive Types

The calculus of inductive constructions also includes a mechanism for defining
data types from constructors, as in algebraic data types. The integers, the
Booleans, and the lists are defined in this way. However, as we can use higher
order features, we have polymorphic lists from the outset, (also termed "generic"
lists, in the terminology of programming languages such as Ada).

The inductive types that we will use in the table example are specializatiofls
of very general inductive types, which we present in an informal manner for the
moment (we will give the formal definitions in § 12.2.8). The first is {x : SIP x}
where S is of type Set and P is of type S ~ Prop. As is suggested by the
notation, this type plays the role of the set of elements x from S which satisfy
Px.

However, the reader must be aware that {x : SIP x} does not denote
~ exactly the same thing in set theory and in type theory. Here, the
inhabitants of {x: S I Px} are the pairs (x,p) where p is a proof of Px. We
will see, in § 12.3.4, how the logical part p can be removed.

The sum of two data types is yet another general inductive type. The most
common form is:

A+B, with A, B: Set. (12.1)

The elements of type A + B are elements of type either A, or B, together with
a piece of information for indicating their origin.

The following construct uses two propositions:

{P} + {Q}, with P, Q : Prop. (12.2)

There are two kinds of inhabitants from this type, the first tells us that P
is true and the second tells us that Q is true. As we use a constructive logic
here, this means that we can effectively compute whether P or Q is satisfied.
In the case where Q is the negation of P, this type can also be regarded as an
enriched version of bool: an inhabitant of {P} + {-,P} yields the truth value
of P; providing such an element simply amounts to saying that P is decidable
(in our example, on page 16, we employed the term P is defined.)

The last construct we will use is a kind of mixture of the two previous ones.
Its elements are either inhabitants of A which satisfy the predicate P, or an
indication that Q is true:

{x:A I Px} + {Q}, with A:Set, P:A ~ Prop et Q:Prop. (12.3)

This construct is an enriched version of the option type of Ml.

12.1.3 The Table Example

12.1.3.1 Specification. We are given an arbitrary universe U oftype Set and
an arbitrary predicate P over U. The table is represented by its characteristic

236 Understanding Formal Methods

predicate Ptable. We first state the precondition: P is defined for all elements
from the table. To this end we write, using (12.2) - the identifiers inside the
square brackets U, Ptable and P, are simply the parameters of the function
def_tbl:

def _ tbl[U: Set; Ptable, P: U -+ Prop] ~f
Vx:U Ptablex -+ {Px} + {..,Px} .

The expression on the right-hand side can also be interpreted as the type of a
total function which, for every x which satisfies Ptable, returns the truth value
of P x. This expresses the idea of a ''table where every element can be tested".
If we consider § 12.3.4, an inhabitant D of type def_tbl could simply be an
array of Booleans which represent truth values of P. But a Boolean function
defined over an infinite domain would do the job just as well. The specification
written above assumes nothing about the future realization of D.

Let us consider the type of the result. It should be either an element from
the table verifying P, or an indication that there is no such element. Its type
is defined using (12.3):

resu_ tbl[U: Set; Ptable, P: U -+ Prop] ~f
{x:U I Ptablex 1\ Px} + {Vx:U Ptablex -+..,p x}

12.1.3.2 Specialization to an Array. With the aim of developing a pro
gram, we consider the case where U is the type of the natural integers and
where Ptable characterizes an interval of integers. P is left free. The considered
interval is defined by its two bounds p and q, which are also considered as pa
rameters, for which we assume that p ~ q. This context is concretely declared
in the following manner:

Variable P: nat -+ Prop .
Variable p, q: nat .
Hypothesis lepq: p ~ q .

Now we just have to apply def_tbl and resu_tbl to nat and to Pinterv, once
the latter is defined:

between[a, b, c:nat] d~f a ~ b 1\ b < c .
Pinterv[x:nat] ~f betweenpxq .

def_tbl_int ~f def_tblnat Pinterv P
resu_ tbl_int ~f resu_ tbl nat Pinterv P

The definition chosen for betweenpx q corresponds to the interval [p .. q[that
we used in Chapter 2.

12.1.3.3 Specialization to a List. We can also specialize the general speci
fication above to the search for an element in a list. We don't need to specialize
U: the table will be represented by a list of elements from U and we will assume
that P is defined for all elements of this list. Formally, we first stipulate that a
list contains u if, and only if, it is of the form cons u l, or of the form cons v l,
where u is in I.

Using Type Theory 237

Inducti ve contains: list -t U -t Prop ~
contains_head : Vl: list Vu: U contains(cons u l) u

I contains_queue :
Vl: list Vu, v: U contains l u -t contains(cons v 1) u.

We then consider a given list l, and we write the definition of Ptablist in order
to state the desired specification.

Variable l: list .
Ptablist[u: UJ ~f contains l u
def _ tbl_lis ~f def _ tbl U Ptablist P
resu_tbl_lis ~ resu_tbl U Ptablist P

12.2 More on Type Theory

The calculus of inductive constructions is obtained from system F, introduced
in Chapter 11, using three independent extensions that we consider in turn:

- introduction of an additional type level on top of propositions;
- introduction of predicates and of dependent types;
- introduction of inductive types,

This system allows one to represent a strict superset of the functions rep
resentable in system F, while preserving the strong normalization property.

12.2.1 System Fw

We introduced the symbol Prop for representing the type of propositions. A
type quantified using second-order quantification, denoted V2 X r.p in Chapter 11,
is henceforth denoted V X : Prop r.p; similarly, AX. r.p becomes AX : Prop. r.p • For
example, the formula expressing that P implies P, for any proposition P, is
V P: Prop P -t P. It is inhabited by the polymorphic identity AP: Prop. AX : P. x.

This provides a more uniform syntax, but the main point is that we are
now allowed to consider expressions such as Prop -t Prop -t Prop - the type
of logical connectors - and even quantifications over connectors.

Vc: (Prop -t Prop -t Prop) r.p

Thus, from now on, we can define the logical connectors as functions, using a
A-term. For example, for /\, we adapt (11.9):

and ~f AA: Prop. AB: Prop. V X: Prop (A -t B -t X) -t X (12.4)

In system F, we could only represent A /\ B for given A and B.

238 Understanding Formal Methods

P -+ Q is actually only a simplified notation for Vx:P Q, that we
use when Q does not depend on P. Indeed, we have seen, in § 11.6.2,

that the regular product is a particular case of a dependent product. This still
holds if we take Prop instead of P. The only primitive logical operation is then
the universal quantification.

As in P: Prop, we can construct other inhabitants of Prop, such as
P -+ P. We have to give a type to expressions such as Prop, Prop.-+ Prop,
etc. This type is named Type. The process continues with a hierarchy of types
Typel , Type2 , and so on. The important point is that polymorphism is not
allowed within Type and beyond, because this would leave room for paradoxes.

12.2.2 The Calculus of Pure Constructions

We have seen how to define data types in system F, such as N, the natural
integers, or B, the Booleans. We then have three levels: objects from the bottom
level, such as 0 or S, inhabit objects from the second level, such as N or N -+ N,
which themselves inhabit an object of the third level, Prop.

The calculus of constructions authorizes products such as N -+ Prop, which
are simply predicates over the integers. If P is of type N -+ Prop, the formula
Vn:N Pn expresses that this property is verified for every integer.

12.2.3 Inductive Definitions

There is another way of introducing objects such as the natural integers, the
Booleans, binary trees and the like: using an inductive definition, which con
sists of an exhaustive enumeration of the constructors of the type to be defined,
together with their respective signatures. For example, here is the definition of
bool and of nat:

Inductive bool: Set:= true: bool false: bool.

Inductive nat: Set:= 0: nat S: nat -+ nat.

Note that bool and nat have the type Set instead of Prop. We can ignore
the difference between Set and Prop at the moment. Distinguishing them will
become important later, in the context of program extraction, for separating
data structures from proofs. In the following example, which defines binary
trees, we have a two-argument constructor:

Inductive tree: Set:=
leaf: nat -+ tree I bin: tree -+ tree -+ tree.

Thanks to inductive definitions, not only does the representation of data struc
tures become clearer, but we gain automatically generated induction principles,
which are essential for reasoning about objects or programs. We will come back
to them in § 12.2.6. The definitions inspired from system F keep their interest
as control structures. For example, an inhabitant of N is an iterator which
applies a function to an argument for a given number of times.

Using Type Theory 239

12.2.4 Inductive Dependent Types

In the calculus of inductive constructions, we can also define predicates in an
inductive manner. For example, here is a definition of the predicate which states
that a given natural integer is even:

Inductive even: nat -+ Prop:=
pO: even 0

I p2: Vn:nat evenn -+ even(n + 2).

The assertion pO stipulates that 0 is even, the assertion p2 stipulates that for
any integer n, if n is even, then n + 2 is even; finally, an integer is even only if
this can be proved using pO and p2 only - similarly, the definition of nat says
that any integer can be constructed with 0 and S only.

A proof of even n, where n is non-zero, can be given in the form p2 k P
where p is a proof of even k. For example, the tree

p2
/"-,.

2 p2
~

o pO

which represents the term p2 2 (p2 0 pO), is a proof of ~ven4. Let us observe
that, in p2 k p, the type of the component p depends on the value of the previous
component k.

A Prolog definition of even would be composed of clauses similar
to pO and p2, but here we can write n + 2 instead of S(Sn). The

next definition of even, called even1 below, does not correspond to a Prolog
program.

12.2.5 Primitive Recursive Functions

In order to define a function such as the addition, one indicates how to construct
the result by means of a case analysis on the possible constructors of nat, which
are S and O. More precisely, one expresses that m + 0 evaluates to m, and that
m + S n evaluates to S(m + n). A possible syntax in Coq is (replacing, following
common notation, plusab with a + b):

Fixpoint plus [m, n : nat]
Cases n of

o => m

: nat:=

I Sn => S(m + n) end.

An expression such as SO + SO is then an unreduced form of s(s 0). Similarly
2, viewed as a constant function without arguments, is an unreduced form of
S(S 0).

We can define in the same way functions over binary trees, by exhausting
the possible cases. This is sometimes called structural induction. For example,
here is a definition of the sum of the leaves of a tree:

240 Understanding Formal Methods

Fixpoint sumlf [a : tree]
Cases a of

::::} n

nat:=

leafn
bingd ::::} sumlf 9 + sumlf d end.

In the case of integers, we can then define the primitive recursive
functions which were introduced in § 3.7.1. The system presented

here then includes a generalization of primitive recursive functions to arbitrary
inductive types. FUrthermore, even in the case of the integers, we actually have
much more than primitive recursion: we have a large class of total recursive
functions (totality is automatically ensured by the theorem of strong normal
ization). The large size of this class comes partly from the higher-order features
of the calculus. For example, we saw in § 3.7.1 that the Ackermann function is
not primitive recursive in the ordinary sense, but after curryfication it becomes
so.

12.2.6 Reasoning by Generalized Induction

Here is another definition of the property, for a natural integer, to be even:

Inductive even1: nat -+ Prop:=
p1: V'n:nat even1(n + n).

How can we ensure that the two definitions even and even1 are equivalent?
Each inductive definition is automatically associated to an elimination rule,
which allows one to reason by cases on an object which inhabits an inductive
type. In the simple case of an enumerated type, such as bool, the rule simply
states that, in order to prove Pb for any Boolean b, it is sufficient to prove
Ptrue and Pfalse.

In the case of a "recursive" type such as nat, the rule states that, in order
to prove P n for any natural number n, it is sufficient to prove PO and to prove
that, if Pm, then P (8m): this is a formalization of reasoning by induction,
expressed here by one axiom, and not by a schema as we did in § 5.3.2.

V'P:nat-+Prop PO -+ [Ym:nat Pm -+ P(8m)] -+ V'n:nat Pn.

For example, let us consider a proof of even1 n -+ even n. Reasoning di
rectly by induction over n is not a very good idea, because if n is even,
then 8 n is odd. However, the hypothesis even1 n entails that n has the form
m+m (which is formally expressed by an elimination on even1). We then
reason by induction over m, which amounts to proving that even(O+O) and
even(k+k) -+ even(8 k + 8 k), which is trivial by applying, respectively, pO and
p2, and then using very simple arithmetic facts.

Another complete example of a proof by induction was previously presented
in § 9.2.2.2.

Using Type Theory 241

12.2.7 Induction Over a Dependent Type

For the same reason as in the previous subsection, it is neither easy,
nor natural, to prove the formula even n -+ even1 n by induction over

n. Intuitively, we would like to count the number of occurrences of p2, m, in
a proof of even n, to construct p1 m and to verify that the latter is of type
even1 n. Formally, we employ the elimination rule associated with even, which
amounts to examining the different means of constructing a proof of even n.
Two cases are possible:

- either this proof is pO and, in this case, n is 0: we can take p1 0;
- or, the proof is of the form p2 k p where p is a proof of even k

and, in this case, n is k + 2; by the induction hypothesis we have
a proof of even1 k, which means that k is of the form m+m (here,
an elimination of even1 is used); we can take p1(S m), since we have
m + m + 2 = (m+1) + (m+1).

This reasoning needs some care. In such situations, using a software-based proof
assistant turns out very helpful. The main lesson we can draw is that common
induction over the natural integers is an elimination rule among many others,
and that it is often worthwhile to use an induction principle over types which
are more complex than nat, such as even in the previous example.

Reasoning by induction proceeds by examining the different means
~ of producing the eliminated object. But one always limits oneself to
considering that this object is built using only constructors. For example, in
an induction over a natural integer, one only considers the case where it is
zero and the case where it is the successor of an integer. However, the integer
under examination may well be presented in a different form, using multipli
cations or one of the many other possibilities. Similarly, a proof of even n,
when n is non-zero, is not necessarily of the form p2 k p from the outset: an
other possibility is th n p', where p' is a proof of even1 nand th a proof of
'<Ix : nat even1 x -+ evenx.

Confining the exploration to constructors is sufficient, because every
expression necessarily reduces to the form of a combination of constructors
(when no free variable is left). Termination (normalization) properties of the
calculus play an essential role there.

In passing, the above discussion illustrates the importance of the
~ computational contents of proofs - the third part of the Curry
Howard correspondence: the argument given above for proving even n-+even1 n
relies on the fact that a proof of even n is eventually (after a number of com
putation steps) of the form p2 k p.

12.2.8 General Purpose Inductive Types

We provide the formal definition of the general-purpose inductive types, that
we used in § 12.1.3, for the example of the search for an element in a table.

242 Understanding Formal Methods

12.2.8.1 Type of Existence. We assume that a type S is given, together
with a property P over the elements of S, and one wants to construct the type
sig of pairs composed of an element x from S and of a proof p of P x - such
a pair can be constructed only if x verifies P. We denote suchthatxp such a
pair, that is, we name suchthat the corresponding constructor. The type sig
is parameterized by S and P, we employ the following notation:

Inductive sig [S:Setj P:S ~ Prop): Set:=
suchthat: "tx:S Px ~ sigS P.

As we have two parameters Sand P, suchthat actually constructs a 4-tuple
instead of a pair, which is suchthat(S, P, x,p) where the types of P and of x
depend on the value of S and where the type of p depends on the values of P
and of x.

The type sig plays a role similar to a definition by comprehension in set
theory. For this reason one uses the notation {x:S I Px} instead of sigS P.
For example, the type of even integers can be defined by {n:nat I evenn}.
However, one must be aware that in set theory, {x: SIP x} denotes a subset
A of S, while in type theory, the same expression denotes a set of pairs. We
recover A by deleting the second element. of each pair.

The t.ype sig has another interpretation. Indeed, proving that there exists
an x verifying P x, is the same as exhibiting a witness x and a proof of P x.
The definition of 3 x : S P x is identical to the definition of {x: SIP x}, with
just one difference: the result is a proposition instead of a data type:

Inductive ex [S:SetjP:S ~ Prop): Prop:=
ex_intro: "tx:S Px ~ exS P.

The difference between {x: SIP x} and 3 x : S P x is then tinyj it is important
only in the framework of program extraction.

12.2.8.2 Sums and Disjunction. Let A and B be two types, which are
themselves of type Set. An inhabitant of their sum is constructed from either an
inhabitant of A, or an inhabitant of B. The corresponding inductive definition
sumAB has two parameters (A and B) and two constructors inl and inr:

Inductive sum [A,B:Set): Set:=
inl: A ~ sum A B

I inr: B ~ sumAB.

One generally uses the notation A + B instead of sum A B. The inhabitant
of A + B which is constructed from an inhabitant a of A is then inl ABa.

In § 12.1.3, we used the similar construct {P} + {Q}, where P and Q play
the role of A and Bj here, P and Q have the type Prop, while the result has
again the type Set:

Inductive sumbool [P,Q:Prop): Set:=
left: P ~ sumbool P Q

I right: Q ~ sumboolPQ.

Using Type Theory 243

The disjunction of two propositions P and Q is another variant of this inductive
type, where the result has the type Prop instead of Set.

Inductive or [P, Q:Prop]: Prop:=
or _introl: P -+ or P Q

I or_intror: Q -+ or PQ.

The syntax used is P V Q instead of or P Q. We get yet another useful variant
by summing a data type A with a proposition Q.

Inductive sumor [A:Set;Q:Prop]: Set:=
inleft: A -+ sumor A Q

I inright: Q -+ sumor A Q.

The syntax used is A + {Q}. When A is itself an existential type, of the form
{x:A I P x}, we get {x:A I (Px)} + {Q}, which is the last general type we used
in § 12.1.3. An equivalent definition is as follows:

Inductive option [A:Set; P:A -+ Prop; Q:Prop]: Set:=
success: Vx: A P x -+ option(A, P, Q)

I fail: Q -+ option(A, P, Q).

An inhabitant of this type is either an inhabitant x of A together with a
proof that x verifies the predicate P, or a proof of Q.

12.3 A Program Correct by Construction

In § 12.1.3, we gave a specification for the search for an element in a table.
How can we design an algorithm from this specification? Two approaches can
be taken. The first is quite standard. We view

(def_tbl U PtableP, resu_tbl U PtableP)

or its specialization to intervals

as the precondition and the postcondition, respectively, of an imperative pro
gram. We can, for example, formalize the concept of a predicate transformer
in the calculus of inductive constructions. Then we get a framework composed
of a formal logic and of tools, which can be used to support the development
process presented in Chapter 4. This aid is worthwhile if we want to be sure
that nothing has been forgotten in the reasoning of § 4.2.2.

A more sophisticated variant consists of formalizing in Coq the operational
and axiomatic semantics of a programming language. It is then possible to
automate the production of the lemmas to be proved. This was previously
proposed in [BF95, Ter93]. More recent works include [Fil99J.

244 Understanding Formal Methods

The second approach is typical of constructive logics. It is based on the
aforementioned Curry-Howard correspondence. In this approach, a program
and its proof are simultaneously developed. This is reminiscent of the techniques
of Dijkstra. The main difference is that here we will get functional programs
instead of imperative programs. In general, this means that the efficiency of
imperative programs may be lost, but that complex recursive functions can be
proven to be correct. However, this cannot be illustrated on the table example:
we will get a very simple algorithm, and moreover a tail-recursive one, so that
modern compilers of functional languages are able to provide code as efficient
as for C programs. But our aim is only to illustrate the technique on our now
well-known example.

12.3.1 Programs and Proofs

Recall the Curry-Howard correspondence:

specification
proof

type,
functional program.

A specification is, from a logical viewpoint, an implication between a precon
dition and a postcondition. From the functional viewpoint, it is the type of
a function, as given by the type of its arguments (together with logical con
straints) and the type of the result (together with logical constraints also). In
the table example, for a given U, the specification of the search for an element
x verifying P, if there is one, in a table characterized by Ptable is then:

def _ tbl U Ptable P -t resu_ tbl U Ptable P . (12.5)

Instead of directly displaying a function in a functional language, the idea is to
prove the formula (12.5), using the rules of logic: introduction of hypotheses,
case splitting, reasoning by induction, etc. Figure 12.1 gives the main corre
spondences between reasoning rules and algorithmic constructs.

conjunction
case analysis

implication
reasoning by induction

pair of data
case of, if then else
function
(primitive) recursion

Figure 12.1: Logic and functions

A proof constructed in this way contains an algorithm. Of course, different
proofs correspond to different programs. Actually, one may perform the proof
with a more or less precise algorithm in mind; in much the same way, one is
guided by intuition when one writes down a formal proof.

Using Type Theory 245

Efficiency issues are not ignored in this approach, and this may give
proofs a somewhat artificial taste. For example, suppose we want to

find an inhabitant of the type Tn, where n is a given integer. If Tn is proven
by regular induction, the result will be found after O(n) computation steps.2
But if we use the following induction principle:

'v'n:nat PO --+ [Vk:nat Pk--+P(2k)]
--+ [Vk:nat Pk--+P(2k+l)] --+ Vn:nat Pn,

the number of steps will be O(log n). This is nothing but the logical translation
of well-known design principles for algorithms. In summary, the choice of data
types and of induction principles are important design decisions in a develop
ment - they are expected to be performed by a human. The support provided
by software-based proof assistants is more relevant for the management of tech
nical details.

12.3.2 Example: Searching for an Element in a List

According to the above sections, searching for an element verifying a given
property, in a given list, amounts to finding a function specified by the type:

Let us expand the definitions of def_tbLlis and of resu_tbl_lis:

(Vu:U Ptablistu --+ {Pu} + {..,Pu}) --+
+{u:U I Ptablistu" Pu}

{'v'u:U Ptablistu --+ ..,Pu}

(12.6)

(12.7)

The solution is by no means mysterious: Ptablist depends on the given list I,
and we just make the desired program check each element until a suitable one
is found. From a logical perspective, this corresponds exactly to considering the
case where I is empty and the case where I is composed of at least one element.
More precisely, we proceed by induction over the structure of I as follows:

- if a property is proved for nil,
- furthermore, if we prove the property for cons u I with the assumption it

holds for I,
- we conclude that this property holds for an arbitrary list.

In practice, such reasoning is elaborated step-by-step and interactively with
the aid of a tool such as Coq or Lego. In our example, the Coq script takes
less than 10 lines, whereas the underlying detailed and complete reasoning is
longer. We write it down for the scrupulous reader.

2Roughly speaking, O(n) is a proportional function of n.

246 Understanding Formal Methods

Let us expand Ptablist in order to make I explicit, and, for the sake
of simplifying the presentation, suppose that P can be tested for all

inhabitants from U:

(\:Iu:U {Pu} + {-'Pu}) -+
+{u:U I containslu 1\ Pu}

{\:Iu : U contains I u -+ -,P u}
(12.8)

We consider that {x : A I <P x} + {'IjJ} has two constructors named success and
fail. The result is then either of the form successup, where u inhabits U and
p is a proof of contains I u 1\ P u, or of the form fail a where a is a proof of
\:Iu: U contains 1 u -+ -,p u. We construct such an object by induction over the
structure of the list 1:

- the case where 1 is nil is easy to solve: we have a trivial proof a of \:Ix: U
contains nil x -+ -,p x, we then construct failanil; intuitively, no mem
ber of the empty list verifies P, which prevents us from claiming satisfaction
of the first choice (success);

- if [= cons u l', we will be allowed to use the induction hypothesis expressed
by (12.8) where l' is substituted for I; but let us first test P on u: we get
either a proof of P u, or a proof of -,p u - intuitively: we compute the truth
value of PU;
- in the first case, we get a proof Pu of contains [u 1\ P u, from which we

construct success u Pu;
- in the second case, we use the induction hypothesis over l': in the case of

success, every member of [' verifying P is also a member of I verifying P;
in the case of failure, no member of I' verifies P, and then no member of I
verifies P, since we already have -,Pu.

This proof, viewed as a function, has the following form, where the expres
sions anil' Pu, Pv, p~, a and a' are not detailed, and where D u is of type
{Pu} + {-'Pu}:

list_search ~f function
nil ---+ fail anil
cons u I ---+ case D u of a proof of

P u ---+ success u Pu
-,p u ---+ case list_searchl' of

success v p~ ---+ success v Pv
I f ail a' ---+ fail a .

12.3.3 Searching in an Interval of Integers

In the case where the table is represented by an interval of integers [p .. q[' the
formula to be proven is:

(12.9)

Using Type Theory 247

The previous proof can be adapted by reasoning over the length of the
interval, I. For example, we can consider p as a fixed parameter and I such
that q = p + l, and then reason by induction over l. We could then paraphrase
the previous subsection, but we prefer now to follow the line of the program
presented in § 2.4.4, where we use an additional piece of information: if there
are several integers satisfying P in [p .. q[, the result is the least of them.

In this version we express the type of the result as an integer contained
between p and q inclusive, by imposing that, if x = q, then no integer of the
table verifies P. We introduce the auxiliary predicate ini_seg_emptyx, whose
meaning is that no integer from [p .. x[verifies P:

inLseg_empty[x:nat] ~ Vi:nat betweenpix~...,Pi
resint ~ {x:nat I (Pintervx A Px) V

(x = q A ini_seg_emptyq)} .

In order to allow us to recover resu_tbl_int from resint, we simply construct
a converting function specified by:

(12.10)

The proof is by case analysis on the value of x contained in resint:

- if x = q, we deduce, from the definitions of resint and Pinterv, that
ini_seg_emptyx is verified, the inhabitant from resu_tbl_int to re
turn is then failO', where 0' is the object which formalizes the proof of
ini_seg_emptyx;

- if x f:. q, we deduce, from the definition of resint, that x is in the interval
and verifies P, then we take success x (t,p), where t and p are the objects
which formalize the proofs of Pinterv x and P x, respectively.

The function corresponding to this proof is:

if x = q then fail 0' else success x (t,p)

We still have to prove resint. Intuitively, we will once more examine
the elements in the interval [po .q] - characterized by Pdom - until

a suitable one is found, as in the algorithm explained in § 2.4.4. To this end we
consider a stronger specification, named strg_resint where no integer from
[po .x[verifies P, even when x is smaller than q:

Pdom[x:nat] ~ Pintervx V x = q .
strg_resint ~ {x:nat I Pdomx A ini_seg_emptyx A

(x < q ~ Px)} .

Proving strg_resint~resint is quite easy, the underlying function preserves
the witnessing integer.

Again, following the reasoning line of Chapter 2, we take q-x as our
loop variant. Intuitively, it means that we intend to reason by induction over
q - x. The base case is x = q. The only result we can propose in this case is

248 Understanding Formal Methods

q, but to this end, we first need a proof of ini_seg_emptyx. It is then better
to try to prove step x by induction, where we put a precondition in front of
strg_resint:

step[x:nat] ~ ini_seg_emptyx --+ strg_resint

The informal reasoning is as follows:

- if x = q, a proof of ini_seg_emptyx allows us to deduce that the result is q;
- if x < q, suppose once again that we have a proof of ini_seg_emptyx at

our disposal; the induction hypothesis expresses that we are able to find the
result from a proof of ini_seg_empty(x + 1); we reason by case analysis on
P x: if P x holds, the result is simply x; in the opposite case, ...,p x combined
with ini_seg_empty x provides a proof of ini_seg_empty(x + 1), so that we
are allowed to use the induction hypothesis.

Note that, the hypothesis def_tbl_int is needed for reasoning by case analysis
on Px.

A technique for reasoning by induction over q - x is to explicitly
determine an integer I such that x + l = q. We prove the theorem

loop specified by:

def_tbl_int --+ 'v'l,x:nat p'5,x --+ l+x=q --+ stepx .

by induction over I, by formalizing the previous reasoning. A better option is
to prove the following specification:

deLtbl_int --+ 'v'x:nat p'5, x --+ x '5, q --+ stepx .

using well-founded induction; in this way we avoid using I. The well-founded
relation to be used is the one named R4(q) on page 51.

Finally, giving x the value p in loop, (and I the value q - p, if we use
the former specification of loop), then providing a - very simple - proof of
ini_seg_emptyp, we obtain an element from strg_resint.

12.3.4 Program Extraction

The program just obtained manipulates pieces of data, such as x, p, q, and
proofs, for example the proof of ini_seg_empty x. If we keep this program as it
is, its execution will be composed of computation steps not only on data but also
on proofs. Intuitively, this means that assertions on data will be dynamically
checked, which is obviously pointless. Clearly, we can compare this with type
checking in the common typed programming languages: for example, compile
time type-checking ensures that arithmetical functions will actually be applied
on numbers at run-time; then typing information can be removed from the
executable code.

Using Type Theory 249

The same strategy can be adopted here. In concrete terms, everything re
lated to Prop can be removed from programs such as the ones that were pre
sented above. Thus, one extracts an untyped program which complies, by con
struction, with the initial specification. We can first illustrate the idea on the
type def _ tbl. Its complete definition was:

def _ tbl[U: Set; Ptable, P: U -t Prop] def

Vx:U Ptablex -t {Px} + {...,Px} .

In the extraction process, {P x} + {...,P x} is replaced with bool, which does
not depend on x; we are left with:

def_tbl[U:Set] ~ U -t bool

For example, an inhabitant D of type def_tbl nat is a function from nat to
bool; this function is not necessarily defined for all integers - it could be
implemented by an array, but we are supposed to use it only under the precon
ditions which are written in the original definition. Here, D is only a parameter;
let us consider again the converting function which was developed in § 12.3.3.
Its type is resint -t resu_ tbl_int. Expanding resint and resu_ tbl_int, we
get:

{x:nat I (Pintervx 1\ Px) V (x = q 1\ ini_seg_emptyq} -t
{x:nat I Pintervx 1\ Px} + {Vx:nat Pintervx -t ...,Px}.

The proposed function was:

conversion[(x: nat, 7r: (Pinterv x 1\ P x) V ...)] ~f
if x = q then fail a else success x , (~, p) .

Under its expurgated form, the type resu_tbl_int is inhabited by elements
of the form successn, where n is a natural integer, or fail. As for the type
resint, it simply boils down to nat. The extracted program is then:

conversion[x:nat] ~f
if x = q then fail else successx

If we consider the program for searching in a list, as given on page 246, the
extraction process yields the following algorithm:

list_search ~f function
nil-t fail

I cons u l -t if D u then success u
else case list_searchl' of

success v -t success v
I fail-t fail .

This program, although it is correct, is somewhat frustrating, because there is
clearly no need to test the result of the recursive call. We would prefer:

250 Understanding Formal Methods

list_search ~ function
nil-t fail

I cons u l -t if D u then success u else list_search II

This can be regarded as an optimization, which could be performed by a good
compiler, or at the back-end of the extraction process itself. However, we can
sharpen the previous development so that we directly obtain the second pro
gram.

The main problem is that, as the type of the result is {u : U I
contains l u /\ P u} + {Vu : U contains l u -t ..,p u}, an induction

over l forces us to distinguish success v P~ from success v Pv and fail a l from
f ail a: indeed, p~, for example, is of type contains l u /\ P u, whereas Pv is of
type contains(cons v l) u /\ P u.

Once this is understood, the solution consists of putting the goal
into an equivalent form Condl-t { ... } + { ... } where Condl is a purely logical
expression, and then will be removed at the extraction stage, and where { ... } +
{ ... } is kept constant in the induction step. In this case Ptablist is just the
ticket. We prove:

(Vu : U contains l u t-+ Ptablist u) -t
+ {u:U I Ptablistu /\ Pu}

{Vu:U Ptablistu -t ..,Pu}

by induction over l, following the same reasoning line as before.

(12.11)

In the case where the table is represented by an interval of integers, the
search function is the following. We give here the ML program actually ex
tracted by the system Coq from the proof given above. Connoisseurs will note
that we get a tail-recursive program, which compiles to a common loop. We
then get a program quite close to the imperative algorithm given on page 3l.

let main p q D =
let rec loop x =

match q = x with
true -t q

I false -t match D x with
true -t x
false -t loop (8 x)

in loop p ;;

The program extraction mechanism is based on general results of realiz
ability theory, which ensures that the extracted function conforms to the spec
ification of the complete function.

Program extraction allowed us to point out the deep analogy between pro
gram and proof design. In this framework, it remains possible to adopt a more
traditional strategy, by proposing the function to be extracted [Par95]; then it
is up to the system to infer automatically the corresponding proof obligations.

Using Type Theory 251

12.4 On Undefined Expressions

A tricky issue about the relationship between logic and programming was raised
in Chapter 2: a logical expression may contain undefined terms. This issue was
illustrated on the expression Px. In this chapter, we introduced a computable
function D which determines whether or not P x holds. There is a clear dis
tinction between the use of P in the mathematical reasoning, the use of D at
the same level, and the use of D in the expressions of the final program. The
fact that D is not defined everywhere is represented in its specification by the
formula p ~ x < q ~ {P x} + {.., P x }. By this implication, D takes an addi
tional argument which is a proof Oz of p ~ x < q: the complete expression is
actually D x Oz. It is always defined - that is, it is defined for all pairs (x,oz)
- and hence it always makes sense to use it in our reasoning. Once the latter
is finished, we can consider a program obtained by extraction, where only D x
is present, and we are ensured that x is in the domain of D.

12.5 Other Proof Systems Based on Higher-order Logic

The main calling of typed higher-order logic is to provide a rigorous and very
expressive logical framework: as soon as the systems we want to model are
complex at all, we need to rely upon a collection of mathematical results for
malized in advance. The richness of expression is an important ingredient for
expressing problems, reasonings and hopefully solutions in a natural manner,
with an adequate degree of generality.

At the same time, any approach having the goal of verifying realistically
sized systems must rely upon automated proof techniques which relieve the
user of tasks which are often tedious (arithmetical calculations, propositional
reasoning) or complex (model checking techniques, for example), or both. Using
and combining efficiently the know-how accumulated in the different relevant
disciplines is still a research topic. At the same time, the issue of the reliability
of the analysis and proof tools becomes important, even more so as the tools
become larger and implement more complex algorithms.

PVS (Prototype Verification System) is a proof assistant for a higher-order
classical logic, which is quite good at automatically discharging proof obliga
tions, thanks to the implementation of state-of-the-art decision procedures. The
specification language of PVS includes dependent types and a predicate-based
sub-typing mechanism, which are quite powerful for specification purposes, but
make type-checking undecidable: type-checking may generate proof obligations.
Fortunately, most of them can be automatically discharged thanks to the auto
mated proof procedures of the system. The latter are indeed very convenient for
the user, and they tend to be used extensively, so that the user can concentrate
his efforts more on the structure of his developments.

The reliability of the approach relies mainly on the expertise of the designers
and implementers of the system. PVS is a good laboratory for experimenting

252 Understanding Formal Methods

with new ideas in the area. However, to prevent obvious potential problems,
only a small number of researchers are authorized to integrate new mechanisms
into the official version of the system. Even so, if an undiscovered flaw remains,
in particular, a flaw which occurs only in rare configurations or is hardly ob
servable in common situations, the chances that it is - unconsciously - used
increase when users more frequently use the automated procedures offered to
them. Can we prevent such accidents, or, more modestly, restrict or delimit the
risk?

This issue motivated one of the key decisions for the design of the archi
tecture of lCF [GMW79], another proof tool for higher-order logic (without
dependent types). The main idea is to have a small software kernel, the proof
checker, which is very carefully written, with only one objective: checking that
only legal deduction rules are used in a formal proof. Such an architecture
is open: arbitrary complex proof search procedures may be involved, includ
ing, typically, new decision procedures for a specialized area, and this without
threatening the logical integrity of the approach, since the kernel eventually
checks the correctness of all proof steps.

This approach is made possible when the logic itself is composed of a re
stricted number of primitive elements. For example, the calculus of inductive
constructions is essentially based on one logical quantifier (\1'), a very general
induction principle and the concept of a reduction.

This idea has also been followed in a number of successors to lCF. It is
implemented in two ways in actual systems. One of them consists of defining
an abstract type for theorems: the latter are created and derived from each
other through an interface, which proposes only the formation of axioms, and
the use of deduction rules similar to the ones we have presented in Chapter 9.
HOl, for example, is constructed according to this architecture.

Another possibility consists of explicitly handling proof terms. This is par
ticularly suitable to intuitionistic logic, since proof terms are A-terms: A-terms
are already available, since we are considering a higher-order logic. Actually, as
a theorem is nothing but the type of a A-term, verifying that a formula is proven
boils down to performing type checking. The advantage of this approach, over
the approach based on an abstract type for theorems, is that it maintains and
provides an exhaustive trace of formal reasonings. This leaves room for control
ling the latter by an independent system, or for extracting a natural language
explanation from a formal proof [Cos96]. The difficulty is to keep proof terms
to a reasonable size. Coq, which we described earlier, is a typical example of
systems based on this principle.

As the reliability of lCF-technology-based proof assistants relies entirely
upon their kernel, much attention is paid to the latter by the development
teams concerned. However, since a really powerful logic is available, why not
try to formalize and mechanically check the kernel itself? Such a task is far from
simple: on the one hand, the manipulated algorithmic structures are complex;
on the other, at the specification level, representing the logical rules is not
sufficient, it is also necessary to prove a number of metatheorems which govern

Using Type Theory 253

them. These obstacles were successfully tackled in the case of Coq, by B. Barras
[Bar99]. In concrete terms, this opens up the possibility that the kernel of a
future version of Coq may be obtained by program extraction (see § 12.3.4).

We have just seen that there are several options for higher-order logic
based proof tools. There are also some differences in the logics considered. For
example, PVS and Coq include dependent types, but HOl does not; typing
judgements are decidable in Coq and in HOl, but not in PVS; HOl and PVS
use a classical logic, whereas the logic of Coq is constructive.3 Among the three
systems considered here, Coq is also the only one where types can themselves
be computed (by reduction); this allows one to further exploit the possibilities
of dependent types.

To illustrate the idea, here is a small but typical example where the
latter feature turns out to be useful. We want to represent names,

say a and b, and a specific type for each of them:

Inductive name: Set:= a: name I b: name.
Definition ty:= [x: name] Cases x of

a ::::} bool
I b ::::} nat end.

We can then construct pairs (x, v) ,where x is of type name and v is of type ty x:
(b,3) is such an object. At the type-checking stage, the proof tool performs the

reduction ty(b) ~ nat.

The proof tools considered in this chapter have been, and are, successfully
used in some industrial applications, for example in areas related to security,
smart cards, protocols, etc. There is still work in progress for making them
more powerful and more efficient, on the one hand (for example their use in
combination with fully automated techniques based on rewriting or on model
checking), and easier to use on the other hand, thanks to syntactical devices, or
to graphical interfaces, such as Pcoq based on the idea of "proof-by-pointing"
[BKT94].

12.6 Notes and Suggestions for Further Reading

The calculus of inductive constructions is described in the Coq manuals
[HKPM02, TP02]. The principles for program extraction implemented in Coq
are defined in the thesis of Christine Paulin-Mohring [PM89]. A similar sys
tem is Nuprl [CAB+86], which allows one to develop constructive mathematical
theories in a system inspired by the type theory of Martin-Lof. Amongst other
systems based on a higher-order logic, we have HOl, Isabelle and PVS. All are
supplied with user and reference manuals [GM93, Pau94, CAB+86, ORS93]. A

3 However, it should be noted that the excluded middle law can be used in the
Prop universe.

254 Understanding Formal Methods

number of articles are also available, for example [ORS92] on PVS, [Pau90] on
Isabelle and [Gor88] on HOL.

Valuable principles for designing and implementing a serious proof assistant
are described by Larry Paulson in [Pau92]. Readers may then be tempted to
try to write their own software. However, before doing so, it is advisable to
read the conclusion of Paulson's article several times.

Bibliography

[Aba90] M. Abadi. An Axiomatization of Lamport's Temporal Logic of
Actions. Technical Report 65, Digital Equipment Corporation,
Systems Research Centre, October 1990.

[Abr92] J-R. Abrial. The B-Technology. In FORTE'92, 5th Int. Conf. on
Formal Description Techniques, 1992.

[Abr96] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam
bridge University Press, 1996.

[AGM92a] S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Hand
book of Logic in Computer Science, volume 1: Background: Math
ematical structures. Oxford Science Publications, 1992.

[AGM92b] S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum, editors. Hand
book of Logic in Computer Science, volume 2: Background: Com
putational structures. Oxford Science Publications, 1992.

[AL91] A. Asperti and G. Longo. Categories, Types and Structures: an
Introduction to Category Theory for the Computer Scientist. MIT
Press, 1991.

[AN82] A. Arnold and M. Nivat. Comportements de processus. In Colloque
AFCET « Les mathematiques de l'informatique », pages 35-68,
1982.

[ANOl] A. Arnold and D. Niwiiiski. Rudiments of the mu-calculus. Elsevier,
2001.

[Arn94] A. Arnold. Finite Transition Systems: Semantics of Communicat
ing Systems. International Series in Computer Science. Prentice
Hall, 1994.

[Art91] R.D. Arthan. On free type definitions in Z. In J.E. Nicholls, editor,
Z User Workshop, LNCS. Springer-Verlag, 1991.

[Art98] R.D. Arthan. Recursive definitions in Z. In J.P. Bowen, A. Fett,
and M.G. Hinchey, editors, ZUM'98, volume 1493 of LNCS, pages
154-171. Springer-Verlag, 1998.

[AU79] A.V. Aho and J. Ullman. Universality of data retrieval languages.
In Principles of Programming Languages, pages 110-120. ACM,
1979.

[Aug98] L. Augustsson. Cayenne - a language with dependent types. In
International Conference on Functional Programming, pages 239-
250,1998.

256 BIBLIOGRAPHY

[B-T91] Edinburgh Portable Compilers Ltd. B-Tool Version 1.1 - User
Manual/ Tutorial/Reference Manual, 1991.

[B-T93] Oxford Science Park, UK. B-Toolkit Beta-Release Version 1.1 -
User Manual, Reference Manual, 1993.

[Bar77] J. Barwise, editor. Handbook of Mathematical Logic. North Hol
land, 1977.

[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics,
volume 103 of Studies in Logic. North Holland, 1984.

[Bar90] H. Barendregt. Functional programming and lambda calculus. In
van Leeuwen [vL90b], chapter 7.

[Bar99] B. Barras. Auto-validation d'un systemes de preuves avec familles
inductives. Ph.D. thesis, Universite de Paris 7, 1999.

[Bau91] F.L. Bauer, editor. Logic, Algebra and Computation, volume F79
of NATO ASI Series. Springer-Verlag, 1991.

[BBC+95] N. Bjorner, I.A. Browne, E. Chang, M. Col6n, A. Kapur, Z. Manna,
H.B. Sipma, and T.E. Uribe. STeP: the Stanford Theorem Prover,
Users's Manual. Technical report, Stanford University, 1995.

[BBF+Ol] B. Berard, M. Bidoit, A. Finkel, A. Petit, L. Petrucci, and Ph.
Schnoebelen. System and Software Verification, Model-Checking
Techniques and Tools. Springer, 200l.

[BBFM99] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Meteor:
a successful application of b in a large project. In Wing et al.
[WWD99], pages 369-387.

[BBS93] F.L. Bauer, W. Brauer, and H. Schwichtenberg, editors. Logic
and Algebra of Specification, volume F94 of NATO ASI Series.
Springer-Verlag, 1993.

[Berct] S. Berezin. The SMV web site, 2000
http://www.cs.cmu.edu/-modelcheck/smv.html/.

[BF95] Y. Bertot and R. Fraer. Reasoning with executable specifications.
In Int. Joint Conf. on Theory and Practice of Software Devel
opment, TAPSOFT, volume 915 of LNCS. Springer-Verlag, May
1995.

[BG92] G. Berry and G. Gonthier. The Esterel Synchronous Program
ming Language: Design, Semantics, Implementation. Science of
Computer Programming, 19:87-152, 1992.

[Bir95] R.S. Bird. Functional Algorithm Design. In B. Moller, edi
tor, Mathematics of Program Construction, volume 947 of LNCS.
Springer-Verlag, 1995.

[BK90] J.C.M. Baeten and J.W. Klop, editors. CONCUR 90, Amsterdam,
volume 458 of Lecture Notes in Computer Science. Springer-Verlag,
1990.

[BKK+98] P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau,
and C. Ringeissen. An Overview of ELAN. Elec
tronic Notes in Theoretical Computer Science, 15, 1998.
http://www.elsevier.nl/locate/entcs/volume15.html.

BIBLIOGRAPHY 257

[BKL+91] M. Bidoit, H-J. Kreowski, P. Lescanne, F. Orejas, and D. Sanella,
editors. Algebraic System Specification and Development, a Survey
and Annotated Bibliography, volume 501 of LNCS. Springer-Verlag,
1991.

[BKR92] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Spike: An auto
matic theorem prover. In Proc. 1st Int. Conf. on Logic Program
ming and Automated Reasoning, volume 624 of Lecture Notes in
Artificial Intelligence, St. Petersburg (Russia), JUly 1992. Springer
Verlag.

[BKT94] Y. Bertot, G. Kahn, and L. Thery. Proof by pointing. In M. Hagiya
and J.C. Mitchell, editors, Proc. of the Int. Symp. on Theoretical
Aspects of Computer Software, volume 789 of LNCS, pages 141-
160, Sendai, Japan, April 1994. Springer-Verlag.

[BLJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous
programming with events and relations: the SIGNAL language and
its semantics. Science of Computer and Programming, 16:103-149,
1991.

[BM79] RS. Boyer and J S. Moore. A Computational Logic. Academic
Press, New York, 1979.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cam
bridge University Press, 1998.

[Bou94] A. Bouhoula. SPIKE: a system for sufficient completeness and
parameterized inductive proof. In A. Bundy, editor, Proc. 12th
Int. Conf. on Automated Deduction, volume 814 of Lecture Notes in
Artificial Intelligence, pages 836-840, Nancy (France), June 1994.
Springer-Verlag.

[BR95] A. Bouhoula and M. Rusinowitch. Implicit induction in conditional
theories. Journal of Automated Reasoning, 14(2):189-235,1995.

[Bra92] J .C. Bradfield. Verifying Temporal Properties of Systems. Progress
in Theoretical Computer Science. Birkhauser, 1992.

[Bro89] M. Broy, editor. Constructive Methods in Computing Science, vol
ume F55 of NATO ASI Series. Springer-Verlag, 1989.

[BW88] R Bird and P. Wadler. Introduction to Functional Programming.
Prentice Hall, 1988.

[BW90] M. Barr and C. Wells. Category Theory in Computer Science.
Prentice Hall, 1990.

[CAB+86] RL. Constable, S.F. Allen, H.M. Bromley, W.R Cleaveland, J.F.
Cremer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler,
P. Panangaden, J.T. Sasaki, and S.F. Smith. Implementing Math
ematics with the Nuprl Proof Development System. Prentice-Hall,
1986.

[CDE+99] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. Quesada. Maude: Specification and Program
ming in Rewriting Logic. Technical report, SRI International, Jan
uary 1999. http://maude . csl. sri. com.

258 BIBLIOGRAPHY

[CES83] E.M Clarke, E.M. Emerson, and A.P. Sistla. Automatic verifica
tion of finite state concurrent systems using temporal logic spec
ifications: a practical approach. In Proc. 10th ACM Symp. on
Principles of Programming Languages, 1983.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT
Press, 1999.

[CGR93a] D. Craigen, S. Gerhart, and T. Ralston. An international sur
vey of industrial applications of formal methods, 1 : Purpose, ap
proach, analysis and conclusions. Technical Report 93/626 NIST
GCR, National Institute of Standards and Technology, US Dep. of
Commerce, Technology Administration, NIST, Computer Systems
Laboratory, Gaithersburg, MD 20899, March 1993.

[CGR93b] D. Craigen, S. Gerhart, and T. Ralston. An international survey of
industrial applications of formal methods, 2 : Case studies. Techni
cal Report 93/626 NISTGCR, National Institute of Standards and
Technology, 1993. See [CGR93a].

[CH85] T. Coquand and G. Huet. A theory of constructions. In Kahn
et al. [KMP85].

[CK90] C.C. Chang and H.J. Keisler. Model Theory. North Holland, 3rd
edition, 1990.

[CL73] C.-L. Chang and R. Char-Tung Lee. Symbolic Logic and Mechani
cal Theorem Proving. Computer Science Classics. Academic Press,
1973.

[CLOO] R. Cori and D. Lascar. Propositional Calculus, Boolean Algebras,
Predicate Calculus, Completeness Theorems (Mathematical Logic,
a Course with Exercises, part II). Oxford University Press, 2000.

[CL01] R. Cori and D. Lascar. Recursion Theory, Godel's Theorems, Set
Theory, Model Theory (Mathematical Logic, a Course with Exer
cises, part II). Oxford University Press, 200l.

[CM89] K.M. Chandy and J. Misra. Parallel Program Design. Addison
Wesley, Austin, Texas, May 1989.

[CM98] G. Cousineau and M. Mauny. The Functional Approach to Pro
gramming. Cambridge University Press, 1998.

[CMP02] E. Chailloux, P. Manoury, and B. Pagano. Developing Applications
with Objective Caml. O'Reilly, 2002.

[Coh90] E. Cohen. Programming in the 1990s: An Introduction to the Cal
culation of Pro9rams. Texts and Monographs in Computer Science.
Springer-Verlag, 1990.

[Coq86] T. Coquand. An analysis of Girard's Paradox. In Proc. IEEE
Symp. on Logic in Computer Science, pages 227-236. IEEE, 1986.

[Cos96] Y. Coscoy. A natural language explanation for formal proofs.
In C. Retore, editor, Proceedings of Int. Conf. on Logical As
pects of Computational Liguistics (LACL), Nancy, volume 1328
of LNCS/LNAI. Springer-Verlag, September 1996.

BIBLIOGRAPHY 259

[Cou91] B. Courcelle, editor. Logique et informatique: une introduction.
collection didactique. INRIA, 1991.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE, a
Declarative Language for Real-Time Programming. In Proc. 10th
ACM Symp. on Principles of Programming Languages, 1987.

[CW97] E.A. Cichon and A. Weiermann. Term rewriting theory for the
primitive recursive functions. Annals of Pure and Applied Logic,
1997.

[dBdRR91] J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors.

[Dev93]

[DF98]

[Dij76]

[DJ90]

[dRE98]

[DS90]

[DubOO]

[DumOO]

[EM85]

[EM90]

[Eme90]

[End77]
[FG84]

Foundations of Object-Oriented Languages, volume 489 of LNCS.
Springer-Verlag, 1991.
K. Devlin. The Joy of Sets. Undergraduate Texts in Mathematics.
Springer-Verlag, second edition, 1993.
R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language,
Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification, volume 6 of AMAST Series in Computing. World
Scientific, 1998.
E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, En
glewood Cliffs, NJ, 1976.
N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In van
Leeuwen [vL90b], chapter 6, pages 244-320. Also technical re
port 478, LRI.
W.-P. de Roever and K. Engelhardt. Data Refinement: Model
Oriented Proof Methods and their Comparison. Number 47 in
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1998.
E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program
Semantics. Texts and Monographs in Computer Science. Springer
Verlag, 1990.
O. Dubuisson. ASN.l Communication between Heterogeneous Sys
tems. Morgan Kaufmann, 2000.
M. Dummet. Elements of Intuitionism. Clarendon Press, Oxford,
2nd edition, 2000.
H. Ehrig and B. Mahr. Fundamental of Algebraic Specification 1,
volume 6 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1985.
H. Ehrig and B. Mahr. Fundamental of Algebraic Specification 2,
volume 21 of EATCS Monographs on Theoretical Computer Sci
ence. Springer-Verlag, 1990.
E.A. Emerson. Temporal and Modal Logic. In van Leeuwen
[vL90b], chapter 16, pages 995-1072.
H.B. Enderton. Elements of Set Theory. Academic Press, 1977.
R. Forgaard and J.V. Guttag. REVE: A term rewriting system
generator with failure-resistant Knuth-Bendix. Technical report,
MIT-LCS, 1984.

260 BIBLIOGRAPHY

[Fil99]

[Fl067]

[Ga186]
[Ga193]

[GG89]

[GG90]

[GG91]

[Gir87a]

[Gir87b]

[Gir91]

[GLT89]

[GM91]

[GM93]

[GMOO]

[GMW79]

[Gor79]

[Gor88]

J.-C. Filliatre. Preuves de programmes imperatifs en theorie des
types. Ph.D. thesis, Universite de Paris-Sud, 1999. English version
available at http://www.lri.fr;-filliatr.
R.W. Floyd. Assigning meanings to programs. Mathematical As
pects of Computer Sciences, pages 52-66, 1967.
J. Gallier. Logic for Computer Science. Harper and Row, 1986.
J. Gallier. Constructive logics part I: a tutorial on proof systems
and typed A-calculi. Theoretical Computer Science, 110:249-339,
1993.
S. Garland and J.V. Guttag. An overview ofLP, the Larch Prover.
In N. Dershowitz, editor, Proc. 3rd Int. Con/. on Rewriting Tech
niques and Applications, volume 355 of Lecture Notes in Com
puter Science, pages 137-151, Chapel Hill (NC, USA), April 1989.
Springer-Verlag.
P. Gochet and P. Gribomont. Logique, methodes pour l'informati
que fondamentale, volume 1. Hermes, 1990.
S. Garland and J.V. Guttag. A Guide to LP, The Larch Prover.
Technical Report 82, Digital Systems Research Center, 130 Lytton
Av., Palo Alto, CA 94301, USA, 1991.
J.-Y. Girard. Linear logic. Theoretical Computer Science, 50: 1-
102,1987.
J.-Y. Girard. Proof Theory and Logical Complexity. Bibliopolis,
Napoli, 1987.
J.-y' Girard. A new constructive logic: classical logic. Mathemat
ical Structures in Computer Science, 1:225-296, 1991.
J.-y' Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7
of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989.
P. Gardiner and C.C. Morgan. Data refinement of predicate trans
formers. Theoretical Computer Science, 87:143-162, 1991.
M.J.C. Gordon and T.F. Melham. Introduction to HOL: A The
orem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.
J.A. Goguen and G. Malcolm, editors. Software Engineering with
OBJ: Algebraic Specification in Action. Kluwer Academic Publish
ers, Boston, 2000. ISBN: 0-7923-7757-5.
M.J.C. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation, volume 78 of LNCS. Springer
Verlag, 1979.
M.J.C. Gordon. The Denotational Description of Programming
Languages. Springer-Verlag, 1979.
M.J.C. Gordon. HOL: A Proof Generating System for Higher
Order Logic. In C. Birtwistle and P.A. Subrahmanyam, editors,
VLSI Specification, Verification and Synthesis. Kluwer Academic
Publishers, 1988.

BIBLIOGRAPHY 261

[Gri90] T. Griffin. A formulae-as-types notion of control. In Proc. 17th
ACM Symp. on Principles of Programming Languages. ACM, Or
lando, 1990.

[Gri91] S. Grigorieff. Decidabilite et complexite des theories logiques. In
Courcelle [Cou91], pages 7-97.

[HA28] D. Hilbert and W. Ackermann. Grundzuge der theoretischen Logik.
Springer-Verlag, 1928.

[Ha160] P.R. Halmos. Naive Set Theory. Van Nostrand, Princeton, NJ,
1960.

[Ha193] N. Halbwachs. Synchronous Programming of Reactive Systems.
Kluwer Academic Publishers, 1993.

[HB95] M.G. Hinchey and J.P. Bowen, editors. Applications of Formal
Methods. International Series in Computer Science. Prentice-Hall,
Hemel Hempstead, 1995.

[HB99] M.G. Hinchey and J.P. Bowen, editors. Industrial Strength Formal
Methods in Practice. FACIT Series. Springer-Verlag, London, 1999.

[HBG94] R. Hanle, B. Beckert, and S. Gerberding. 3TAP, The Many Valued
Theorem-Prover. Technical report, University of Karlsruhe, 1994.

[HC96] B. Heyd and P. Cregut. A modular coding of Unity in Coq. In
J. Grundy J. von Wright and J. Harrison, editors, Theorem Prov
ing in Higher Order Logic, volume 1125 of LNCS, pages 251-266.
Springer-Verlag, Turku, Finland, 1996.

[HK91] I. Houston and S. King. CICS project report, experiences and re
sults from the use of Z in IBM, volume 551 of LNCS. Springer
Verlag, 1991.

[HKPM02] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq Proof Assis
tant, a Tutorial, V7.3. Technical report, INRIA Rocquencourt and
CNRS-ENS Lyon, 1999-2002.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism
and concurrency. Journal of the ACM, 32:137-161, 1985.

[H080] G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In
R. Book, editor, Formal Language Theory: Perspectives and Open
Problems, pages 349-405. Academic Press, New York, 1980.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576-580, 1969.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[Hoa89] C.A.R. Hoare. Notes on an Approach to Category Theory for
computer Scientists. In Broy [Bro89], pages 245-305.

[HoI97] G.H. Holzmann. The model checker Spin. IEEE Transactions on
Software Engineering, 23(5), 1997.

[HS86] J.R. Hindley and J.P. Seldin. Introduction to Combinators and
A-calculus. Cambridge University Press, 1986.

262 BIBLIOGRAPHY

[Hue90] G. Huet, editor. Logical Foundations of Functional Programming.
University of Texas at Austin Year of Programming Series. Addi
son Wesley, 1990.

[Hue92] G. Huet. Constructive Computation Theory. In Ecole des jeunes
chercheurs du GRECO de programmation du CNRS, University of
Bordeaux I, 1992.

[HW73] C.A.R. Hoare and N. Wirth. An axiomatic definition of the pro
gramming language Pascal. Acta Informatica, 2(4):335-355, 1973.

[ILL75] S. Igarishi, R.L. London, and D.C Luckham. Automatic program
verification I: a logical basis and its implementation. Acta Infor
matica, 4:142-185, 1975.

[isoa] International Organization for Standardization, Geneva. Infor
mation Processing Systems - Open Systems Interconnection - A
Formal Description technique based on Extended State Transition
Model. ISO /IEC 9074.

[isob] International Organization for Standardization, Geneva. Informa
tion Processing Systems - Open Systems Interconnection - A For
mal Description technique based on the Temporal Ordering of Ob
servationnal Behavior. ISO/IEC 8807.

[isoc] International Organization for Standardization, Geneva. Informa
tion Processing Systems - Open Systems Interconnection - Guide
lines for the Application of ESTELLE, LOTOS and SDL. ISO /IEC
TR 10167.

[JJLM91] C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. MURAL: A
Formal Development Support System. Springer-Verlag, 1991.

[JKKM92] J-P. Jouannaud, C. Kirchner, H. Kirchner, and A. Megrelis. Pro
gramming with Equalities, Subsorts, Overloading and Parameter
ization in OBJ. Journal of Logic Programming, 12(3}:257-279,
February 1992.

[Jon90] C.B. Jones. Systematic Software Development using VDM. Pren
tice Hall, second edition, 1990.

[JRG92] I. Jacobs and L. Rideau-Gallot. A Centaur Tutorial. RT 140,
INRIA, Sophia Antipolis, July 1992.

[JS90] C.B. Jones and R.C. Shaw. Case Studies in Systematic Software
Development. Prentice Hall, 1990.

[Kah87] G. Kahn. Natural Semantics. In STACS'87, volume 247 of LNCS.
Springer-Verlag, March 1987.

[Ka190] A. Kaldewaij. Programming: The Derivation of Algorithms. Inter
national Series in Computer Science. Prentice-Hall, 1990.

[KB70] D.E. Knuth and P.B. Bendix. Simple Word Problems in Universal
Algebra. In J. Leech, editor, Computational Problems in Abstract
Algebra, pages 263-297. Pergamon Press, 1970.

[Kin69] J.C. King. A Program Verifier. PhD thesis, Carnegie-Mellon Uni
versity, 1969.

BIBLIOGRAPHY 263

[KM01] N. Klarlund and A. M011er. MONA Version 1..4 User Manual.
BRICS Notes Series NS-Ol-l, Department of Computer Science,
University of Aarhus, January 2001.

[KMP85] G. Kahn, D.B. MacQueen, and G.D. Plotkin, editors. Semantics
of Data Types, volume 173 of LNCS. Springer-Verlag, 1985.

[KP82] L. Kirby and J. Paris. Accessible independence results for Peano
arithmetic. Bulletin of London Mathematical Society, 14:285-293,
1982.

[Kri93] J.-L. Krivine. Lambda-calculus, Types and Models. Series in Com
puters and their Applications. Ellis Horwood, 1993.

[KZ95] D. Kapur and H. Zhang. An Overview of Rewrite Rule Laboratory
(RRL). Journal of Computer and Mathematics with Applications,
29(2):91-114, 1995.

[Laf90] Y. Lafont. Interaction nets. In Proc. 17th ACM Symp. on Prin
ciples of Programming Languages, pages 95-108, Orlando, 1990.
ACM.

[Lal93] R. Lalement. Computation as Logic. International Series in Com
puter Science. Prentice Hall, 1993.

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 1994.

[Lei91] D. Leivant. A foundational delineation of computational feasibility.
In Proc. IEEE Symp. on Logic in Computer Science, pages 2-11.
IEEE, 1991.

[Les86] P. Lescanne. REVE, a Rewrite Rule Laboratory. In J. Siek
mann, editor, Proc. 8th Int. Con/. on Automated Deduction, Lec
ture Notes in Computer Science, pages 696-697, Oxford (UK),
1986. Springer-Verlag.

[LR98] X. Leroy and F. Rouaix. Security properties of typed applets.
In Conference Record of POPL 98: The 25th ACM SIGPLAN
SIGACT Symposium on Principles of Programming Languages,
San Diego, California, pages 391-403, New York, NY, 1998.

[LS86] J. Lambek and P. Scott. Introduction to Higher Order Categorical
Logic, volume 7 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1986.

[Mac71] S. Mac Lane. Category Theory for the Working Mathematician,
volume 5 of Graduate Texts in Mathematics. Springer-Verlag, 1971.

[McC60] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Communications of the ACM, 3(4):184-
195,1960.

[McC94] W.W. McCune. Otter 3.0 reference manual and guide. Techni
cal report, Argonne National Laboratory, 9700 South Cass Avenue
Argonne, Illinois 60439-4801, January 1994.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Pub
lishers, 1993.

264 BIBLIOGRAPHY

[Mey88]

[Mey92]
[Mil87]

[Mil89]
[ML84]

[Mor90]

[MT91]

[Mur91]

[NN92]

[NNGG89]

[ORS92]

[ORS93]

[Par95]

[Pau90]

[Pau91]

[Pau92]

[Pau93]

[Pau94]

[PH77]

[PJVOl]

B. Meyer. Object-oriented Software Construction. Prentice Hall,
1988.
B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
R. Milner. A proposal for Standard ML. In ACM Conf. on Lisp
and Functional Programming, 1987.
R. Milner. Communication and Concurrency. Prentice Hall, 1989.
P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Napoli,
1984.
C.C. Morgan. Programming from Specification. International Series
in Computer Science. Prentice Hall, 1990.
R. Milner and M. Tofte. Co-induction in relational semantics. The
oretical Computer Science, 87:209-220, 1991.
C. Murthy. An evaluation semantics for classical proofs. In Proc.
IEEE Symp. on Logic in Computer Science. IEEE, 1991.
H.R. Nielson and F. Nielson. Semantics with Applications. A For
mal Introduction. Wiley, 1992.
E. Nagel, J.R. Newman, K. Godel, and J-Y. Girard. Le theoreme
de G6del. Seuil, 1989.
S. Owre, J.M. Rushby, and N. Shankar. PVS: a prototype verifi
cation system. In 11th Conf. on Automated Deduction (CADE),
LNAI 607, pages 748-752. Springer-Verlag, 1992.
S. Owre, J.M. Rushby, and N. Shankar. The PVS Specification
Language (Beta Release). Computer Science Laboratory, SRI In
ternational, 1993.
C. Parent. Synthesizing proofs from programs in the calculus of
inductive constructions. In B. Moller, editor, Proceedings 3rd Int.
Conf. on Mathematics of Program Construction, MPC'95, Kloster
Irsee, Germany, 17-21 July 1995, volume 947, pages 351-379.
Springer-Verlag, Berlin, 1995.
L.C. Paulson. Isabelle: the 700 next theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361-386.
Academic Press, 1990.
L.C. Paulson. ML for the Working Programmer. Cambridge Uni
versity Press, 1991.
L.C. Paulson. Designing a theorem prover. In Abramsky et al.
[AGM92b], pages 415-475.
L.C. Paulson. Introduction to Isabelle. Technical Report 280,
University of Cambridge, Computer Laboratory, 1993.
L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer-Verlag, 1994.
J. Paris and L. Harrington. A mathematical incompleteness in
Peano arithmetic. In Barwise [Bar77], chapter D.8.
Benjamin C. Pierce, Trevor Jim, and Jerome Vouillon. Uni
son: A portable, cross-platform file synchronizer, 1999-200l.
http://www.cis.upenn.edu/-bcpierce/unison.

[Plo81)

[PM89)

[Pnu77)

[PST91)

[QS82)

[Rab77)
[Rey85)

[Rob65)

[Rus93)

[RW69)

[Saa97)

[Sch77)
[Sch88)

[SDM92)

[Set89)

[Sho77)

[Sho93)

[SimO)

BIBLIOGRAPHY 265

G.D. Plotkin. a Structural Approach to Operational Semantics.
Technical Report DAIMI-FN-19, University of Aarhus, 1981.
C. Paulin-Mohring. Extraction de programmes dans Ie calcul des
constructions. Thesis, Universite de Paris VII, 1989.
A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE
Symp. on Foundations of Computer Science (FOCS'77), pages 46-
57, Providence, RI, USA, 1977.
B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Spec
ification and Z. International Series in Computer Science. Prentice
Hall, 1991.
J.P. Queille and J. Sifakis. Specification and verification of concur
rent systems in cesar. In Proc. Int. Symp.on Programming, volume
137 of LNCS, pages 337-351. Springer-Verlag, 1982.
M.O. Rabin. Decidable theories. In Barwise [Bar77), chapter C.3.
J.C. Reynolds. Polymorphism is not set-theoretic. In Kahn et al.
[KMP85), pages 145-156.
J .A. Robinson. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.
J .M. Rushby. Formal methods and the certification of critical sys
tems. Technical Report CSL-93-7, SRI International, Menlo Park,
1993.
G.A. Robinson and L. Wos. Paramodulation and theorem proving
in first order theories with equality. Machine Intelligence, 4:135-
150,1969.
M. Saaltink. The ZjEVES system. In ZUM '97: Z Formal Speci
fication Notation. 11th International Conference of Z Users. Pro
ceedings, pages 72-85, Berlin, Germany, 3-4 1997. Springer-Verlag.
K. Schutte. Proof Theory. Springer-Verlag, Berlin, 1977.
D.A. Schmidt. Denotational Semantics. A Methodology for Lan
guage Development. Wm.C. Brown Publishers, Dubuque, Iowa,
1988.
C. Da Silva, B. Dehbonei, and F. Mejia. Formal Specification in the
Development of Industrial Applications: the Subway Speed Control
Mechanism. In M. Diaz and R. Groz, editors, FORTE'92. North
Holland, 1992.
R. Sethi. Programming Languages: Concepts and Constructs. Ad
dison Wesley, 1989.
J.R. Shoenfield. Axioms of set theory. In Barwise [Bar77), chapter
B.1.
J.R. Shoenfield. Recursion Theory, volume 1 of Lecture Notes in
Logic. Springer-Verlag, 1993.
J. Sifakis, editor. Proc. 1st Int. Workshop on Automatic Verifica
tion Methods for Finite State Systems, volume 407 of Lecture Notes
in Computer Science. Springer-Verlag, 1990.

266 BIBLIOGRAPHY

[SOR93a] N. Shankar, S. Owre, and J.M. Rushby. A Tutorial on Specification
and Verification Using PVS. In Tutorial Material of FME'93, pages
357-406b. IFAD, 1993.

[SOR93b] N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker:
a Reference Manual (Draft). Technical report, SRI, Menlo Park,
CA, January 1993.

[Spi88] J.M. Spivey. Understandin9 Z: A Formal Language and its Formal
Semantics, volume 3 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1988.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. International
Series in Computer Science. Prentice Hall, 1989.

[Sti92] C. Stirling. Modal and temporal logics. In Abramsky et al.
[AGM92b], chapter 5, pages 477-563.

[Sto77] J .E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.

[Tak75] G. Takeuti. Proof Theory, volume 81 of Studies in Logic. North
Holland, Amsterdam, 1975.

[TBK92] L. Thery, Y. Bertot, and G. Kahn. Real theorem provers deserve
real user-interfaces. RR 1684, INRIA, Sophia-Antipolis, May 1992.

[Ter93] D. Terrasse. Thanslation from Typol to Coq. In J. Despeyroux,
editor, Proc. of the Technical Workshop BRA on Proving Proper
ties of Programming Languages, INRIA, Sophia-Antipolis (France),
September 1993.

[Th091] S. Thomson. Type Theory and Functional Programming. Interna
tional Computer Science Series. Addison Wesley, 1991.

[TP02] The Coq Development Team and LogiCal Project. The Coq Proof
Assistant Reference Manual, V7.3. Technical report, INRIA, 1999-
2002.

[TvD88] A.S. Thoelstra and D. van Dalen. Constructivism in Mathemat
ics: An Introduction I and II, volume 121, 123 of Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam,
1988.

[TVDOO] I. Toyn, S.H. Valentine, and D.A. Duffy. On Mutually Recursive
Free Types in Z. In ZB2000, LNCS. Springer-Verlag, 2000.

[Var01] M.Y. Vardi. Branching vs.linear time: Final showdown. In T. Mar
garia and W. Yi, editors, Tools and Algorithms for the Construc
tion and Analysis of Systems, volume 2031 of LNCS, pages 1-22.
Springer-Verlag, April 200l.

[vG90a] A.J.M. van Gasteren. On the Shape of Mathematical Arguments,
volume 445 of LNCS. Springer-Verlag, 1990.

[vG90b] R.J. van Glabbeek. The linear time - branching time spectrum.
In Baeten and Klop [BK90], pages 278-297.

[vH67] J. van Heijenoort, editor. From Frege to Godel, a Source Book in
Mathematical Logic, 1879-1931. Harvard University Press, 1967.

BIBLIOGRAPHY 267

[vL90a] J. van Leeuwen, editor. Handbook of Theoretical Computer Science,
volume A: Algorithms and Complexity. Elsevier, 1990.

[vL90b] J. van Leeuwen, editor. Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics. Elsevier, 1990.

[Wai91] S.S. Wainer. Computability - Logical and Recursive Complexity.
In Bauer [Bau91], pages 237-264.

[Wai93] S.S. Wainer. Four Lectures on Primitive Recursion. In Bauer et al.
[BBS93], pages 377-410.

[WL88] J.C.P. Woodcock and M. Loomes. Software Engineering Mathe
matics. Pitman, 1988.

[Wor92] J .B. Wordsworth. Software Development with Z. International
Computer Science Series. Addison Wesley, 1992.

[WWD99] J.M. Wing, J.C.P. Woodcock, and J. Davies, editors. FM'99 - For
mal Methods, volume 1708-1709 of LNCS. Springer-Verlag, 1999.

Index

The numbers in the form pn refer to footnote n on page p. The bold numbers refer to
definitions.

Symbols IQ 22
..l 155 1R 22
1\ 46, 77 Z 22
V 46,77 o 20
..., 46,77
V 80 A
V , 139 a-conversion 205
V2 .•••.•..•••••••..••....••• 90,222 Abrial 105
3 80
32 ••.•....•••••.•.••.•..••••••.••• 90

absorbing 49
abstraction 205, 223

-+48, 77, 214, 216 Ackermann, function 61, 240
=> 46,77 ACT! 201
~ 47,77 action 130
== 77
~ 205
~ •.............................. 206

TLA 144
Ada 190, 196
AF2 228

a 138 algebra
o 141 Boolean 179
<> 141 heterogeneous, or ~-algebra .. 88
"'v> ••••••••••••••••••••••••••••••• 142 initial 88, 226
E 16 algorithm 61
c 46 primitive recursive 60
::> 77 anti-symmetric 48
n 20 application 205
U 20 arithmetic 85
x 20 and set theory 11 7
- 46 of Presburger 186
\ 46 second-order functional 228
P 46 arithmetical hierarchy 64
PF , 50 ASN1 38
I- 149 associative 49
1= 149 automaton 130
I=M 92 axiom 92
II- 138 of Zermelo 116
t- 149, 152, 161, 163 of Zermelo-Fraenkel 114
1= 92 of Hilbert-Ackermann 151
Ja 20 logical 149, 151
N , .22 non-logical 149, 152

270 Understanding Formal Methods

of choice 55, 115, 123, 213
of infinity 115
of regularity 115
of replacement (schema) 114
of separation (schema) 114
proper 149, 152
schema 151

B
,B-reduction 205
B (method) 2,91, 105-110, 113, 126,

190
BDD 147
BHK 214
bijection 49
bisimulation 124, 147
Boolean

ring 179
bound

lower 48
upper 48

Boyer-Moore 9
Brouwer 42

c
C (language) 32, 36, 38, 74
CafeOBJ 201
calculus of inductive constructions

234,237
Cantor 39, 207
Cartesian square 46
CCS 134, 142, 147
Centaur 187
chain 52
Church .,44, 184, 204, 211

integers 208
thesis 44

Church-Rosser 211
class 113
classical see logique
clause 170

Horn 171
CLU 196
co (Unity operator) 142
coercion 193
Cohen 57, 123
combinator 208

fixed-point 221
paradoxical 221

commutative 49
complete

logic 183
theory 184

completeness 41, 183
completion 182

complexity 186
logical 64

composition 48
comprehension 46, 114
computability 19, 44

theory 58
confluence 211
consequence

deductive 149, 152
logical 92
logical, semantic 40
semantic 92

consistency 185
of arithmetic 186
of the >.-calculus 211
relative 123

constant 206
constructions 237
constructor 195
continuum hypothesis 57
Coq 3, 146, 162, 187, 230, 233
Coquand 232
correctness

partial 18
total 19, 24

countable 50
CSP 105, 136, 147
CTL 141
CTL * 138-140, 230
Curry-Howard

correspondence ... 215,217,228,
241

isomorphism see correspondence
curryfication 207
cut

elimination 166
rule 164

D
d-rule 206
deadlock free 127
decidable

logic 183
problem 62, 189
theory 185

decision procedure 58
declarative 1075

Dedekind 39, 207
deduction

natural 152
defined (relation) 48
Descartes 233
Devos 204
difference 46

Index 271

Dijkstra 33, 69, 176 Heyting42, 215, 227
disjoint 46 Hilbert 39
domain 48, 78, 102 system 150

Hoare 33, 65
E HOl 3, 162, 253
Eiffel 74, 190 Huet 232
equality

between two sets 46 I
Esterel 136, 148 idempotent 49
excluded middle 42, 63, 160, 213 identity 49
execution 132 identity relation 48
extension 20, 59 impredicative 44, 119
extraction impredicativity 222

program 230 included 46
inconsistent (theory) 185

F induction 27, 51
F (system F) 222, 226-228 and set theory 11 7
fairness 127, 133 schema 86
family 50 structural 239
finite 50 well-founded 55
first-order 80 inductive definition 238
fixed point 57, 120, 143 infinite 50

combinator 210 inhabitant 203
Floyd 33, 74 initial see model
form injective 49

normal 211 interaction net 232
formal proof 41 interpretation .
formula 80 of a formula 83

atomic 80 of a proposition 78
closed 92 of a type 198, 204

Fraenkel 44 of Heyting 214
free see type intersection 20
function 48 intuitionistic see logic

computable 44, 207 invariant 17, 23, 97, 139
partial 31, 87, 100, 103, 104 inverse 49
partial recursive 62 of a relation 49
primitive recursive 60 irreducible 206
recursive 61 Isabe"e 146, 187, 253
Skolem 173 isomorphic 56
total 87 isomorphism 50, 56

G J
Godel .. 40, 44, 57, 87, 123, 183, 185, judgement 161

186
generalization rule 150 K
genericity ., 122, 190 Knaster 58
Gentzen .. 40, 152, 160, 163, 168, 217 Krivine 228
Girard 222, 231
Gordon 34 L
guarded commands 73, 105 A-calculus 204

pure 206
H simply typed 216
Haske" 36, 221 with constants 206
Heijenoort 64 with pairs 206
Herbrand 40, 44, 170, 185 labeled transition system 130

272 Understanding Formal Methods

Lafont 232 initial 198
Lamport 133, 144 Kripke 130
langage non-standard 87

equational 84 of set theory 113
language oriented approach 40

algebraic specification 85 standard for arithmetic 87
first-order 80 theory 40
functional 5, 10, 36, 221 model checking 147, 148

LCF 252 modus ponens 150
leadsto 142 MONA 91
Lego 233
Leibniz 84, 178
lifecycle 4

monotone 56
morphism 50
multiset 50

literal 170
liveness 127, 140
LJ 163

N
NJ 154,160

LK 163
logic 75

classical/intuitionistic 42
constructive 203, 213
fixed-point 94
Hennessy-Milner 142
higher-order 90
intuitionistic 160, 213
linear 213, 232
multi-sorted 88

NK 160
Noetherian 52
normal

form 206,211
proof 217
strategy 212

normalization 217, 241
strong 217,220

NP-complete 1879

Nuprl 230, 253

ordo-sorted see OBJ
predicate 80
propositional 75
second-order 90

monadic 138
temporal 137-146, 175

branching 141
linear 141

three-valued 88, 104
LOTOS 136, 201
Lowenheim 93
lower bound 48

o
OBJ 89,201
object 151

Objective Caml 74
operation 49
order 48

lexicographic ordering 53
partial 48
total 48
well 56

ordinal 56
Otter 175

LP 146, 182
LTL 141 p
Lustre 136, 148 pair 46

M
paradox

Russell's 38, 113
J-t-calculus 143, 148 paradoxical
Martin-Lof 43, 232 combinator 210
matrix 173 parallel composition
Maude 201 Unity 128
metalanguage 111, 152 paramodulation 85
metatheorem 152 partial 48
Milner 134 correctness 25
minimum 56 recursive see function
Mitchell 232 Pascal 38, 43, 45, 60, 74
ML 5, 10, 36, 38, 74, 221 path 132
model 92 Peano 85, 117, 185

Index 273

PLTL 141 recursive see function
polymorphism 190, 221 recursively axiomatizable 86

ad-hoc 190 redex 205
parametric 122, 190 refinement 74, 101, 105, 109

Post 183 reflexive 48
postcondition 17 refutable 41
powerset 46 relation 48
precondition 17 arithmetical 64

weakest 72 equivalence 48
predecessor 52 Noetherian 52
predicate transition 130

characteristic 88
recursive 62

resolution principle 170
REVE 182

symbol 76
transformer 72, 91

predicative 43

rewriting 85, 181, 200, 212
Reynolds 122, 222
Robinson 170

prenex 173 Rosser 185
Presburger 186
prescriptive 1075

RRL 182
rule

primitive recursive see function
product

Cartesian 20
dependent 229
synchronized 133

program synthesis 230
progress 127, 140
projection 49
Prolog 171, 228
proof 150, 154, 204

normal 217
obligation 103
theory 41

property
oriented approach 40

proposition 77

contraction 164
cut 164
elimination 154, 240
generalization 150
golden 178
introduction 154
left introduction 163
logical 165
resolution 170
rewriting 182
structural 164
thinning , .164
weakening 164

Russell 43
Russell's paradox 38

atomic 75, 77
symbol 75

protocol 229
prototyping 5, 221
provable 41
PVS 3, 57, 187, 251, 253

S
safety 127, 140
satisfaction 92
scenario 132
schema 86

Z 95

Q
quantification

existential 80

axiom 151
calculus 97

Scheme 36
second-order 221 Schroder 183
universal 80 SDL 136

quantifier section 56
existential 80 security 1
universal 80 semanticai tableaux 170

semantics 3, 5, 17, 33
R axiomatic 33
Raise 88, 105 denotational 33, 102
reachability 127, 129, 140 natural 161, 187
realizability 250 operational 33, 133

274 Understanding Formal Methods

operational 51 8

structural operational 187
semi-decidable 212

logic 183
problem 63

semi-decision procedure 58
sequent 161

calculus 163
classical 163
intuitionistic 164

set
intuitive notion 16
recursive 62
recursively enumerable 63
theory see theory

Signal 148
signature 88, 195, 227
singleton 46
Skolem 44
Skolem normal form 173
skolemization 173
SMV 148
sort 88, 195, 203
sound

deduction system 41
logic 183

Spike 182
SPiN 148
state 8, 130

stable 127
state machine 130
STeP 146, 148
Stone 180
Stoy 34
strictly included 46
strong (assertion) 72
stuttering 133, 135
subformula property 166
subset 46

proper 46
substitution 83

generalized 107
simple 101

sum see type, 38, 220
dependent 229
of types, of sets see type

superset 46
surjective 49
symmetric 48

difference 46
synchronization vector 133

T
~ 170

Tarski 41, 58
tautology 92

verification 169
term 80

constant 77
theorem 151

Church-Rosser 211
Gentzen's Hauptsatz 166
compacity 94
completeness 183, 185
deduction 88, 152
incompleteness

(second theorem of Godel) 186
of Knaster-Tarski 58
of Lowenheim 93, 113
of Herbrand 185
of Turing 185
semi-decidability 184

theory 92, 184
extension 112
generated 92
model 40, 91
proof 41, 149
set 38, 44, 111, 206
type 43, 203, 237

TlA 144-146, 147
total 48

correctness 25
trace 132
trajectory 132
transition system 130
transitive 48
tree domain 83
Turing 33, 44, 185

machine 45, 212, 221
typable 215
type 43

Z 100
abstract data 195
abstract data type 112, 160, 194

algebraic/axiomatic 196
and set 111,117,190
as a guide 225
checking 189
dependent ... 191, 221, 227, 229
free (in Z) 100
inference 221
product 219, 228
sum .. 21, 38, 100, 220, 225, 228
theory see theory

U
undecidable

logic 183
problem 62

undefined 88
unification 172, 2216

union 20
Unity 125-129, 134, 144, 146, 147

temporal logic 141
unless 142
upper bound 48

V
valid

formula 92
value 195

truth 78
variable

bound 82
free 82
logical 80

Index 275

logical and program .66, 83, 126
program 66

variant 24
VDM 88, 102-105

W
weak (assertion) 72
well order 56
well-founded 52

z
Z (language) 2,39,95-102,113
Zermelo 44
Zermelo-Fraenkel 100, 111
ZF 100,113
ZFC 115

	Cover
	Title Page
	Copyright Page
	Foreword to the First Edition
	Preface
	Acronyms
	Table of Contents
	1. Motivation
	2. Introductory Exercise
	3. A Presentation of Logical Tools
	4. Hoare Logic
	5. Classical Logic
	6. Set-theoretic Specifications
	7. Set Theory
	8. Behavioral Specifications
	9. Deduction Systems
	10. Abstract Data Types, Algebraic Specification
	11. Type Systems and Constructive Logics
	12 . Using Type Theory
	Bibliography
	Index

